Prospects for Kinematic Sunyaev-Zeldovich Measurements from South Pole Telescope

Srinivasan Raghunathan

Centre for AstroPhysical Surveys, National Centre for Supercomputing Applications University of Illinois Urbana Champaign

Email: srinirag@illinois.edu

Work done with Yuuki Omori, Gil Holder, Nathan Whitehorn, Tom Crawford and the entire SPT collaboration

mm Universe, 30 June, 2023

Based on on ongoing SPT x SPIRE work.

Prospects (and Challenges) for Kinematic Sunyaev-Zeldovich Measurements from South Pole Telescope (and Future CMB Experiments)

Srinivasan Raghunathan

Centre for AstroPhysical Surveys, National Centre for Supercomputing Applications University of Illinois Urbana Champaign

Email: srinirag@illinois.edu

Work done with Yuuki Omori, Gil Holder, Nathan Whitehorn, Tom Crawford and the entire SPT collaboration

mm Universe, 30 June, 2023

Based on on ongoing SPT x SPIRE work and Raghunathan & Omori 2023, ApJ (arXiv:2304.09166).

Kinematic Sunyaev–Zeldovich (kSZ) effect

Doppler boosting of CMB photons due to free electrons *in motion*.

Image: Christian Reichardt

mm Universe, 30 June, 2023

Two sources:

- 1. Low redshift or late-time or post-reionisation kSZ: Bulk motion haloes.
- 2. High redshift or early-time or reionisation kSZ: Spatial differences in ionisation fractions in the Universe during the epoch of reionisation (z > -6).

Small-scale temperature power spectra

kSZ is larger than CMB on small scales and has the same BB spectrum as the CMB.

Reichardt et al. 2021, ApJ (arXiv: 2002.06197).

mm Universe, 30 June, 2023

Noise: SPT-3G expectation.

4

Kinematic Sunyaev–Zeldovich Power Spectrum: Probe of Reionisation

Battaglia et al. 2013, ApJ (arXiv: 1211.2832).

mm Universe, 30 June, 2023

Detecting the kSZ power spectrum will help us contain reionisation physics.

Also helps in understanding the velocity field in the low-z Universe.

However ...

5

Kinematic Sunyaev–Zeldovich Power Spectrum: Probe of Reionisation

However, we only have a 3σ measurement of the total kSZ power spectrum (with SPT-SZ).

Makes constraining reionisation physics hard.

Chen et al. 2022, ApJ (arXiv: 2203.04337)

mm Universe, 30 June, 2023

(Reichardt et al. 2021, ApJ, arXiv: 2002.06197).

And it was obtained by using templates. (i.e.) One data point at |e|| = 3000.

kSZ Power Spectrum Measurements

Foregrounds, particularly CIB, fully swamps the kSZ SNR.

Foregrounds are also degenerate with the kSZ signal. So we should not be using templates.

mm Universe, 30 June, 2023

Reichardt et al. 2021, ApJ (arXiv: 2002.06197).

kSZ Power Spectrum Measurements: Current Experiments

 3σ evidence of the total kSZ power spectrum. tSZ template from Shaw et al. 2010.

Replacing the template-fitting approach for tSZ/kSZ, Gorce, Douspis, and Salvati 2022 were able to break *tSZ / kSZ degeneracy* and improve the kSZ SNR by x2.

Reichardt et al. 2021, ApJ (arXiv: 2002.06197).

mm Universe, 30 June, 2023

Shaw et al. 2010, ApJ (arXiv: 1006.1945).

- tSZ and kSZ RF
- Templates
- Reichardt+2021

Gorce, Douspis, and Salvati 2022, A&A (arXiv: 2202.08698). Gorce et al. 2020, A&A (arXiv: 2004.06616).

0

9

6.0

4.5

1.5

0.0

 \sim

0.6 D³⁰⁰⁰

kSZ Power Spectrum Measurements: Current Experiments

Foregrounds are frequency dependent. So combining data from multiple bands should help for the kSZ detection.

mm Universe, 30 June, 2023

Reichardt et al. 2021, ApJ (arXiv: 2002.06197).

kSZ Power Spectrum Measurements: Future Experiments (MV ILC)

mm Universe, 30 June, 2023

Combining data from multiple bands to reduce the overall (noise + foregrounds) variance in the CMB maps.

But, this is not optimal for foreground mitigation. *Details of CIB and tSZ modelling are still important for kSZ*.

Raghunathan & Omori 2023, ApJ (arXiv:2304.09166).

kSZ Power Spectrum Measurements: Future Experiments (Constrained ILC)

Can we use constrained ILC to get rid of the foreground signals? No.

Low-noise Multi-band Futuristic survey

mm Universe, 30 June, 2023

Also see talk by Kristen Surrao on Wednesday for foreground mitigation with external datasets (galaxy surveys) using the correlation between tSZ/CIB and LSS tracers.

Kusiak, Surrao, and Hill 2023 (arXiv: 2303.08121)

kSZ Power Spectrum Measurements: Future Experiments (Constrained ILC)

Can we use constrained ILC to get rid of the foreground signals? No.

Jointly nulling tSZ and CIB also does not help.

mm Universe, 30 June, 2023

mm Universe, 30 June, 2023

Cross-ILC technique of obtaining the cross power spectrum measurement from tSZ-free and CIB-free helps!

mm Universe, 30 June, 2023

Cross-ILC technique of obtaining the cross power spectrum measurement from tSZ-free and CIB-free helps!

tSZ-free x CIB-free: CIB and tSZ foregrounds are >x5 lower than kSZ at \ell>=3700 for all experiments!

mm Universe, 30 June, 2023

Uncertainties are higher for cross-ILC but we have excellent control on foreground systematics

mm Universe, 30 June, 2023

Uncertainties are higher for cross-ILC but we have excellent control on foreground systematics

mm Universe, 30 June, 2023

Uncertainties are higher for cross-ILC but we have excellent control on foreground systematics

mm Universe, 30 June, 2023

Experiment	f sky	kSZ SNR	
SPT-3G	0.036	20 Ne.	• xt few yed
SPT-3G w/ SPT-4		35	7
SO	0.4	25	his decad
CMB-S4	0.5	85	Future.

Raghunathan & Omori 2023, ApJ (arXiv:2304.09166).

Code and Data Products: <u>https://github.com/sriniraghunathan/cross_ilc_methods_paper</u>

Combining SPT (90/150/220 GHz) with Herschel SPIRE (600/857 GHz) datasets.

Raghunathan et al., SPT/SPIRE Collaboration (in prep).

mm Universe, 30 June, 2023

Cross-correlating current ILC maps with SPT-SZ tSZ-free map.

Bleem et al. 2021, ApJ, (arXiv: 2102.05033).

No noise bias / tSZ correlation in any of the curves.

CIB residuals:

tSZ-free x tSZ-free > MV x tSZ-free > CIB-free x tSZ-free

Combining SPT (90/150/220 GHz) with Herschel SPIRE (600/857 GHz) datasets.

mm Universe, 30 June, 2023

Radio residuals dominate the small-scales but they are relatively easy to model.

kSZ SNR >7 σ for $D_l \sim 3 \ \mu K^2$.

Note: This is using a 100 sq. degree field.

Raghunathan et al., SPT/SPIRE Collaboration (in prep).

kSZ Power Spectrum: Expected reionisation constraints

21

Joint TT/EE/TE constraints on:

^CDM (6 parameters) +
foregrounds (3 parameters) +
late-time kSZ (2 parameters) +
reionisation (2 parameters).

Priors:

• *τ*_{re}: *Planck* or LiteBIRD.

• Late-time kSZ: 10 per cent.

$\sigma(\Delta z) \sim 1.5$ or 0.5 depending on the choice of prior on τ (*Planck* vs LiteBIRD).

Note that this is unconstrained currently by *Planck*.

Raghunathan & Omori 2023, ApJ (arXiv:2304.09166). mm Universe, 30 June, 2023

Summary

- kSZ power spectrum is a good probe of the physics of reionisation. • Future measurements should focus on getting the entire kSZ power spectrum.
- Foregrounds, particularly CIB and tSZ are extremely important. Modelling them is hard.
 - © Cross-ILC seems to return promising results. Raghunathan & Omori 2023, ApJ (arXiv:2304.09166).
- ●20 - 30 (new few years / this decade) - SPT and SO. ●>80 (in the future by CMB-S4).
- On going SPT x *Herschel* SPIRE work:
 - High kSZ SNR (>6 σ) expected with good control on foreground systematics from 100 sq. deg. data.
- Reionisation constraints using kSZ:
 - $\sigma(\Delta z) \sim 1.5$ or 0.5 depending on the choice of prior on τ .
 - Degeneracy between late-time and reionisation kSZ is important. kSZ 4-pt may help. Smith & Ferraro, PRL (arXiv:1607.01769).
 - de-late-time-kSZing using galaxy surveys may help. Foreman et al. 2023, PRD, (arXiv:2209.03973).

mm Universe, 30 June, 2023

mm Universe, 30 June, 2023

Back up slides

Parameter degeneracies for CMB-S4

mm Universe, 30 June, 2023

Bias in kSZ reconstruction: MV ILC vs Cross-ILC

mm Universe, 30 June, 2023

kSZ: 2-pt + 4-pt Constraints on Reionisation

Constraints on the duration of reionisation: $\sigma(z_{re}) = 0.42$. Unconstrained by *Planck*.

Covariance between 2-pt and 4-pt: Ignored.

mm Universe, 30 June, 2023

Work done with Adam Anderson and SPT team.

Based on the formalism presented in Alvarez et al. 2021, PRD (arXiv: 2006.06594).

Constraints on optical depth: $\sigma(\tau)$ improves by 20 - 30 %. Complementary systematic check for *Planck* primary CMB measurement.

kSZ / tSZ degenracies

tSZ prior can come from tSZ bispectrum measurements but still assumes a template.

mm Universe, 30 June, 2023

CIB assumed to be fully know below $\ell <= \ell_{max}$.

mm Universe, 30 June, 2023

Source masking threshold = 4 mJy

mm Universe, 30 June, 2023

Source masking threshold = 2 mJy

mm Universe, 30 June, 2023

Raghunathan et al. SPT / Herschel (in prep).

mm Universe, 30 June, 2023

Data has the same trend as simulations.

