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Turbulence
• Why are we interested?

– Deviations from hydrostatic equilibrium (via 
turbulence) produces bias in mass estimates.

– Acts to mix and transfer properties like mass, 
momentum and energy

– Potential mechanism for transferring the 
energy into heating via processes like AGN 
feedback (as solutions to problems like the 
cooling flow).



Energy cascade
• Chaotic/random, requires statistical 

techniques to analyze (like the power 
spectrum)

• But has statistical structure over scales

• Most of the energy lies in the large 
scales, shown as a peak in the power 
spectrum coinciding with the energy 
injection

• Power law inertial range describing the 
energy cascade; the transfer of energy 
from the large scales to small scales

• Dissipation scale where viscous effects 
become dominant



X-ray & SZ Observations



Reynolds decomposition



Zwicky 3146: Romero et al. 2023
Talking tomorrow

Coma: Khatri & Gaspari 2016

• Not many studies involving SZ effect.

• Constrained by instrument resolution, starting to be able to 

probe turbulence scales.



Projected Information

Incompressible MHD Simulation



Projection-slice theorem
• The projection-slice theorem states that the Fourier transform of a projection is the same as a slice 

of the Fourier transform of the original data.
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Projection-slice theorem
• The projection-slice theorem states that the Fourier transform of a projection is the same as a slice 

of the Fourier transform of the original data.

• For projections with an emissivity factor:

• With some approximations....

Typically treated as a wavenumber 
independent scaling factor
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Power spectrum estimation
• Fourier methods

Using Fourier transforms

Fourier wavevector decomposition

• Equivalent structure function

Configuration space calculation

Crude approximation converts it to 
an effective power spectrum

• Arevalo et al. 2012 method

Using Gaussian convolutions

Scale space decomposition

Lag distance

σ = 10

σ = 50

σ = 500σ = 500

Takahe Feathers
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Fluctuations



Methods & Projections

3D Synthetic data

• Just the fluctuations; constant emissivity & no mean profile



Methods & Projections

3D Synthetic data 3D->2D projected synthetic data

• Just the fluctuations; constant emissivity & no mean profile
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Projections with noise
• Real observations 

have noise
• White noise – 

constant in Fourier 
space



Noise removal techniques
• Churazov et al. 2012 method (X-ray)

Averaging (in Fourier space) over artificially generated 
Poisson noise realizations

• Cross spectrum

Cross spectrum from two independent observations

• Smoothing

Applying simple Gaussian smoothing



Apply Poisson noise

Noisy fluctuations

Fluctuations



Synthetic data - Periodogram Synthetic data - Arevalo



Summary
• Shown the different power spectrum estimation 

methods introduce differences when using 
projected data at small scales

• Started to examine different spectra techniques 
with different noise reduction methods

• Next steps, work on introducing exposure and 
masks.

• Properly quantifying the bias for different spectra 
using Gaussian fields and turbulence simulations.



NZ Fantail/Pīwakawaka



The backup slides



Statistics -Fourier methods
• Do different techniques add any bias?

Fourier space

Wavenumber decompositions



Statistics –Equivalent structure function
• Do different techniques add any bias?

Common turbulence analysis method

Lag space



Statistics –Equivalent structure function
• Do different techniques add any bias?

Common turbulence analysis method

Lag space



Statistics –Arevalo method
• Do different techniques add any bias?

Convolving with a Gaussian obtains a blurred 

image with scales greater than or equal to 

the Gaussian stdev.

Taking the difference of two Gaussian blurred 

images with close scales provides an image 

with ONLY scales in between.

         

          

          



Statistics –Arevalo method
• Do different techniques add any bias?

Scale space decomposition

Deals with masks and exposure maps



Porjected

• [Brunt & Mac Low 2004; Compressible 
Supersonic turbulence]

• [Mohapatra et al. 2002; Velocity SF]



No noise fluctuations

Apply Poisson noise

Noisy fluctuations

(exaggerated)



2D Synthetic data - Arevalo

2D Synthetic data - Periodogram



• You found the secret slide =)
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