

Optimization and quality assessment of baryon pasting for intracluster gas

Florian Kéruzoré, Argonne National Laboratory mmUniverse23, June 2023

Kéruzoré et al., Submitted to OJA, arXiv:<u>2306.13807</u> (as of yesterday!)

 Argonne National Laboratory is a
 U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Context: Cosmological simulations for cluster science

• Cluster cosmology needs simulations

HMF calibration, accuracy/precision of mass estimates, selection functions, ...

- Two types of cosmological simulations:
 - Hydrodynamic: Universe with CDM + baryons
 - Gravity-only (GO): All matter is CDM
 - ○ ~10x faster than hydro
 → larger volumes, more cosmologies
 - ⊗ No baryons = no SZ (or X-rays)
 → Can't produce all cluster observables
- **Baryon pasting (BP):** add gas a posteriori to create observables from GO simulations
 - → Get the products of a hydro simulation, for the price of a GO simulation
- **This work:** optimize baryon pasting to reproduce results from hydro simulations

ANL cosmological simulations

- ANL produces state-of-the-art simulations using the HACC solver (Habib+16, Frontiere+23)
- Large variety of available data:
 - Cutting-edge large boxes
 OuterRim, LastJourney, FarPoint
 - Cosmo params hypercube Mira-Titan
 - Volumes simulated in hydro and GO BorgCube
- Post-processing pipeline can produce:
 - kSZ / simple tSZ from baryon pasting (Flender+16)
 - Galaxies (LSSTDESC+21)
 - (CMB) lensing maps (Larsen+ in prep.)
- Widely used for cosmology (e.g. LSST DC2)
- To be improved with DOE's exascale computers (Aurora, Frontier)

	Year	Simulation	Algorithm	Location	$[10^3]$	$[10^{12}]$	$[h^{-1}\text{Gpc}]$
	2014	Dark Sky (Skillman et al. 2014)	2HOT FMM	Titan USA	20	1.1	8
(2017	TianNu (Emberson et al. 2017)	CUBEP ³ M PM-PM-PP	Tianhe-2 China	331	2.97	1.2
	2017	Euclid Flagship (Potter et al. 2017)	PKDGRAV3 Tree-FMM	PizDaint Switzerland	4	2.0	3.
	2019	Outer Rim (Heitmann et al. 2019)	HACC Tree-PM	Mira USA	524	1.07	3.0
	2019	$\begin{array}{c} \text{Cosmo-}\pi\\ \text{(Cheng et al. 2020)} \end{array}$	CUBE PM-PM	$\pi 2.0$ China	20	4.39	3.2
	2020	Uchuu (Ishiyama et al. 2021)	GreeM Tree-PM	ATERUI-II Japan	<40	2.0	2.0
ſ	2020	Last Journey (Heitmann et al. 2021)	HACC Tree-PM	Mira USA	524	1.24	3.4
	2021	Far Point (Frontiere et al. 2021)	HACC Tree-PM	Summit USA	?	1.86	1

Code

Table 1 List of cosmological simulations with a particle number in excess of 1 trillion (10^{12})

Angulo+23

Boy

ANL

ANL

Outline

• Context

• Optimizing baryon pasting vs hydrodynamic simulations

- The Borg Cube simulations
- Model & Optimization method
- Results
- Quality assessment
 - Gas profiles
 - Preliminary fixed-z tSZ products
- Conclusions, outlook

Outline

• Context

• Optimizing baryon pasting vs hydrodynamic simulations

- The Borg Cube simulations
- Model & Optimization method
- Results
- Quality assessment
 - Gas profiles
 - Preliminary fixed-z tSZ products
- Conclusions, outlook

- Volume = $(800 h^{-1} cMpc)^3$; particle mass ~ $10^9 h^{-1} M_{\odot}$
- Two simulations with same initial conditions:
 - GO: Gravity-only
 - NR: Non-radiative hydro
 First CRK-HACC hydrodynamic simulation (Emberson+19)

- Volume = $(800 h^{-1} cMpc)^3$; particle mass ~ $10^9 h^{-1} M_{\odot}$
- Two simulations with same initial conditions:

GO: Gravity-only
Same initial conditions → ~ same halos
NR: Non-radiative hydro First CRK-HACC hydrodynamic simulation (Emberson+19)

Subvolume halo distribution

→ How can we reproduce the NR gas distribution from the GO matter distribution?

Florian Kéruzoré, ANL

Halo sample: cluster-scale, matched in both runs

- Study cluster-scale halos: $M_{500c} \ge 10^{13.5} h^{-1} M_{\odot}$
- Match halos in both runs based on distance + similar mass
 - → >98% of GO halos are matched

Baryon pasting model and optimization

- Model: based on Ostriker+05 model: for 1 halo, BP gas density & pressure fixed by:
 - GO 3D grav. potential
 - Model parameters:
 - gas polytropic index Γ ,
 - fraction of CDM energy transferred to gas $\varepsilon_{\rm DM}$
- Optimization workflow:
 - Run baryon pasting on all halos, on a grid of parameter values: $\Gamma \in [1.13, 1.20]; \epsilon_{\text{DM}} \in [0, 5\%]$
 - For each halo, compare relative difference between BP and NR gas density and pressure,

$$\chi_{\rho} = \frac{\rho_{g}^{BP}}{\rho_{g}^{NR}} - 1, \quad \chi_{P} = \frac{P_{g}^{BP}}{P_{g}^{NR}} - 1$$

- Compute the radial profiles of (χ_{ρ}, χ_{P}) for all halos
- Repeat for all redshifts independently

(see D. Nagai's talk)

Results: z=0 (n=20,120)

Blue: Density Orange: Pressure

9

Argonne

Results: z=0 (n=20,120)

Blue: Density Orange: Pressure

Argon

Results: z=0 (n=20,120)

Blue: Density Orange: Pressure

Argonne

Blue: Density Orange: Pressure

Results: z=1 (n=4,644)

Argonne

Results: z=1 (n=4,644)

Results: z=2 (n=260)

Argonne

Results: z=2 (n=260)

Argonne

- Measured redshift trend in (Γ , $\varepsilon_{\rm DM}$)
 - $\Gamma(z = 0) = 1.15$ $\rightarrow \Gamma(z = 2) = 1.18$
 - $\varepsilon_{\rm DM}(z=0) = 0.5 \%$ → $\varepsilon_{\rm DM}(z=2) = 3 \%$
- Measured bias parameters:
 - Density: $\Delta_{
 ho} \sim 15-20~\%$
 - Pressure: $\Delta_P \sim 20 \,\%$

Outline

- Context
- Optimizing baryon pasting vs hydrodynamic simulations
 - The Borg Cube simulations
 - Model & Optimization method
 - Results
- Quality assessment
 - Gas profiles
 - Preliminary fixed-z tSZ products
- Conclusions, outlook

Gas profiles reconstruction: accuracy & precision

- Agreement between density and pressure
- For the best parameters at each z
- Focusing on $r \in [0.25, 1.25] R_{500c}$
- Accuracy:
 - < 3% on pressure
 - < 2% on density
- Scatter:
 - Radially dependent
 - $\sim 20\,\%\,$ on pressure
 - $\sim 15\,\%$ on density

Y₅₀₀ | M₅₀₀ scaling relation reconstruction

• Y|M: important tool for cluster cosmology (See talks by L. Bleem, L. Salvati, L. Perotto, G. Aymerich, A. Moyer, A. Paliwal, ...)

$$E^{-2/3}(z) \frac{D_{\rm A}^2 Y_{500}}{10^{-4} h^{-1} {\rm Mpc}^2} = 10^{\alpha} \left[\frac{M_{500}}{3 \times 10^{14} h^{-1} {\rm M_{\odot}}} \right]^{\beta} + \mathcal{N}(0, \alpha)$$

- Compare Y|M from BP (left) vs NR (right):
 - Similar reconstructed parameters
 - Extra scatter due to baryon pasting: $<5\,\%\,$ of NR scatter

Florian Kéruzoré, ANL

mmUniverse 2023

17

Florian Kéruzoré, ANL

ils: z>u ок аг

 $x [h^{-1}Mpc]$

, Ò

65

00

Q.5

70

5

00

Q.5

0.50

0.25

(BP)

(BP)

05

~

0

 $z = 1.0, M_{500c} = 10^{14.18} h^{-1} M_{\odot}$

00

1.5, $M_{500c} = 10^{13.99} h^{-1}$

(NR

(NR)

6.5

 \mathbf{r}

 \mathbf{i}

, S

*.*02

00

 $x [h^{-1}Mpc]$

0,2

00

 $x [h^{-1}Mpc]$

برکر

0.

Arg

 $x [h^{-1}Mpc]$

18

Outline

- Context
- Optimizing baryon pasting vs hydrodynamic simulations
 - The Borg Cube simulations
 - Model & Optimization method
 - Results
- Quality assessment
 - Gas profiles
 - Preliminary fixed-z tSZ products
- Conclusions, outlook

Conclusions

- Progress towards baryon pasting pipeline for HACC GO simulations
- Optimized Ostriker+05 model to reproduce hydrodynamic simulation:
 - From direct per-halo comparison on ~40,000 halos, for $z \in [0, 2]$
 - Redshift trend observed in model parameters
- Results: using a gravity-only simulation, up to z = 2,
 - Pressure / density reconstructed with ~few % accuracy, ~20% scatter
 - $Y_{500} | M_{500}$ scaling relation well reconstructed, with <5% excess scatter
 - First look at maps: tSZ amplitude / shape reconstructed

What's next?

- Systematic application to HACC gravity-only simulations
 - OuterRim (DESC cosmoDC2 Universe)
 - Mira-Titan (111 simulations with varying comsology)
 - +all cosmological volumes (Last Journey, Farpoint, ...)

• Model extension:

- This work omits subgrid physics (cooling, star formation, feedback)
- Absent from the Borg Cube; recently implemented in HACC CRK-HACC, Frontiere+23
- Same analysis to be repeated on newer complete hydro sims
- Observational data to be used for further validation

Backup

- Model based on Ostriker+05 (see D. Nagai's talk)
- Input data: for one halo, (M_{vir}, R_{vir}) + particles
 - Assume polytropic equation of state:

-
$$\rho_{\rm g} = \rho_{{\rm g},0} \,\theta(\phi)^{\Gamma/(\Gamma-1)}; \ P_{\rm g} = P_{{\rm g},0} \,\theta(\phi)^{1/(\Gamma-1)}$$

- $\theta(\phi)$: fixed from GO grav. potential
- Γ : gas polytropic index (fixed model parameter)
- $(\rho_{g,0}, P_{g,0})$: central gas density/pressure, **TBD**

- Model based on Ostriker+05 (see D. Nagai's talk)
- Input data: for one halo, (M_{vir}, R_{vir}) + particles
 - Assume polytropic equation of state:
 - $\rho_{g} = \rho_{g,0} \theta(\phi)^{\Gamma/(\Gamma-1)}; P_{g} = P_{g,0} \theta(\phi)^{1/(\Gamma-1)}$
 - $\theta(\phi)$: fixed from GO grav. potential
 - Γ : gas polytropic index (fixed model parameter)
 - $(\rho_{g,0}, P_{g,0})$: central gas density/pressure, **TBD**

- Model based on Ostriker+05 (see D. Nagai's talk)
- Input data: for one halo, (M_{vir}, R_{vir}) + particles
 - Assume polytropic equation of state:
 - $\rho_{g} = \rho_{g,0} \theta(\phi)^{\Gamma/(\Gamma-1)}; P_{g} = P_{g,0} \theta(\phi)^{1/(\Gamma-1)}$
 - $\theta(\phi)$: fixed from GO grav. potential
 - Γ : gas polytropic index (fixed model parameter)
 - $(\rho_{g,0}, P_{g,0})$: central gas density/pressure, **TBD**
- Finding $(\rho_{g,0}, P_{g,0})$:
 - Assume gas rearrangement

- Model based on Ostriker+05 (see D. Nagai's talk)
- Input data: for one halo, $(M_{\rm vir}, R_{\rm vir})$ + particles
 - Assume polytropic equation of state:
 - $\rho_{g} = \rho_{g,0} \theta(\phi)^{\Gamma/(\Gamma-1)}; P_{g} = P_{g,0} \theta(\phi)^{1/(\Gamma-1)}$
 - $\theta(\phi)$: fixed from GO grav. potential
 - Γ : gas polytropic index (fixed model parameter)
 - $(\rho_{g,0}, P_{g,0})$: central gas density/pressure, **TBD**
- Finding ($\rho_{\mathrm{g},0}, P_{\mathrm{g},0}$):
 - Assume gas rearrangement

Argonne

- Model based on Ostriker+05 (see D. Nagai's talk)
- Input data: for one halo, (M_{vir}, R_{vir}) + particles
 - Assume polytropic equation of state:
 - $\rho_{g} = \rho_{g,0} \theta(\phi)^{\Gamma/(\Gamma-1)}; P_{g} = P_{g,0} \theta(\phi)^{1/(\Gamma-1)}$
 - $\theta(\phi)$: fixed from GO grav. potential
 - Γ : gas polytropic index (fixed model parameter)
 - $(\rho_{g,0}, P_{g,0})$: central gas density/pressure, **TBD**
- Finding ($\rho_{\mathrm{g},0}, P_{\mathrm{g},0}$):
 - Assume gas rearrangement

Argonne

- Model based on Ostriker+05 (see D. Nagai's talk)
- Input data: for one halo, (M_{vir}, R_{vir}) + particles
 - Assume polytropic equation of state:
 - $\rho_{g} = \rho_{g,0} \theta(\phi)^{\Gamma/(\Gamma-1)}; P_{g} = P_{g,0} \theta(\phi)^{1/(\Gamma-1)}$
 - $\theta(\phi)$: fixed from GO grav. potential
 - Γ : gas polytropic index (fixed model parameter)
 - $(\rho_{g,0}, P_{g,0})$: central gas density/pressure, **TBD**
- Finding ($\rho_{\mathrm{g},0}, P_{\mathrm{g},0}$):
 - Assume gas rearrangement

- Model based on Ostriker+05 (see D. Nagai's talk)
- Input data: for one halo, $(M_{\rm vir}, R_{\rm vir})$ + particles
 - Assume polytropic equation of state:
 - $\rho_{g} = \rho_{g,0} \theta(\phi)^{\Gamma/(\Gamma-1)}; P_{g} = P_{g,0} \theta(\phi)^{1/(\Gamma-1)}$
 - $\theta(\phi)$: fixed from GO grav. potential
 - Γ : gas polytropic index (fixed model parameter)
 - $(\rho_{g,0}, P_{g,0})$: central gas density/pressure, **TBD**
- Finding ($\rho_{\mathrm{g},0}, P_{\mathrm{g},0}$):
 - Assume gas rearrangement
 - Conserving surface pressure / gas energy
 - A fraction $\varepsilon_{\rm DM}$ of CDM energy is transferred to gas (fixed model parameter)

Argonne

Baryon pasting model

- Model based on Ostriker+05 (see D. Nagai's talk)
- Input data: for one halo, $(M_{\rm vir}, R_{\rm vir})$ + particles
 - Assume polytropic equation of state:
 - $\rho_{g} = \rho_{g,0} \theta(\phi)^{\Gamma/(\Gamma-1)}; P_{g} = P_{g,0} \theta(\phi)^{1/(\Gamma-1)}$
 - $\theta(\phi)$: fixed from GO grav. potential
 - Γ : gas polytropic index (fixed model parameter)
 - $(\rho_{g,0}, P_{g,0})$: central gas density/pressure, **TBD**
- Finding $(\rho_{\mathrm{g},0}, P_{\mathrm{g},0})$:
 - Assume gas rearrangement
 - Conserving surface pressure / gas energy
 - A fraction $\epsilon_{\rm DM}$ of CDM energy is transferred to gas (fixed model parameter)

→ For one halo, gas props fixed by GO particles + 2 model parameters: (Γ , $\varepsilon_{\rm DM}$)

Scatter in gas properties = scatter in mass?

• Part of the scatter on (ρ, P) is scatter on M_{500c} :

z = 0.0

z = 0.5

0.4

0.2

-0.2

-0.4

0.4

-- χ_ρ

— χ_P

 $\widehat{\underline{x}}$ 0.0