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Exploring the Unknown
● The LHC is one of the main tools for exploring the frontier of 

our current understanding of the Universe

Adapted rom J. Butterworth's talk @ LPSC

Standard Model

LHC
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● Previous to LHC data, there was a strong bias in some of the HEP 
community:

Standard Model
LHC SUSY

Exploring the Unknown
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B.C. Allanach and C.G. Lester, Phys.Rev.D 73 (2006) 015013 

New Physics @ LHC
● It was expected that new physics would quickly emerge 

from LHC data

BSM masses ~ 300-500 GeV 

H. Baer, AL, H. Summy, Phys.Lett.B 674 (2009)
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New Physics @ LHC
● After a decade of data taking...

No clear evidence of 
new physics

Many caveats!
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New Physics @ LHC
● Are we missing something?
● Could new physics be hiding in the data?
● Should we revisit our approach for searching for NP?
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Identify promising 
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Compare with relevant
LHC data
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New Physics @ LHC
● Are we missing something?
● Could new physics be hiding in the data?
● Should we revisit our approach for searching for NP?

● “Theory-oriented” (top-down) approach:

Large number of models!

Infinite set of parameters!

Non-obvious signatures

CPU expensive

Large number of searches!

Choose model

Fix model parameters

Identify promising 
signatures

Simulate signal

Compare with relevant
LHC data

What if...
● Signal is small and dispersed over many signatures? 

(no clear evidence from individual searches)
● We have not yet considered the correct model? 

(model bias)

*it works well if we have a single well-motivated model candidate
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Looking for the Next SM

Let the data guide the model building!

● Our proposal: “Data-oriented” approach

LHC data BSM Model (LHC inverse problem)
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Looking for the Next SM

Let the data guide the model building!

● Our proposal: “Data-oriented” approach

LHC data BSM Model
Not an easy task!

(LHC inverse problem)

Subset of 
LHC data

Protomodels BSM Model

Searches with MET 
(mostly SUSY searches)

Minimal theory 
assumptionsLearning 

Algorithm
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Protomodels
● Minimizing the theory bias → protomodels
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Protomodels
● Minimizing the theory bias → protomodels

● Protomodels are defined by:
● Particle content
● Masses
● Branching ratios
● Production cross-sections

(no considerations about 
symmetries, lagrangian, vertices, ...)
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● The lightest particle must be stable and neutral (Xz)
● Protomodel ~ consistent set of simplified models
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Protomodels
● Minimizing the theory bias → protomodels

● Protomodels are defined by:
● Particle content
● Masses
● Branching ratios
● Production cross-sections

(no considerations about 
symmetries, lagrangian, vertices, ...)

● Protomodel Builder: 
● randomly selects particles and properties from a pool of available possibilities

 
masses,
BRs,
xsecs

● For now we assume a Z2-like symmetry

● The lightest particle must be stable and neutral (Xz)
● Protomodel ~ consistent set of simplified models
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Building the Next SM
● Overview:
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Random 
changes to the 

protomodel
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Building the Next SM
● Overview:

Random 
changes to the 

protomodel

Test against 
database 
(SModelS)

Model score
(compatibility with data)

Feedback for building 
new models

After many iterations/steps, the builder 
“learns” the best BSM model

“MCMC-type walk” over model+parameter space
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● At each step:
● randomly add or remove a particle

● randomly change branching ratios and masses

● randomly change a production cross section

Walker Algorithm
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● At each step:
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● At each step:
● randomly add or remove a particle

● randomly change branching ratios and masses

● randomly change a production cross section

● After each step:
●  compute new protomodel score “K”

● K got much worse? 
→ revert to old protomodel

● K stayed the same or got better?
→ keep new protomodel
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● At each step:
● randomly add or remove a particle

● randomly change branching ratios and masses

● randomly change a production cross section

● After each step:
●  compute new protomodel score “K”

● K got much worse? 
→ revert to old protomodel

● K stayed the same or got better?
→ keep new protomodel

Walker Algorithm
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The walker is driven by the protomodel score K
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The test statistic Kc is a likelihood-ratio test that quantifies how much better 
the proto-model describes the data than the Standard-Model (plus a penalty for 
model complexity).

Test Statistic
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The test statistic Kc is a likelihood-ratio test that quantifies how much better 
the proto-model describes the data than the Standard-Model (plus a penalty for 
model complexity).

Quantifies violation of Standard 
Model hypothesis Penalizes for model 

complexity

Test Statistic

Joint likelihoods: combining “complete” sets of results that are 
assumed to be approximately  uncorrelated. If a result can be 
added, it must be added.
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penalize for model complexity, 
they are of the form



34

The test statistic Kc is a likelihood-ratio test that quantifies how much better 
the proto-model describes the data than the Standard-Model (plus a penalty for 
model complexity).

Quantifies violation of Standard 
Model hypothesis Penalizes for model 

complexity

We search for proto-models and combinations of results / likelihoods that maximize 
Kc while remaining compatible with all negative results in our database. 

Test Statistic

Joint likelihoods: combining “complete” sets of results that are 
assumed to be approximately  uncorrelated. If a result can be 
added, it must be added. → “AIC-like” test statistic

Priors of the models used to 
penalize for model complexity, 
they are of the form
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● We choose that combination of signal regions that maximally 
violates the SM hypothesis (“anomaly hunt”)

Test Statistic
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● We choose that combination of signal regions that maximally 
violates the SM hypothesis (“anomaly hunt”)

By restricting the support of the parameter of 
interest we guarantee compatibility with all 
negative results in the entirety of the SModelS 
database

Test Statistic
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● We choose that combination of signal regions that maximally 
violates the SM hypothesis (“anomaly hunt”)

By restricting the support of the parameter of 
interest we guarantee compatibility with all 
negative results in the entirety of the SModelS 
database

● The test statistic is based on likelihoods
● The likelihood is computed using simplified models results 

in SModelS database

Test Statistic
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Input Data
● SModelS Database:

● Searches for production of new particles with missing energy (DM-inspired)
● Around 50 CMS and 50 ATLAS publications
● Simplified statistical models for the data → simplified likelihoods

...
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● As we are chasing dispersed signals, we need to combine likelihoods. We assume a 
simplified, binary “inter-analyses correlations matrix”:

Combining Data
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● As we are chasing dispersed signals, we need to combine likelihoods. We assume a 
simplified, binary “inter-analyses correlations matrix”:

Combining Data

Green → approximately uncorrelated
 → combinable

Red →  correlated → not combinable

White →  cannot construct a 
likelihood

Signal regions within each analysis →  
correlated
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● As we are chasing dispersed signals, we need to combine likelihoods. We assume a 
simplified, binary “inter-analyses correlations matrix”:

https://arxiv.org/abs/2002.12220
Les Houches effort:

Current version: “educated guesses” from description of signatures in signal regions. 
Ongoing TACO effort to determine this matrix automatically from recasting tools.

Combining Data

Green → approximately uncorrelated
 → combinable

Red →  correlated → not combinable

White →  cannot construct a 
likelihood

Signal regions within each analysis →  
correlated

https://arxiv.org/abs/2002.12220
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Running the algorithm...

● We defined a “run” as 50 parallel walkers, making 1,000 steps each. 
● We performed 10 such runs on the SModelS database.
● We validated with simulated versions of the SModelS database, synthesized from our 

statistical models.
● Total computing resources spent: ~ 1,000,000 CPU hours
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● All 10 runs introduced a top partner as well as a light quark partner. The cross sections are 
compatible with values expected from the MSSM. The best test statistic was K=6.9.

● We performed 10 such runs on the SModelS database:

Walking over the SModelS Database



44https://smodels.github.io/protomodels/2020_PioneerStudy/real9/index.html

the dispersed excess

negative results in the database

Tension!

The High Score Protomodel

https://smodels.github.io/protomodels/2020_PioneerStudy/real9/index.html


ATLAS 1l stop (ATLAS-SUSY-2016-16)

CMS 0l stop (CMS-SUS-16-050)

Nothing unusual is visible 
in the individual results

Data driving the protomodel



ATLAS 1l stop (ATLAS-SUSY-2016-16)

CMS 0l stop (CMS-SUS-16-050)

Nothing unusual is visible 
in the individual results

But when interpreted as a correlated signal 
from the protomodel, things may seem 

different!

Data driving the protomodel
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● Because we have statistical models of the search results, we can synthesize 
statistically  correct databases of results that are “typical”, if no new physics is in the 
data.

● From this we can compute a p-value for the Standard Model hypothesis: that is the 
chances that – under the SM hypothesis – we would obtain a result as extreme as 
ours or more extreme.

Global p-value
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● Because we have statistical models of the search results, we can synthesize 
statistically  correct databases of results that are “typical”, if no new physics is in the 
data.

● From this we can compute a p-value for the Standard Model hypothesis: that is the 
chances that – under the SM hypothesis – we would obtain a result as extreme as 
ours or more extreme.

By construction, no Look-Elsewhere Effect applies.

smaller p-value →  SM “more excluded”

Global p-value
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Building the UV Model
● The protomodels are an intermediate step:

Subset of 
LHC data

Protomodels BSM Model
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Building the UV Model
● The protomodels are an intermediate step:

Subset of 
LHC data

Protomodels BSM Model

● Taking the second step (future development):

Protomodel
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X

X
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X0
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Building the UV Model
● The protomodels are an intermediate step:

Subset of 
LHC data

Protomodels BSM Model

● Taking the second step (future development):

Protomodel

...

X

X

Y

Z
...

X

X

Z

Y

Z
X0

Operators 
Mapping Consistent 

lagrangian

DM observables, 
low energy obs,...

LHC data non-LHC data
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Other Future Developments
● SModelS framework:

● Extend to generalized signals (without the Z2 restriction) using graphs
● Include non-SUSY searches

● Statistical calculation:
● Move to more complete statistical models (e.g. via pyhf)
● Improve analyses combination matrix
● Learn likelihoods

● SModelS database:
● Add latest full run-2 CMS and ATLAS publications
● Learn the database
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Thank you!

Work funded by:
● joint French-Austrian fund 

FWF - I 5767 47045 and ANR-21-CE31-0023
● IN2P3 master project “Théorie – BSMGA“
● AL’s “invited professor” by CPTGA
● WW’s “invited professor” by UGA, Enigmass
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Backup
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● Only exclusion lines
If only exclusion lines are given, without upper limits, we can do nothing

● Observed 95% CL upper limits only:
cannot construct likelihood, binary decision “excluded” / “not-excluded” only (“critic”)

● Expected and observed 95% CL upper limits
can construct an approximate likelihood with truncated Gaussian, 
cannot combine topologies, very crude approximation

● Efficiency maps
can construct a likelihood as Gaussian (for the nuisances) * Poissonian  
(for yields), can work per SR, and combine topologies in each SR [*]

● Efficiency maps + correlation matrices
can combine signal regions via multivariate Gaussian * Poissonians

● Efficiency maps + full likelihoods
full realism, correct statistical model

Li
ke

lih
oo

ds

Co
m

bo
s

Likelihoods

be
tt

er

[*] if efficiency maps are not supplied, we can try to produce them with recasting frameworks



58

For every legal combination, we define a test statistic K

The Test Statistic

π(BSM) is the prior of the BSM model. We use it to “regularize” the model, i.e. impose
the law of parsimony:

Resulting in a test statistic that resembles an “Akaike information criterion”:

An additional particle will have to increase the “(delta-)chi-square” by approximately 
two units.
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 we allow the machine 
to combine likelihooods.

The Combiner

A combination “c” of analyses is “legal” if the following conditions are met:

● all results are mutually uncorrelated (= ”combinable”)

● if a result can be added, it has to be added (any subset of a 
legal combination is not itself legal)

● combined likelihood:

Fig. 2
Approximately uncorrelated are analyses that are:

● from different runs, and/or

● from different experiments, and/or

● looking for (clearly) different signatures
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For every legal combination, we define a test statistic K

(Remember, we have a database of results from ~ 100 CMS+ATLAS searches. We want to find the most interesting combinations of 
these results, i.e. the ones that maximally violate the SM hypothesis)

Of all “legal” combinations of experimental results, the builder chooses the one 
combination “c” that maximizes K:

The Test Statistic

μ denotes an global signal strength multiplier – the production cross sections are free parameters 

 It is maximized in the denominator, but its support is confined such that no limits in the SModelS database are violated (the “critic”),

Eq. 6

Eq. 7
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The Walker takes care of moving in the protomodel space with varying 
dimensionality by performing the following types of
modifications to the protomodel:

● add or remove particles from 
the protomodel

● change the masses of particles
● change the signal strengths of 

production modes 
● change decay channels and 

branching ratios

At each step the test statistic K is computed. An MCMC-like procedure[*] is then applied in 
the sense that the step is reverted 
with a probability of 

The Walker

if and only if Ki is smaller than Ki-1 

* (note however, instead of ratios of unnormalized 
posteriors we have ratios of ratios of unnormalized 
posteriors)
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Walking Over Fake Standard Model Databases

K for one “fake”
background-only 
database.

Density of K 
estimated via a 
simple Kernel 
density estimator.

● Produced 50 “fake” SModelS databases by sampling background models
● Corresponds to typical LHC results if no new physics is in data
● Determine 50 “fake” K values by running 50 walkers on each of the 50 databases (50 x 50 walkers in total) → 

density of K under null SM-only hypothesis
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We define a “run” as 50 parallel walks, each taking 1000 steps.

We performed 

● 10 runs on the SModelS database (Sec. 5.2)

● 50 runs on fake “Standard Model-like” databases (Sec 5.1)
to be able to determine a global p-value under the SM hypothesis

● 2x10 runs on fake “Signal-like” databases (Sec 5.3)
to show closure of the method

The Walks
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Walking Over  Databases With Fake Signals

To show closure of our method, we inject the winning protomodel as a signal in fake databases, and see if the 
algorithm can reconstruct the injected signal.

No sampling of the models for the SRs, i.e. observed 
events := expected SM + expected signal events

Sampling turned on
Fig. 11 Fig. 10

Sec 5.3

Technical closure test Physics closure test
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If we had gradients we could perform gradient descent to find the best model, and we could use e.g. the Fisher information to infer 
the error on its parameters (or, alternatively we can then MCMC-sample).

Needless to say, the data pipeline sketched above is not the only feasible one. Differentiability however would be a helpful tool for all possible 
data pipelines. A similar rationale would apply also to EFTs, Wilson coefficients and data from measurements.

described as likelihoods L that are differentiable 
with respect to the yields yi

we have started an effort to make 
SModelS differentiable w.r.t SMS 
parameters pj, by learning our 
entire database: 

for individual candidates we can make this differentiable 
w.r.t fundamental parameters Θl, via neural networks, with 
efforts similar to DeepXS, or “TheoryGANs” [*]:

that’s just a sum of
simplified models → 
differentiable!

https://arxiv.org/abs/1810.08312

. . .

Why Differentiable?

 → Differentiable Inductive Reasoning!

https://arxiv.org/abs/1810.08312
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Generalized Topologies with Graphs

● Describe  signal topologies with arbitrary shapes, such as:

● Resonant production

● R-Parity Violating Decays

● Associated Production

● Non-Z2 decays

...


	Slide: 1
	Slide: 2
	Slide: 3
	Slide: 4
	Slide: 5
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 6 (3)
	Slide: 6 (4)
	Slide: 7 (1)
	Slide: 7 (2)
	Slide: 7 (3)
	Slide: 7 (4)
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 8 (3)
	Slide: 8 (4)
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 9 (3)
	Slide: 9 (4)
	Slide: 9 (5)
	Slide: 9 (6)
	Slide: 10 (1)
	Slide: 10 (2)
	Slide: 10 (3)
	Slide: 10 (4)
	Slide: 11 (1)
	Slide: 11 (2)
	Slide: 11 (3)
	Slide: 11 (4)
	Slide: 11 (5)
	Slide: 11 (6)
	Slide: 11 (7)
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 12 (3)
	Slide: 13
	Slide: 14 (1)
	Slide: 14 (2)
	Slide: 14 (3)
	Slide: 15
	Slide: 16
	Slide: 17
	Slide: 18 (1)
	Slide: 18 (2)
	Slide: 19 (1)
	Slide: 19 (2)
	Slide: 20 (1)
	Slide: 20 (2)
	Slide: 20 (3)
	Slide: 20 (4)
	Slide: 20 (5)
	Slide: 21
	Slide: 22
	Slide: 23
	Slide: 24
	Slide: 25
	Slide: 26
	Slide: 27
	Slide: 28
	Slide: 29
	Slide: 30
	Slide: 31
	Slide: 32
	Slide: 33

