An updated and improved thermal SZ y-map from *Planck* PR4 data

Jyothis Chandran, Instituto de Fisica de Cantabria Mathieu Remazeilles Rita Belén Barreiro

mmUniverse 2023, Grenoble

Chandran, Remazeilles and Barreiro (arXiv:2305.10193)

Instituto de Física de Cantabria

Thermal Sunyaev-Zeldovich (tSZ) Effect

Compton scattering of CMB photons by hot e⁻ gas in galaxy clusters and IGM (traced by **Compton** *y***-parameter**) Average shift to higher frequencies causes a **spectral distortion of CMB blackbody spectrum** *Planck* frequencies have been designed to trace **frequency dependence** of tSZ

$$rac{\Delta T_{tSZ}}{T_{CMB}} = oldsymbol{g}(oldsymbol{
u}) y(\hat{f n}) = \left[x(
u) \coth rac{x(
u)}{2} - 4
ight] \cdot rac{\sigma_T}{m_e c^2} \int_{los} n_e k T_e(\hat{f n}) d$$

Planck 2015 tSZ y-map

Planck 2015 tSZ y-map

-3.5

Planck 2015 tSZ y-map

Planck PR4 (NPIPE) Data

Planck NPIPE: [Planck Collaboration LVII (2020)]

- Lower noise: Additional data, better destriping
- Coherent processing of LFI and HFI data
- Different calibration and HFI frequency bandpass

Public Planck y-maps (NILC and MILCA) still rely on Planck 2015 PR2 data. Update with improved PR4 (NPIPE) data is required:

- NILC: Chandran, Remazeilles and Barreiro (arXiv:2305.10193)
- MILCA: Tanimura et al. 2022

Reconstruction of Compton y-map

Reconstruction of Compton y-map with Needlet ILC

$$w_j^
u = rac{\sum_{
u'} g_{
u'} [C_j^{-1}(p)]^{
u
u'}}{\sum_{
u,
u'} g_{
u'} [C_j^{-1}(p)]^{
u
u'} g_
u}$$

Inversion

$$\hat{y}(p) \longleftarrow \hat{y}_j(p) = \sum_
u w_j^
u \gamma_j^
u(p)$$

Needlet ILC (NILC) [Delabrouille et al. 2009, Remazeilles et al. 2011, 2013]

- Simultaneous localization in spatial (pixel) and spectral (harmonic) domains
- Not dependent on knowledge of contaminants (blind)

Planck thermal SZ NILC y-map

NILC with Planck PR4 (NPIPE) data

NILC Processing:

- NILC performed in 10 ranges of multipoles
- Selective use of frequencies in different scales
- Isotropic non-gaussian beams used.
- 2% of sky masked
- Resolution of 10 arcmin
- Half-ring data split maps for noise characterization

	1.0 Gaussian needlet windows											
h_{ρ}^{i}	0.8	3 1 2 4 5 6										
	0.6											
	0.4											
	0.2	2										
	0.0											
10 ¹ Mul ¹							tipole <i>l</i>					
Need								et band				
	Frequency	1	2	3	4	5	6	7	8	9	10	
	30 GHz	\checkmark	\checkmark	\checkmark	Х	Х	Х	Х	Х	Х	X	
44 GHz 70 GHz 100 GHz		\checkmark	\checkmark	\checkmark	Х	Х	Х	Х	Х	Х	X	
		\checkmark	\checkmark	\checkmark	Х	Х	Х	Х	Х	Х	X	
		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
	143 GHz	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
	217 GHz	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
	353 GHz	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
	545 GHz	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
	857 GHz	./	./	./	./	./	./	X	X	X	Y	

Map Characterization: Stripes, noise and dust

PR2 NILC

Map Characterization: Stripes, noise and dust

PR4 NILC

Map Characterization: Diffuse Galactic Dust

Lower level of contamination by diffused galactic dust emission

Point Sources

Radio Sources

Point Sources

Radio Sources

1-PDF: NILC y-map

1-PDF: NILC y-map

1-PDF: Noise

 10^{0} Noise estimate: Half difference of half ring (HR) y-maps. normalized 10^{-1} P(y) ~ 7% reduction in noise PR4 NILC noise contamination PR2 NILC noise Gaussian fit 10 -22 $y \ge 10^{6}$

Chandran et al., arXiv:2305.10193

Contaminants in y-map: Cosmic Infrared Background (CIB)

Contaminants in y-map: Cosmic Infrared Background (CIB)

In a glance

- email: chandran@ifca.unican.es
- New all-sky improved thermal SZ Compton y-parameter map
- Publicly available at https://doi.org/10.5281/zenodo.7940376
- Lower noise, CIB and thermal dust contamination
- Lower level of stripes
- Validated on detailed simulations

Chandran, Remazeilles and Barreiro (arXiv:2305.10193)

Backup Material

NILC tSZ y-map from Simulations: 1-PDF

- Negative tail: Radio sources
- Gaussian: Noise + CIB
- Positive tail: thermal SZ
- IR sources: very low

- Large scale: Noise and galactic foregrounds
- Small scale: Noise, CIB and point sources
- CMB is not dominant

Masks

PR2/PR4 545 GHz X CIB GNILC 857

- *Planck* 545 does not contribute significantly to GNILC 857.
- So, different contribution from *Planck* 545 GHz to y-map cannot account for the difference in CIB levels in PR4 and PR2 y-maps.

Contaminants in y-map: Noise

- **Noise**: Estimated from half-ring data splits
- Improvement in variance: ~7%

- Improves at all angular scales
- Average improvement for I∈[30,2048] : ~7%

PR4 tSZ (Gaussian beam) - PR4 tSZ (Instrument beam)

У

Massive clusters: PR2 NILC *y*-map vs PR4 NILC *y*-map

Coma Cluster

Merging system: Shapley supercluster

Massive clusters: PR2 NILC *y*-map vs PR4 NILC *y*-map

Coma Cluster

Galactic

100x100 pix

1.5 '/pix,

Merging system: Shapley supercluster

Planck PR4 thermal SZ y-map - J. Chandran - mmUniverse 2023

y-maps cross-correlation with CIB templates

PR4 NILC *y*-map has lower level of contamination of CIB as well as lower correlation with CIB.