Millimeter Interferometry: Radio **Quiet Quasars and Galaxy Evolution**

Kirsten Hall Submillimeter Array Postdoc Fellow **Center for Astrophysics | Harvard & Smithsonian**

mm Universe Conference **Tuesday, June 27, 2023**

ASTROPHYSICS

HARVARD & SMITHSONIAN

Feedback to quench star formation

Naab & Ostriker 2017

Quasar outflows are multi-phase Hot (T > 10^8 K), low density volume filling plasma + higher density "clumps"

Quasar outflows are multi-phase Hot (T > 10⁸ K), low density volume filling plasma + higher density "clumps"

High velocity outflows of ionized + molecular gas Observable with emission line diagnostics

Liu, Zakamska & Greene 2014

Quasar outflows are multi-phase Hot (T > 10⁸ K), low density volume filling plasma + higher density "clumps"

How to measure the more elusive, postshocked component that is often too diffuse for emission-in diagnostics?

Which phase carries the most energy/mass/ momentum? And with what efficiency?

Thermal SZE

 $A_{SZ} \propto E_{th}$

Stacked RQQ SEDs (>17,000 in each z bin)

Hall et al., 2019

tSZ from RQQ Host Halos

Hall et al., 2019

Do we measure more tSZ signal due to quasar feedback than expected in the halo? Expected tSZ as a function of halo mass

Gralla et al. 2014

Predicted Halo vs Measured Thermal Energy

Predicted Halo vs Measured Thermal Energy

RQQ HE0515-4414: ~3-3.2*σ* measurement —> ~0.01% quasar luminosity

140 GHz Image residuals ~6 arcsec uv taper

Lacy et al., 2019

140 GHz Image residuals 10 arcsec uv taper

Brownson et et al., 2019

RQQ HE0515-4414 ~3-3.3*σ* measurement; A_{sz} ~ 0.2-0.5 mJy

RQQ HE0515-4414 ~3-3.3 σ measurement —> ~0.1% quasar luminosity

~factor 10 below expectations

VLA, ALMA, SMA study of 2 Hyperluminous Quasars

Dec

Quasars Trace Overdensities

Hall et al., 2018

Quasars Trace Overdensities

Visibility Modeling

Dec

Re (mJy)

lm (mJy)

Image Residuals

In Progress

Image Residuals - 3 arcsec taper

In Progress

Image Residuals - 8 arcsec taper

In Progress

~50 μ Jy —> ~0.2% quasar luminosity over 100 Myr

Visibility Residuals J1326 145 GHz

Re (mJy)

lm (mJy)

J1326 97 GHz

Re (mJy) lm (mJy)

In Progress

Quasar outflows are multi-phase Hot (T > 10⁸ K), low density volume filling plasma + higher density "clumps"

Which phase carries the most energy/ mass/momentum? And with what efficiency?

Tentative 4σ tSZ measurement —> 0.2% L_{bol,quasar} Multifrequency interferometry is the pathway forward, but the data are *complex*

To Do:

- tSZ map combining 97 and 145 GHz
 And 30 GHz VLA for J1549
- Radio through Sub-mm SED modeling
- CO SLED in J1549+1245

Stay Tuned!

Kirsten Hall, kirsten.hall@cfa.harvard.edu

Visibility Modeling

lm (mJy)

Re (mJy)

Visibility Residuals

Preliminary