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Brief History of OLIMPO
• Originally conceived and built by the group at Roma as a Balloon-

Borne FTS with a 2.6 m primary and spectral coverage from 130-520 
GHz in four separate bands (PI S. Masi)
• Horn-coupled Al KIDs on Si wafers
• 19, 37, 23, and 41 detectors at 150, 250, 350, and 460 GHz

• Primary science goal of measuring the SZE spectrum in galaxy clusters 
to disentangle tSZE, kSZE, and rSZE
• Payload was launched from Svalbard in July, 2018
• 5 day flight
• A Telemetry issue prevented scientific observations
• Cryogenic, Optical, and Detector noise performance all in good agreement 

with nominal expectations (Coppolechia+2020, Masi+2019, Paiella+2019)
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Planned Future for OLIMPO
• We aim to build on the proven

elements of the OLIMPO instrument
• Cryogenic system
• Optical design 
• KID geometry
• General gondola architecture

• While making substantive
improvements
• New telemetry, power, motors
• An order of magnitude more KIDs
• Remove the FTS – use as photometer

• To enable novel studies of ICM physics 
and WHIM via an Antarctic flight
• NASA/APRA concept w/ S. Hanany as PI
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OLIMPO prior to
launch in 2018



Why OLIMPO?
• Why SZE from a balloon with 

surveys from ACT, SPT, SO, CCAT 
(and CMB-S4 in the 2030s)
• The atmosphere severely degrades SZE 

sensitivity on large angular scales
• Studies of nearby objects, at z ~ 0.05, 

are not practical from the ground

• Why study obects at z ~ 0.05?
• Best resolved, largest signal
• They allow for the most detailed 

studies, requiring both SZE and X-ray 
(and radio), particularly for the diffuse 
gas in outskirts and filaments

• Overlap with the best X-ray data from 
eROSITA and XRISM

• What are the detailed studies 
planned with OLIMPO?
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Planck detected clusters at low-z 
that CMB-S4 won’t!



OLIMPO Science Goals
• Probe the dynamics of LSS formation 

and evolution
• Measure ICM gas dynamics from the 

core to the outer regions (kSZE + X-rays)
• Probe gas kinetic energy, non-thermal 

pressure, energy cascade, energy 
dissipation and transport properties 
(tSZE/X-ray power spectrum + kSZE)

• Connect kSZE and tSZE measurements 
with radio features (halos, relics)

• Characterize the “missing baryons” in 
filamentary WHIM gas
• Measure the spatial distribution of 

temperature, density, and velocity within 
filaments (tSZE + kSZE + X-rays)
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magnitude lower noise and a factor of two 
better angular resolution



What Else is Required?
• Spectrally disentangling tSZE, kSZE, 

and rSZE is very difficult
• X-rays break degeneracy
• Need deep exposures on degree scales –

eROSITA PV + eRASS (E. Bulbul)
• Deep radio observations to

characterize halos and relics
• MeerKAT and ASKAP (L. Rudnick)

• Detailed hydro-sims to interpret
observational results
• Combination of publicly available

(IllustrisTNG, The300, Omega500) and
custom runs within our team (C. Avestruz)

• Generate mocks, analyzed identically to
observed data, for comparison 

• Primary challenge is sufficient resolution 
in low density outskirts/filaments
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OLIMPO PSF
x3 Di!use Radio
Structures

ASKAP (orange), XMM (blue), from Riseley+2022
Existing ASKAP data show x3 diffuse radio 
structures, including x2 Mach 2-3 shocks in the 
outskirts - modest detections in eROSITA PV



OLIMPO Instrument Details
• Cassegrain system with 2.6m primary mirror
• PSF FWHM of 3.3’, 1.9’, 1.3’, and 1.0’ at 145, 250, 365, and 460 GHz (2-4 times 

better than Planck)
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OLIMPO Instrument Details

• Horn-coupled Al KIDs on Si
• Same design as first flight
• Hex-pack 1-f𝜆 filling 24 arcmin 

co-aligned FOVs to efficiently 
map compact objects
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OLIMPO Observations
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• OLIMPO can make deep images
• Two orders of magnitude deeper 

than Planck
• An order of magnitude deeper than 

CCAT-P/CMB-S4 at high frequency
• Similar depth to CMB-S4 at 150 GHz, 

but without the atmosphere

Planck detected clusters at 
low-z that CMB-S4 won’t!



Planned OLIMPO Targets
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• Six different fields, ten different clusters, three systems with bridges
• All three of the eROSITA PV target fields
• Plus three additional target fields identified from Planck



OLIMPO Observations
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145 GHz 250 GHz 365 GHz 460 GHz

R=1.5 Mpc R=1.5 Mpc R=1.5 Mpc R=1.5 Mpc

• We have built machinery to create mock OLIMPO observations (T. 
Macioce)
• Including tSZE, kSZE, CMB, CIB, cluster-member galaxies

• See mock 1° × 1° images below



eROSITA is Critical
• Combination of large FOV, raster 

scanning, and stable background 
allow for degree-scale 
measurements of ICM and 
WHIM
• Not possible with Chandra/XMM

• ICM - OLIMPO alone cannot fully 
constrain 𝜏e, ve, and Te
• eROSITA-measured Te allows 

constraints on ve
• WHIM – Te difficult to measure 

with eROSITA alone
• OLIMPO tSZE + eROSITA SB 

measure ne and Te of WHIM
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Figure from Whelan+2022
eROSITA ICM profiles for Abell 3158
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Projected OLIMPO Sensitivity
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• Have used our mock observations and an analysis pipeline based on MCMC 
to project SZE constraints (E. Rapaport)
• Mocks include dominant contaminants, the CMB and the CIB
• Also include realistic prior on temperature from eROSITA

• Typical tSZE S/N of ~100 in 200 kpc wide radial bins for clusters
• Typical kSZE uncertainty corresponding to ~50 km/s in each radial bin
• tSZE S/N of ~10 and velocity uncertainty of ~50 km/s per pixel in filaments



Direct ICM Velocity 
Measurements
• OLIMPO will be able to measure 

ICM velocity dispersions to ±50-
100 km/s in 200 kpc annuli out to 
at least 1.5 Mpc in radius
• Not practical with XRISM, which 

would require ≈1 Msec to obtain 
similar constraints near 1 Mpc

• Typical S/N of 5 per cluster per 
radial bin
• Directly measure non-thermal 

pressure
• Differences towards/away from 

filaments
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OLIMPO will measure ICM velocity dispersion 
profiles from the central regions to at least 1.5 
Mpc in radius



ICM Fluctuation 
Power Spectrum
• OLIMPO will measure 

pressure fluctuations on 
scales from 0.2-2 Mpc
• eROSITA will measure X-ray 

SB fluctuations on scales 
from 0.05-0.5 Mpc
• In combination we will probe 

almost two orders of 
magnitude in physical scale
• Via simulations can connect to 

the underlying ICM turbulence
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Expected results for Abell 3266
Blue represents actual measurement from 
eROSITA and red is the projection from mock a 
mock OLIMPO observation



ICM and  Rela-
tivistic Plasmas
• Radio halos

• We will be able to provide 
the first direct observations 
of turbulence thought to 
produce reacceleration

• Radio relics
• Discrepancies between 

radio/X-ray Mach numbers
• Most relics are at large radii 

– and thus difficult to study 
with X-rays

• OLIMPO tSZE will measure 
ICM discontinuities 
associated with these relics
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Meerkat radio contours overlaid on XMM X-ray image
There is a clear excess of radio emission in the SE, where 
we expect to see an enhanced kSZE signal with OLIMPO



Characterizing the WHIM in Filaments
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Characterizing the WHIM in Filaments
• Expected WHIM temperature 

in filaments is ~0.1 keV
• It is very challenging to obtain 

spectroscopic constraints from 
eROSITA’s 0.2—2.3 keV band

• Handful of attempts with 
XMM/Chandra find much 
hotter ~1 keV gas in filaments 
(e.g., Eckert+2015, 
Alvarez+2018)

• Combining eROSITA SB with 
OLIMPO tSZE will robustly 
measure temperature
• Most promising approach to

constrain WHIM 
thermodynamics
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Characterizing the WHIM in Filaments
• We can also measure gas 

velocity within filament
• kSZE is brighter relative to tSZE

at such cold temperatures
• ±50 km/s within 200 kpc 

pixels along filament to map 
out internal gas flow

• And we can measure the 
absolute velocity of the 
clusters connected at each 
end of the filament
• Disentangle distance/redshift 

degeneracy to measure LOS 
extent of filament to ±1 Mpc

• Differentiate “Short”, 
“Medium”, and “Long”
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Why OLIMPO?
• Unique science
• Perform a detailed mapping of of the ICM velocity structure from the cluster 

center to regions dominated by accretion
• Probe the connection between the ICM and the relativistic plasmas
• Characterize the thermodynamics of WHIM gas in filaments (i.e., the “missing 

baryons”)

• SZE observations from above the atmosphere
• Necessary to overlap with the best X-ray data available from eROSITA and 

XRISM at z ~ 0.05

• Also leveraging the best radio data from MeerKAT, ASKAP
• Detailed comparisons with simulations to extract the science
• Based on hardware that largely exists and has been flight tested
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