

Probing the Hubble constant from X-ray and millimetre observations of CHEX-MATE galaxy clusters

F. De Luca¹, H. Bourdin¹, P. Mazzotta¹, F. Oppizzi^{1,2} and the CHEX-MATE collaboration

- 1. Università Degli Studi di Roma Tor Vergata
- 2. Università Degli Studi di Padova

OVERVIEW

I. Introduction:

• Galaxy clusters in the context of the H_0 tension;

II. Method:

- Galaxy clusters as cosmological probes
 - Cosmological rulers;
 - Different inferences of thermodynamical profiles;
 - Hydrodynamical simulations;
- Data analysis
 - SZ signal;
 - X-ray signal;
- The samples

III. Results:

- Observed sample
 - η_T distribution;
- Simulated sample
 - New **B** bias;
- Cosmological inference
 - H_0 posterior;

IV. Discussion & Conclusion

Galaxy clusters in the context of the H_0 tension

During the last decades, H_0 measurements became remarkably precise, especially for early-Universe (CMB-driven) and local Universe (SN1a-based) estimates.

However, the two methods start to disagree with a significant bias, at a level of 4σ with the latest measurements.

This bias survived several attempts of independent reanalyses or the inclusion of more sophisticated of systematics.

Indications of new physics beyond the concordance Λ CDM?

We need more observables, independent of these two methods, to explore the problem.

INTRODUCTION

Image Credit: NASA / LAMBDA

Archive Team

Galaxy clusters as cosmological probes: Cosmological rulers

It is possible to directly extract cosmological information by combining SZ and X-ray observables, as suggested by Cavaliere et al. (1977) and Silk & White (1978), with a distance-measuring technique.

X-ray:
$$\Sigma_X(\theta) = \frac{1}{4\pi(1+z)^4} \int n_e^2 \Lambda_X D_A d\theta \propto n_e^2 D_A \theta_c$$

SZ:
$$y(\theta) = \frac{k\sigma_T}{m_e c^2} \int n_e T_e D_A d\theta \propto n_e D_A \theta_c$$

 ϑ_c : characteristic scale of the cluster

 $D_a(z, H_0) \sim \frac{y^2}{\Sigma_X \vartheta_c}$

Key quantities:

 Σ_X , y, redshift

METHOD

METHOD

Galaxy clusters as cosmological probes: Cosmological rulers

Cosmological information in $D_a(z)$ can be derived from the thermodynamical profile of the ICM by combining multiwavelength surveys of galaxy clusters, as done in Kozmanyan¹ et al. (2019).

$$\Sigma_X(\theta) = \frac{1}{4\pi (1+z)^4} \int n_e^2(r(\theta)) \Lambda_X dr$$

$$T_X(\theta) = \frac{\int w \, T(r(\theta)) \, dr}{\int w \, dr}$$

$$\eta_T = \frac{T_X}{T_{SZ}} = \frac{T_X}{(P_e/n_e)}$$

$$y(\theta) = \frac{\sigma_T}{m_e c^2} \int \eta_T \cdot P_e(r(\theta)) dr$$
$$= \frac{\sigma_T}{m_e c^2} \int \eta_T \cdot n_e(r(\theta)) \cdot kT_{SZ}(r(\theta)) dr$$

Key quantities: η_T , redshift

$$w = n_e^2 / T^{3/4}$$

¹DOI: <u>10.1051/0004-6361/201833879</u>

Galaxy clusters as cosmological probes: Different inferences of thermodynamical profiles

In the ideal case: $\eta_T \equiv 1$. Source of departure from unity:

Galaxy clusters as cosmological probes: Different inferences of thermodynamical profiles

In the ideal case: $\eta_T \equiv 1$. Source of departure from unity:

Underlying cosmological framework (\mathcal{C}):

$$C = \left(\frac{\overline{D_a}}{D_a}\right)^{1/2} \cdot \left(\frac{n_p/n_e}{\overline{n_p}/\overline{n_e}}\right)^{1/2} \cdot \left(\frac{1 + 4 \frac{n_{He}}{n_p}}{1 + 4 \overline{n_{He}}/\overline{n_p}}\right)^{1/2}$$
Trace the
He abundance

Galaxy clusters as cosmological probes: Different inferences of thermodynamical profiles

In the ideal case: $\eta_T \equiv 1$. Source of departure from unity:

Underlying cosmological framework (\mathcal{C}):

$$C = \left(\frac{\overline{D_a}}{\overline{D_a}}\right)^{1/2} \cdot \left(\frac{n_p/n_e}{\overline{n_p}/\overline{n_e}}\right)^{1/2} \cdot \left(\frac{1 + 4 \frac{n_{He}}{n_p}}{1 + 4 \frac{\overline{n_{He}}}{n_p}}\right)^{1/2}$$
Trace the
He abundance

Emitting ICM distribution property (\mathcal{B}) :

$$\mathcal{B} = \frac{C_\rho^{1/2}}{e_{LOS}^{1/2}}$$

 e_{LOS} : Elongation along the line of sight

 C_{ρ} : clumpiness

METHOD

Galaxy clusters as cosmological probes: Different inferences of thermodynamical profiles

In the ideal case: $\eta_T \equiv 1$. Source of departure from unity:

Underlying cosmological framework (\mathcal{C}):

Emitting ICM distribution property (\mathcal{B}) :

$$C = \left(\frac{\overline{D_a}}{D_a}\right)^{1/2} \cdot \left(\frac{n_p/n_e}{\overline{n_p}/\overline{n_e}}\right)^{1/2} \cdot \left(\frac{1 + 4 \frac{n_{He}}{n_p}}{1 + 4 \frac{\overline{n_{He}}}{n_p}}\right)^{1/2}$$
Trace the
He abundance

$$\eta_T = b_n \times \mathcal{C} \times \mathcal{B}$$

 b_n : all other possible systematics

$$e_{LOS}$$
: Elongation along the line of sight

 C_{ρ} : clumpiness

Contain H_0

Galaxy clusters as cosmological probes: Hydrodynamical simulations

We need hydrodynamical simulations to disentangle the cosmological information from the cluster structure bias.

For a simulated sample of galaxy clusters, the cosmological framework is set from the beginning: $\mathcal{C} \equiv 1$ and $\eta_T = b_n \mathcal{B}$.

METHOD

From Kozmanyan et al. (2019)

Cluster structure biases

Galaxy clusters as cosmological probes: Hydrodynamical simulations

We need hydrodynamical simulations to disentangle the cosmological information from the cluster structure bias.

For a simulated sample of galaxy clusters, the cosmological framework is set from the beginning: $C \equiv 1$ and $\eta_T = b_n \mathcal{B}$.

Thus, it is possible to use the \mathcal{B} distribution in the H_0 derivation with a Bayesian approach:

METHOD

From Kozmanyan et al. (2019)

Cluster structure biases

$$P(H_0) = \int \mathcal{L}\left(\left\{\eta_T^{(i)}\right\} \mid H_0, \Omega_m, Y, \{\mathcal{B}_i\}\right) p(\{\mathcal{B}_i\}) p(H_0) p(\Omega_m) p(Y) d\Omega_m dY d\mathcal{B}_1 \dots d\mathcal{B}_N$$

Data analysis: SZ signal

The SZ and X-ray signals are extracted with an optimised application of the Bourdin² et al. (2017) work.

- Instrument: *Planck*-HFI data;
- Wavelet denoising and reconstruction of HFI maps;
- Parametric component separation;
- Forward modelling of Nagai et al.
 (2006) pressure profile.

²DOI: <u>10.3847/1538-4357/aa74d0</u>

METHOD

Planck-HFI frequency maps of A2163 from Bourdin et al. (2017).

Data analysis: SZ signal

The SZ and X-ray signals are extracted with an optimised application of the Bourdin² et al. (2017) work.

- Instrument: *Planck*-HFI data;
- Wavelet denoising and reconstruction of HFI maps;
- Parametric component separation;
- Forward modelling of Nagai et al.
 (2006) pressure profile.

²DOI: 10.3847/1538-4357/aa74d0

METHOD

Filtered *Planck*-HFI SZ frequency maps of A2163 from Bourdin et al. (2017).

Data analysis: X-ray signal

The SZ and X-ray signals are extracted with an optimised application of the Bourdin² et al. (2017) work.

- Instruments: XMM-Newton telescope EPIC cameras;
- Parametric spectral modelling of the astrophysical (CXB and Galactic emission) and instrumental components;
- Forward modelling of density and temperature Vikhlinin et al. (2006) profiles.

²DOI: 10.3847/1538-4357/aa74d0

The samples

METHOD

For the Bayesian analysis, we need an observed and a simulated sample of clusters.

The samples

For the Bayesian analysis, we need an observed and a simulated sample of clusters.

Observed sample: the CHEX-MATE³ project.

- 117 clusters (over 118) extracted from PSZ2 catalogue within the cosmological mask and with *Planck* S/N > 6.5;
- Homogeneous and high-quality X-ray exposures: S/N=150;
- Temperature measurements with statistical 15% of accuracy at R_{500} ;
- Temperature profiles with more than 8 radial bins.

METHOD

3: xmm-heritage.oas.inaf.it

The samples

For the Bayesian analysis, we need an observed and a simulated sample of clusters.

Synthetic sample - THE THREE HUNDRED⁴ project

- Gadget-X run. Hydrodynamic simulation with a cosmology consistent with Planck Collaboration et al. (2016);
- New \mathcal{B} bias applying the X-ray-SZ pipeline on a simulated sample of 975 clusters from the snapshot at z = 0.

O BCG ▲ X-ray Peak ▲ y Peak X-ray Centroid y Centroid R_{500} Mock maps: Contours: X-ray Colour map: tSZ Black dots: Optical SDSS

METHOD

4: <u>the300-project.org</u>

Observed sample: η_T distribution

- Median: $\eta_T = 0.98^{+0.23}_{-0.19}$ (± 16th, 84th percentiles);
- The distribution is compatible with the expected value $(\eta_T \equiv 1)$;
- The analysis agree also with previous estimate available in the literature:
 - X-COP sample: $\eta_T = 0.9624 \pm 0.0013$;
 - Bourdin et al. (2017) low-redshift sample: $\eta_T = 1.01$ (median).

RESULTS

⁵DOI: 10.1051/0004-6361/202243470

Simulated sample: New **B** bias

With the simulated sample, we can:

- Derive a prior distribution \mathcal{B} for the cosmological inference;
- Study, with more clusters, the effect of the dynamical and morphological state in η_T distribution.

Similar distribution of the observed CHEX-MATE sample!

Cosmological inference

Using the \mathcal{B} distribution from the synthetic sample, we can extract cosmological information from η_T .

The method is not sensitive enough to recover more than one free parameter (H_0) at a time $(\eta_T \propto D_A^{-1/2})$.

Bayesian prior setup of the MCMC runs

Parameter	Prior	Min	Max	μ	σ
H_0	Uniform	50	100		
$\overline{\mathcal{B}_i}$	Uniform	0	1		
Ω_m	Uniform	0.25	0.35		
	Normal	0	1	0.3153	0.0073
	Uniform	0.20	0.30		
Y_P	Normal			0.243	0.024

RESULTS

Cosmological inference

Using the \mathcal{B} distribution from the synthetic sample, we can extract cosmological information from η_T .

The method is not sensitive enough to recover more than one free parameter (H_0) at a time $(\eta_T \propto D_A^{-1/2})$.

Bayesian prior setup of the MCMC runs

Parameter	Prior	Min	Max	μ	σ
$\overline{H_0}$	Uniform	50	100		
$\overline{\mathcal{B}_i}$	Uniform	0	1		
Ω_m	Uniform	0.25	0.35		
	Normal	0	1	0.3153	0.0073
	Uniform	0.20	0.30		
Y_P	Normal			0.243	0.024

RESULTS H₀ = 67.07^{+2.46} The state of t

Cosmological inference: H_0 posterior

With the Kozmanyan et al. (2019) method, we have a **preliminary** measure for the CHEX-MATE clusters:

$$H_0 \sim 67.2 \pm 2.3 \ km \ s^{-1} \ Mpc^{-1}$$

Compatibly with the precedent estimates based on multiwavelength cluster studies or with early-Universe and LSS estimates.

More in tension with late-Universe SNIa, Cepheids, TRGB, quasars.

Potential systematics

- Astrophysical uncertainties: (N_H , X-ray/millimetre contaminants, relativistic SZ effect, etc.);
- X-ray temperature cross-calibration (see Wan et al. 2021):
 - Cross-calibration depends on the cluster temperature (higher at higher temperatures);
 - Temperatures from *Chandra* and XMM are known to disagree;
 - XMM EPIC cameras give different results if not jointly used;
- Hydrodynamical simulations:
 - Are we sure that our synthetic samples are accurate representations of real clusters?

DISCUSSION & CONCLUSION

- ✓ Our results on η_T or H_0 are compatible with precedent estimates from *Planck* and XMM and with Wan et al. (2021);
- Our method for H_0 is mainly driven by the thermodynamical state at intermediate-large scales, where the temperature is lower;
 - ✓ Different hydrodynamical simulations (Rasia et al. 2015 and THE THREE HUNDRED Gadget-X run) give compatible estimates for H_0 ;
- ✓ More tests can be done for new runs (as Gadget-Simba) or using new hydrodynamical simulations with different physics.

✓ The CHEX-MATE Project allows accurate characterisation of the thermodynamical state of galaxy clusters with its sample definition and observational strategy;

- ✓ Accurate mass selection function with 117 clusters in total, double compared to Kozmanyan et al. (2019) and a factor of 10 more than Wan et al. (2021) or the X-COP sample;
- ✓ Need hydrodynamical simulation priors, but it is not restricted to only relaxed sample;
- ✓ Our local estimate for H_0 agrees with the precedent constraints based on XMM, *Chandra*, and *Planck*;
- ✓ The uncertainty on H_0 is continually decreasing with the cluster size;

DISCUSSION & CONCLUSION

Future prospective:

- Possibility to extend the analysis to larger samples (e.g. early-SZ+CHEX-MATE ~ 160 objects).
- o For 200 clusters: 2% uncertainty level;
- Combination with other X-ray or millimetre instruments (e.g. SPT, Chandra);
- Inclusion of more systematics in the model, such as the relativistic SZ effect or temperature cross calibration;
- Possible combination with other cluster probes, such as the f_{gas} (e.g. $f_{gas} \propto D_A^{3/2}$)

