NIKA2 observations of 3 low mass clusters at z~1 Pressure profile and SZ flux -mass relation

Main contributors: D. Eckert, M. Ricci et al. mmUniverse Conference, June 26, 2023

Pressure profile and SZ flux (Y_{sz}) - mass relation

The pressure profile and the Y_{SZ} -M relation are key ingredients for cluster cosmology (e.g. detection, cluster counts, power spectrum) and astrophysics (e.g. feedback, dynamics)

- These quantities are well investigated at low z and high M
- But the bulk regime of future surveys is at higher z and lower M [e.g. CMB-S4, eROSITA, Euclid]
- These clusters are also key for constraining cosmology [e.g. Sartoris et al. 2016 for Euclid]

Pushing the ICM characterization at high redshifts down to lower masses is essential

Non-standard evolution in mass and redshift?

Non-trivial redshift evolution may be expected:

- · Enhanced AGN and star formation activity
- Changes in mass accretion and merger rate

[80 massive SPT-clusters with CXO; McDonald et al. 2014]

Evolution in mass is expected:

- Shallower potential well
- · Enhanced gas dynamics

[Illustris TNG clusters at z=0; Pop et al. 2023]

But we do not have detailed SZ measurement at low mass and high z

We aim for a detailed characterization of low-M clusters at high-z in a regime nearly unexplored with deep resolved SZ data

XXL-survey and target selection

XXL in a nutshell [Pierre et al. 2016]

- Depth and area allow exploring low-M clusters at high-z
- Intensive multiwavelength coverage:
- Optical: CFHTLS and HSC
- Radio: NVSS, FIRST, GMRT
- Submm: Herschel/SPIRE for some of the clusters
- X-ray: Chandra snapshot for some of the clusters

Selection criteria

- Focus on clusters with redshift > 0.9
- Secured XXL detections
- Independent detection in optical overdensity
- Robust spectroscopic redshifts
- XXL-North, for observability reasons
- Reasonable observing time

Selection of 3 XXL clusters at z~1 & M~10¹⁴ M_{sun}

NIKA2 observations and data

- 26.6h of projected time [PI: Ricci & Adam, projects 179-17,094-18,208-18,093-19,218-19,076-20]
- Data quality in line with commissioning [Adam et al. 2018, Perotto et al. 2020]
- No bias from point sources (40 at S/N>4) [Adam et al. 2016, and following NIKA(2) papers for the method]

Clean significant SZ detection for the 3 targets

Multiwavelength comparison

Evidence for morphologically disturbed ICM in all targets (confirmed by the offset between different components)

Thermal gas density profiles

The electron density profile is a key ingredient for the analysis (e.g. to get the mass) Pyproffit package [Eckert et al. 2020] used for extraction, plus 1000 MC realizations

Density profile available with robust uncertainty propagation

Thermal pressure profile modeling and fitting

1) gNFW	 Standard gNFW modeling 5 parameters [as in Adam et al. 2015, and following NIKA(2) papers]	$P_e(r) = \frac{P_0}{\left(\frac{r}{r_p}\right)^c \left(1 + \left(\frac{r}{r_p}\right)^a\right)^{\frac{b-c}{a}}}$
2) binned	 Binned profile defined at 5 fixed radii log-log interpolation to compute the profile 5 parameters [similar to Ruppin et al. 2017]	$P_e(r) = \text{interp}([P_e(r_i)])$
3) HSE + mass model	 Assume the HSE NFW mass model +density profile 2 parameters [see also Eckert et al. 2022]	$M_{\rm HSE}(r) = -\frac{r^2}{\mu_{\rm gas}m_{\rm p}n_{\rm e}(r)G}\frac{dP_{\rm e}(r)}{dr}$ $P_e(r) = P_e(r_0) + \int_r^{r_0}\frac{\mu_{\rm gas}m_{\rm p}Gn_e(r')M_{\rm HSE}(r')}{r'^2}dr'$
Observable	 SZ map from <i>P_e(r)</i>, plus the instrument response Modeling, projection and sampling via the MINOT software [see Adam et al. 2020 for MINOT] 	e $\Delta I_{\nu} \propto \text{Instrument response function }^* \int P_{e} d\ell$
Fitting	 Gaussian likelihood including noise covariance Pressure parameters plus map offset level Emcee sampling of the parameter space [as [Foreman et al. 2013] 	$\ln \mathscr{L} \propto \sum (D - M)^T C^{-1} (D - M)$ in Adam et al. 2016, and following NIKA(2) papers]

3 different models for checking systematic uncertainties

Thermal pressure profile modeling and fitting

- Reliable constraints from ~50 kpc to ~ 2 R_{500}
- Excellent agreement between the different methods

High quality measurement down to low mass and high z

Mass estimates

HSE masses:

- a) Combine pressure and density profiles
- b) Direct HSE mass modeling (NFW)
- The only direct mass measurement

[as in Adam et al. 2015, and following NIKA(2) papers]

UPP masses:

- Pressure expressed as a function of M₅₀₀
- Fit for M₅₀₀ as the only parameter
- Rely on Arnaud et al. (2010) UPP calibration

Y_x-M and Y_{sz}-M masses:

- The SZ flux Y_{SZ} and Y_x (= M_{gas} T) scale with the mass
- Use the Y profile and iterate about the scaling low to get M₅₀₀
- Rely on local scaling relations, mostly at high mass

- 2 clusters with ACT detections (UPP masses available) [Hilton et al. 2018, Hilton et al. 2021]
- XXL masses from the M-T relation as calibrated using WL [Lieu et al. 2016]
- XXL masses using count rates plus a set of scaling relations [Adami et al. 2018]

Various mass estimates with different assumptions

NIKA2 observations of 3 low mass clusters at
$$z \sim 1$$
: P(r) and Y-M — Rémi Adam — mmUniverse, 26/062023

$$E(z)^{-2/3} \left(\frac{Y_{\rm X,500}}{2 \times 10^{14} \rm M_{\odot} keV} \right) = 10^{0.376} \times \left(\frac{M_{\rm HSE,500}}{6 \times 10^{14} \rm M_{\odot}} \right)^{1.78}$$
$$E(z)^{-2/3} \left(\frac{D_A^2 Y_{\rm SZ,500}}{10^{-4} \rm Mpc^2} \right) = 10^{-0.19} \times \left(\frac{M_{\rm HSE,500}}{6 \times 10^{14} \rm M_{\odot}} \right)^{1.79}$$

 $\left(c_{500}\frac{r}{R_{500}}\right)^{c} \left(1 + \left(c_{500}\frac{r}{R_{500}}\right)^{a}\right)^{\frac{b-c}{a}}$

$$M_{\rm HSE}(r) = -\frac{r^2}{\mu_{\rm gas}m_{\rm p}n_{\rm e}(r)G}\frac{dP_{\rm e}(r)}{dr}$$

 $P_e(r) = P_{500} f_M$ —

Direct measurement of the mass profile

- Larger uncertainty for XLSSC 100 due to the shape of the profile
- Possible systematics due to cluster geometry and clumping (they are mergers)

High quality HSE masses given the mass and z range explored

Comparison of the recovered masses

- Excellent agreement between the different methods
- UPP masses are the most precise, but rely on strong assumptions
- Direct HSE masses are lower for XLSSC 102
 - Indication for a large HSE bias, systematics due to the geometry? [see also Ricci et al. 2020]

Different masses available to test the UPP and the Y-M relation

Comparison with Arnaud et al. (2010) using Myx

- Assuming local measurement, P(r) agrees with the dynamical state
- Given the dynamical state, our targets follow well standard extrapolations

Agreement with extrapolation from low z systems at higher M

Comparison with Arnaud et al. (2010) using MHSE

But most of the uncertainty comes from the mass

Agreement with extrapolation from low z systems at higher M

The SZ flux - M_{Yx} relation

The 3 XXL clusters follow remarkably well the Y_x - Y_{SZ} relation

The SZ flux - MHSE direct relation

Consistency with the Y_{SZ} - M relation

Summary and conclusions

Context

- ICM physics is driven by gravitational collapse plus rich astrophysical processes
- Little is known at low-M & high-z despite the importance for future/ongoing surveys

Methodology

- Selection of 3 XXL clusters at z \sim 1 & M \sim 1014 M_{sun}
- SZ imaging with NIKA2
- Multiwavelength analysis, extraction of the pressure and the Y-M relation

Outcomes

- The 3 clusters are consistent with morphologically disturbed systems
- Pressure profile consistent with that of higher M & lower z clusters
- Y_{SZ} M and Y_x Y_{SZ} relations agree with local calibration
- Main uncertainty due to the difficulty in having precise & robust mass measurements

Conclusion

- This suggests stable cluster formation physics down to z \sim 1 & M \sim 1014 M_{sun}

Thank you

Contamination from submm & radio sources

Submm sources:

 $S/N_{260} \sim 2xS/N_{150}$, no significant sources missed at 150 GHz

Radio source:

NVSS (1.4 GHz), FIRST (1.4 GHz) and GMRT (610 MHz)

Catalog

We built a catalog of 40 sources (S/N>4)

[Adam et al. 2016, and following NIKA(2) papers for the methodology]

No significant contaminating source should bias the SZ signal

Peak and centroid offset

The offset between the different cluster components is a quantitative dynamical state indicator [e.g., Rossetti et al. 2016, and many other]

BCG(s), SZ, X-ray, optical peak and centroid offsets estimates

- XLSSC 072: agrees with a single common center
- XLSSC 100 and XLSSC 072: tension for SZ vs X-ray, clear disagreement with the BCG

Dynamical state confirmed by the offset

The MINOT software

MINOT public software [Adam et al. 2020]

Self-consistent multi-wavelength framework implemented