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Brief History of OLIMPO

* Originally conceived and built by the group at Roma as a Balloon-
Borne FTS with a 2.6 m primary and spectral coverage from 130-520

GHz in four separate bands (Pl S. Masi)

* Horn-coupled Al KIDs on Si wafers
e 19, 37, 23, and 41 detectors at 150, 250, 350, and 460 GHz

* Primary science goal of measuring the SZE spectrum in galaxy clusters
to disentangle tSZE, kSZE, and rSZE

* Payload was launched from Svalbard in July, 2018
e 5day flight
* A Telemetry issue prevented scientific observations

* Cryogenic, Optical, and Detector noise performance all in good agreement
with nominal expectations (Coppolechia+2020, Masi+2019, Paiella+2019)



Planned Future for OLIMPO

* We aim to build on the proven Y/
elements of the OLIMPO instrument 4
* Cryogenic system
e Optical design
* KID geometry
* General gondola architecture

* While making substantive
Improvements
* New telemetry, power, motors
* An order of magnitude more KIDs
* Remove the FTS — use as photometer

* To enable novel studies of ICM physics
and WHIM via an Antarctic flight

* NASA/APRA concept w/ S. Hanany as PI




Why OLIMPO?

 Why SZE from a balloon with
surveys from ACT, SPT, SO, CCAT , —
(and CMB-S4 in the 2030s)

* The atmosphere severely degrades SZE
sensitivity on large angular scales

e Studies of nearby objects, at z ~ 0.05,
are not practical from the ground

 Why study obects at z ~ 0.05?
e Best resolved, largest signal

* They allow for the most detailed
studies, requiring both SZE and X-ray
(and radio), particularly for the diffuse that CMB-S4 won’t!
gas in outskirts and filaments = z

* Overlap with the best X-ray data from a5 il PSS il

e What are the detailed studies Redshift z
planned with OLIMPQO?

Planck detected clusters at low-z




OLIMPO Science Goals

* Probe the dynamics of LSS formation
and evolution

 Measure ICM gas dynamics from the
core to the outer regions (kSZE + X-rays)

* Probe gas kinetic energy, non-thermal
pressure, energy cascade, energy
dissipation and transport properties
(tSZE/X-ray power spectrum + kSZE)

e Connect kSZE and tSZE measurements
with radio features (halos, relics)

* Characterize the “missing baryons” in

filamenta ry WHIM gas 4° X 4° Planck image of filamentary structures
* Measure the spatial distribution of OLIMPO will provide images with two orders of
temperature, density, and velocity within  magnitude lower noise and a factor of two
filaments (tSZE + kSZE + X-rays) better angular resolution
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e Spectrally disentanfgling tSZE, kSZE,
and rSZE is very difficult
e X-rays break degeneracy

 Need deep exposures on degree scales —
eROSITA PV + eRASS (E. Bulbul)

* Deep radio observations to
characterize halos and relics

* MeerKAT and ASKAP (L. Rudnick)

* Detailed hydro-sims to interpret
observational results

 Combination of publicly available

(ustrisTNG, The300, Omega500) and e s
custom runs within our team (C. Avestruz) [ g Abell 3266
* Generate mocks, analyzed identically to artrrditt e SR I ' -
observed data, for comparison ASKAP (orange) XMM (que) from Rlseley+2022
* Primary challenge is sufficient resolution Existing ASKAP data show x3 diffuse radio
in low density outskirts/filaments structures, including x2 Mach 2-3 shocks in the

outskirts - modest detections in eROSITA PV



OLIMPO Instrument Details

e Cassegrain system with 2.6m primary mirror

 PSF FWHM of 3.3, 1.9, 1.3/, and 1.0’ at 145, 250, 365, and 460 GHz (2-4 times
better than Planck)
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OLIMPO Instrument Details

145GHz (55 detectors) 250GHz (151 detectors) 365GHz (313 detectors) 460GHz (511 detectors)
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OLIMPO Observations e S
e OLIMPO can make deep images s
* Two orders of magnitude deeper =
than Planck 51 N
: = Planck detected clusters at "\
An order of magnltu.de deeper than ow-z that CMB.S4 won't!
CCAT-P/CMB-S4 at high frequency e B Btk B
e Similar depth to CMB-54 at 150 GHZ, 0.01 0.10 1.00
but without the atmosphere Redshift z
Map Noise (uKcyp—arcmin)
Frequency Band (GHz)
Instrument 145 750 365 460 Notes
OLIMPO 1.2 0.9 2.3 5.8 10 clusters + filaments
Planck [40] 33 47 150 3700 full sky
CCAT-P [28] N/A 15/3.0 107/21 407/81 wide 20k deg? / deep 100 deg”

CMB-S4 LAT [47] 2.0/1.0 5.7/3.5 N/A N/A wide 29k deg? / deep 1200 deg?
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Planned OLIMPO Targets

e Six different fields, ten different clusters, three systems with bridges
e All three of the eROSITA PV target fields
* Plus three additional target fields identified from Planck

Time Planck eROSITA

Group Cluster 2z Map G S/N T Notes

Abell 3391 0.05 1.6°x0.8° 100 17 1.74M Bridge in Planck

1 Abell 3395 0.05 PAT=0° 14 1.25M & eROSITA [37, 38, 88]
Abell 3158 0.06 0.8°Q'" 50 20 1.60M disturbed [90, 97]
Abell 3266 0.06 0.8°@ 50 41 2.4TM merger w/ 2 shocks [92]
Abell 3552 005 22°%x10° 12 16.5k A3532-A3530 bridge in
Abell 3528 0.05 PA=150° 140 11 24.4k Planck & eROSITA;

2 Abell 3530 0.05 5 33.0k A3532-A3528 in Planck
RJ0812.5 0.06 2.0°x0.8° 120 11 18.7k Possible bridge
R J0820.9 0.06 PA=280° 10 5.4k in Planck

Abell 0496 0.03 1.3°9 130 12 97.6k relaxed cool-core [93-95]




OLIMPO Observations

* We have built machinery to create mock OLIMPO observations (T.
Macioce)

* Including tSZE, kSZE, CMB, CIB, cluster-member galaxies
e See mock 1° X 1° images below

R=1.5 Mpc

460 GHz

145 GHz

365 GHz




eROSITA is Critical

 Combination of large FOV, raster
scanning, and stable background
allow for degree-scale
measurements of ICM and
WHIM

* Not possible with Chandra/XMM

* ICM - OLIMPO alone cannot fully
constrain 7., v, and T,
* eROSITA-measured T, allows
constraints on v,

e WHIM — Te difficult to measure
with eROSITA alone

* OLIMPO tSZE + eROSITA SB
measure n, and T, of WHIM

Normalization
norm/area (10~ #cm~3/arcmin?)

Temperature
ksT (keV)

Metallicity
Z(Zs)

L
¥}

0.0

Radius (kpc)

0 250 500 750 1000 1250 1500
‘=~=_~ mm XMM (R < 800 kpc)
e mm Chandra (R < 700 kpc)
¢:'“I’_._ eROSITA (R < 1500 kpc)
- Counts =
+.
ity Temperature
+ +
| + T4
ot Vetallici
etallicit
.| FEat i+_L y
3 ++h— o

r (arcmin)

Figure from Whelan+2022
eROSITA ICM profiles for Abell 3158
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Projected OLIMPO Sensitivity

* Have used our mock observations and an analysis pipeline based on MCMC
to project SZE constraints (E. Rapaport)

* Mocks include dominant contaminants, the CMB and the CIB

e Also include realistic prior on temperature from eROSITA
» Typical tSZE S/N of ~100 in 200 kpc wide radial bins for clusters

 Typical kSZE uncertainty corresponding to ~50 km/s in each radial bin
e tSZE S/N of ~10 and velocity uncertainty of ~50 km/s per pixel in filaments

Cluster Apix 0.4<R<0.6 Mpc 0.9<R<I.1 Mpc 1.4<R<1.6 Mpc
Mpc | tSZE S/N o (vdgisp) | tSZE S/IN  o(vgisp) | tSZE SN o (vdisp)
Abell 3395 0.20 145 45 km/s 115 60 km/s 80 80 km/s
Abell 3266 0.23 260 15 km/s 125 50 km/s 50 140 km/s
A3391-A3395 0.20 | tSZE S/N =20 and o(v) = 45 km/s per pixel along bridge axial center
A3530-A3528 0.20 | tSZE S/N =10 and o(v) = 95 km/s per pixel along bridge axial center



Direct ICM Velocity 500
— mass-we_lghted sph_erlcal
Measurements — 400~ -~ mass-weighted projected _
A 91 mock annuli (XRISM-like)
* OLIMPO will be able to measure = E3 OLIMPO (A3395)_ _ )
ICM velocity dispersions to +50- <, 300 K I i g oy T
100 km/s in 200 kpc annuli out to 8 L S =
at least 1.5 Mpc in radius > 200 =g T -
* Not practical with XRISM, which v oe— :
would require =1 Msec to obtain 1000/ 1T } -
similar constraints near 1 Mpc
. j I N N IR
Tyg.'ch.S/N of 5 per cluster per 0.2 04 06 0.8 1.0 1.2 1.4
radial oin R [|\/|pC]
* Directly measure non-thermal _ ,
pressure Adapted figure from Nagai+2013
. Differences towards/away from OLIMPO will measure ICM velocity dispersion
filaments profiles from the central regions to at least 1.5

Mpc in radius



CM Fluctuation

ower Spectrum

* OLIMPO will measure
pressure fluctuations on
scales from 0.2-2 Mpc

e eROSITA will measure X-ray
SB fluctuations on scales
from 0.05-0.5 Mpc

* In combination we will probe
almost two orders of
magnitude in physical scale

e Via simulations can connect to
the underlying ICM turbulence
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Expected results for Abell 3266

Blue represents actual measurement from
eROSITA and red is the projection from mock a
mock OLIMPO observation
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|CM ?nd Rela- ' Abell 3158
tivistic Plasmas [

 Radio halos

* We will be able to provide
the first direct observations

of turbulence thought to
produce reacceleration

 Radio relics

e Discrepancies between
radio/X-ray Mach numbers

* Most relics are at large radii

SE Quadrant

O cOHN
O

0.01

— and thus difficult to study ® oo e
with X-rays =

e OLIMPO tSZE will measure Meerkat radio contours overlaid on XMM X-ray image
ICM discontinuities There is a clear excess of radio emission in the SE, where

associated with these relics we expect to see an enhanced kSZE signal with OLIMPO




Characterlzmg the WHIM N Fllaments
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Characterizing the WHIM in Filaments

* Expected WHIM temperature
in filaments is ~0.1 keV
* It is very challenging to obtain

spectroscopic constraints from
eROSITA’s 0.2—2.3 keV band

* Handful of attempts with
XMM/Chandra find much
hotter ~1 keV gas in filaments
(e.g., Eckert+2015,
Alvarez+2018)

 Combining eROSITA SB with
OLIMPO tSZE will robustly
measure temperature

* Most promising approach to
constrain WHIM
thermodynamics
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Predicted Filament Temperatures from lllustrisTNG
(Galarraga-Espinosa+2021)



Characterizing the WHIM in Filaments

* We can also measure gas
velocity within filament

e KSZE is brighter relative to tSZE
at such cold temperatures

e +50 km/s within 200 kpc
pixels along filament to map
out internal gas flow

 And we can measure the
absolute velocity of the
clusters connected at each
end of the filament
* Disentangle distance/redshift

degeneracy to measure LOS
extent of filament to +1 Mpc

* Differentiate “Short”,
“Medium”, and “Long”

= 0091 S “‘Medium (9-20 Mpc)
jé ________ S
5 - .. Lang (>20 Mpc)
©
g Radial range
5 to be probed
in our study
0009+ —
1071 10° 10° 107

Radius Relative to Filament Axis (Mpc)

Predicted Filament Temperatures from lllustrisTNG
(Galarraga-Espinosa+2021)



Why OLIMPO?

* Unique science

* Perform a detailed mapping of of the ICM velocity structure from the cluster
center to regions dominated by accretion

* Probe the connection between the ICM and the relativistic plasmas

e Characterize the thermodynamics of WHIM gas in filaments (i.e., the “missing
baryons”)

e SZE observations from above the atmosphere

* Necessary to overlap with the best X-ray data available from eROSITA and
XRISM at z ~ 0.05

* Also leveraging the best radio data from MeerKAT, ASKAP
* Detailed comparisons with simulations to extract the science
* Based on hardware that largely exists and has been flight tested



