Temperature measurements with the relativistic Sunyaev-Zel'dovich effect

Planck y-map, from "*Planck* 2015 results XXII. A map of the thermal Sunyaev-Zeldovich effect".

Yvette Perrott

"Observing the Universe at mm wavelengths", June 2023

 Classical thermal SZ spectrum is actually the non-relativistic limit (Kompaneets equation)

- Classical thermal SZ spectrum is actually the non-relativistic limit (Kompaneets equation)
- But ICM of massive clusters is at temperatures $\sim 5 10 \text{ keV} \Rightarrow$ typical electron speeds $\sim 0.2c$

- Classical thermal SZ spectrum is actually the non-relativistic limit (Kompaneets equation)
- But ICM of massive clusters is at temperatures $\sim 5 10 \text{ keV} \Rightarrow$ typical electron speeds $\sim 0.2c$
- Relativistic beaming means more photons are up-scattered than down-scattered

- Classical thermal SZ spectrum is actually the non-relativistic limit (Kompaneets equation)
- But ICM of massive clusters is at temperatures $\sim 5 10 \text{ keV} \Rightarrow$ typical electron speeds $\sim 0.2c$
- Relativistic beaming means more photons are up-scattered than down-scattered
- Spectrum becomes a function of electron temperature

- Classical thermal SZ spectrum is actually the non-relativistic limit (Kompaneets equation)
- But ICM of massive clusters is at temperatures $\sim 5 10 \text{ keV} \Rightarrow$ typical electron speeds $\sim 0.2c$
- Relativistic beaming means more photons are up-scattered than down-scattered
- Spectrum becomes a function of electron temperature

- Classical thermal SZ spectrum is actually the non-relativistic limit (Kompaneets equation)
- But ICM of massive clusters is at temperatures $\sim 5 10 \text{ keV} \Rightarrow$ typical electron speeds $\sim 0.2c$
- Relativistic beaming means more photons are up-scattered than down-scattered
- Spectrum becomes a function of electron temperature
- Computation is now tractable (Chluba et al 2012, 2013: SZpack)

• At frequencies below $\approx 500~{\rm GHz}$, effect is to *decrease* the signal

- At frequencies below $\approx 500 \text{ GHz}$, effect is to *decrease* the signal
- At higher frequencies, signal increases

- At frequencies below $\approx 500~{\rm GHz}$, effect is to *decrease* the signal
- At higher frequencies, signal increases
- Null shifts position

- At frequencies below $\approx 500~{\rm GHz}$, effect is to *decrease* the signal
- At higher frequencies, signal increases
- Null shifts position
 - With multi-band observations, opportunity to measure temperature in a new way

Rough approximation to SPT bands

Rough approximation to SPT bands

Rough approximation to SPT bands

- Rough approximation to SPT bands
- Add an 857 GHz band

- Rough approximation to SPT bands
- Add an 857 GHz band

Stacking results

- Erler et al 2018: 772 *Planck* clusters + IRAS + Akari
- 2σ detection of rSZ temperature
- Spatially correlated dust component

0.012

0.006

0.000

0.18

0.12

0.06

0.00

0.06

Individual clusters

- Butler et al 2022: RX J1347.5-1145
- Massive, relaxed cluster but shock near the core from past minor merger

- Careful consideration of CIB, cirrus foregrounds
- Core temperature measurement of 22.4³³₁₀ keV, consistent with X-ray pressure-weighted prediction
- Future high-sensitivity, angular resolution instruments (AtLAST, CSST) will do better

• *Planck* bands span the frequency range

- *Planck* bands span the frequency range
- Is there enough signal to noise to constrain temperature in individual clusters with *Planck*?

 rSZ predicted to cause ≈10% bias in *Planck* Y₅₀₀ measurements for massive clusters

- rSZ predicted to cause ≈10% bias in *Planck* Y₅₀₀ measurements for massive clusters
- Simulations to check: realistic physical model for cluster thermodynamic properties, relativistic SZ effect predicted using SZpack

- rSZ predicted to cause ≈10% bias in *Planck* Y₅₀₀ measurements for massive clusters
- Simulations to check: realistic physical model for cluster thermodynamic properties, relativistic SZ effect predicted using SZpack
- Injected into real *Planck* data

- rSZ predicted to cause ≈10% bias in *Planck* Y₅₀₀ measurements for massive clusters
- Simulations to check: realistic physical model for cluster thermodynamic properties, relativistic SZ effect predicted using SZpack
- Injected into real *Planck* data
- Analyzed using PowellSnakes software

- rSZ predicted to cause ≈10% bias in *Planck* Y₅₀₀ measurements for massive clusters
- Simulations to check: realistic physical model for cluster thermodynamic properties, relativistic SZ effect predicted using SZpack
- Injected into real *Planck* data
- Analyzed using PowellSnakes software

From Perrott et al, in prep.

• Can an average SZ temperature be constrained?

- Can an average SZ temperature be constrained?
- In high-SNR cases yes, but with very low significance

- Can an average SZ temperature be constrained?
- In high-SNR cases yes, but with very low significance

- Can an average SZ temperature be constrained?
- In high-SNR cases yes, but with very low significance
- In lower-SNR cases no, and the Y constraints become biased upward

- Can an average SZ temperature be constrained?
- In high-SNR cases yes, but with very low significance
- In lower-SNR cases no, and the Y constraints become biased upward

Perrott et al, in prep.

 With an appropriate temperature constraint, Y values are recovered correctly

Perrott et al, in prep.
Individual Planck clusters

- With an appropriate temperature constraint, Y values are recovered correctly
- X-ray, scaling relation from numerical simulations (Lee et al 2020) seem to work equally well

Perrott et al, in prep.

Individual Planck clusters

- With an appropriate temperature constraint, Y values are recovered correctly
- X-ray, scaling relation from numerical simulations (Lee et al 2020) seem to work equally well

Conclusions from Planck

Conclusions from Planck

 rSZ can be used to constrain (weakly) temperature in the most massive clusters

Conclusions from Planck

- rSZ can be used to constrain (weakly) temperature in the most massive clusters
- In the bulk of the *Planck* cluster population, it causes a bias which an external temperature estimate is required to remove.

 Recalibration of M₅₀₀-Y₅₀₀ scaling relation using X-ray hydrostatic masses, temperatures from XMM-*Newton* (Lovisari et al 2020)

- Recalibration of M₅₀₀-Y₅₀₀ scaling relation using X-ray hydrostatic masses, temperatures from XMM-*Newton* (Lovisari et al 2020)
- Updated *Planck* data (NPIPE release), fitting pressure profile shape, implementing rSZ spectrum

- Recalibration of M₅₀₀-Y₅₀₀ scaling relation using X-ray hydrostatic masses, temperatures from XMM-*Newton* (Lovisari et al 2020)
- Updated *Planck* data (NPIPE release), fitting pressure profile shape, implementing rSZ spectrum
- Mass-dependent 5-15% bias in scaling relation found

Implementation

Perrott et al, in prep. Preliminary!

 No difference to *Planck* masses! Model applies biased scaling relation to biased Y

Updated *Planck* constraints for Abell 3266. Perrott et al, in prep. Preliminary!

- No difference to *Planck* masses! Model applies biased scaling relation to biased Y
- Unbiased Y values recovered: important for cross-instrument validation/combination (eg Butler+ 2022 used *Planck* to constrain large scales)

Updated *Planck* constraints for Abell 3266. Perrott et al, in prep. Preliminary!

- No difference to *Planck* masses! Model applies biased scaling relation to biased Y
- Unbiased Y values recovered: important for cross-instrument validation/combination (eg Butler+ 2022 used *Planck* to constrain large scales)
- Unbiased M₅₀₀-Y₅₀₀ scaling relation should be applied to SZ measurements with other instruments (eg Hilton+ 2021 use the rSZ spectrum to analyze ACT clusters but apply the *Planck* tSZ M₅₀₀-Y₅₀₀ scaling relation)

Updated *Planck* constraints for Abell 3266. Perrott et al, in prep. Preliminary!

• Proposed 50m single dish telescope \rightarrow high angular resolution

- Proposed 50m single dish telescope \rightarrow high angular resolution
- To be situated in the Atacama desert → access to high frequencies

- Proposed 50m single dish telescope \rightarrow high angular resolution
- To be situated in the Atacama desert \rightarrow access to high frequencies
- Will observe from ≈ 80 1000 GHz

 Similar frequency coverage to *Planck*

- Similar frequency coverage to *Planck*
- More, narrower
 bands? May be
 better for
 constraining the
 rSZ spectrum

- Similar frequency coverage to *Planck*
- More, narrower
 bands? May be
 better for
 constraining the
 rSZ spectrum

Angular resolution

Band	Central frequency (GHz)	Angular resolution (arcsec)	
3	100	14.84	
4	144	10.31	
5	187	7.94	
6	243	6.11	
7	324	4.58	00 / Me
8	442	3.35	M_2
9	661	2.25	
10	868	1.71	

 Angular resolution should allow resolved temperature profile measurements

Sensitivity – Preliminary!

- What kind of sensitivity do you need to constrain rSZ temperature?
- Assume same observing time for all bands; test temperature constraints as a function of SNR in reference band

Global temperature - Preliminary!

- Testing SNR on simulations... Average temperature within $heta_{200}$

Global temperature - Preliminary!

- Testing SNR on simulations... Average temperature within $heta_{200}$

Resolved profiles – Preliminary!

- Testing SNR on simulations... dividing into θ bins

B8 SNR=50

Resolved profiles – Preliminary!

- Testing SNR on simulations... dividing into heta bins

 $z = 0.2; M_{200} = 10^{15} M_{\odot}$ $z = 0.02; M_{200} = 10^{15} M_{\odot}$ 1 hrs 0.200 0.6 Noise level for SNR=20.0 / mJy/beam 0.175 0.150 0.125 4 hrs 0.100 0.075 1 hrs 16 hrs 0.050 4 hrs 16 hrs 0.025 100 hrs 100 hrs 0.0 0 10 20 30 40 50 60 70 80 0 2 6 8 10 4 θ / arcmin θ / arcmin

B8 SNR=20

 Better constraints if more observing time is focussed on higher frequencies?

- Better constraints if more observing time is focussed on higher frequencies?
- Forward (parametric/non-parametric) model fitting?

- Better constraints if more observing time is focussed on higher frequencies?
- Forward (parametric/non-parametric) model fitting?
- Better (numerical) cluster simulations?

- Better constraints if more observing time is focussed on higher frequencies?
- Forward (parametric/non-parametric) model fitting?
- Better (numerical) cluster simulations?
- Accurate incorporation of foregrounds/backgrounds?

- Better constraints if more observing time is focussed on higher frequencies?
- Forward (parametric/non-parametric) model fitting?
- Better (numerical) cluster simulations?
- Accurate incorporation of foregrounds/backgrounds?
- Intermediate option: CCAT-prime?

Conclusions

- With the precision and sensitivity of current and forthcoming instruments, the non-relativistic SZ spectrum is no longer an adequate approximation
- The relativistic M₅₀₀-Y₅₀₀ scaling relation differs by up to 15% at the high-mass end and should be used to calibrate SZ masses from instruments other than *Planck*
- Relativistic SZ temperature measurements are an exciting future prospect!

The "Cheshire Cat" galaxy group. Credit: X-ray - <u>NASA / CXC</u> / <u>J. Irwin et al.</u>; Optical - <u>NASA/STScI</u>. https://apod.nasa.gov/apod/ap220511.html