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Preface

This issue contains the Proceedings of the Workshop on the Critical Stability of Few-
Body Quantum Systems, held at Erice, Sicily (Italy) from October 10 to 18, 2008.

This was the fifth Workshop on this subject, after Trento (1997), Les Houches (2001),
Trento (2003) and Dresden (2005). As for these previous workshops, emphasis was put
on the interdisciplinary character, with participants coming from theoretical chemistry,
atomic, nuclear and particle physics, and mathematical physics and some of the topics
touching few-body correlations in large systems, or applications to astrophysics.

To avoid too spread a variety of subjects, we suggested contributions on the following
topics:

e Exotic hadrons,

e Antiproton physics,

e Light nuclei and hypernuclei,

e New methods in nuclear physics,

e Efimov states,

e Resonances, scattering on composite targets,

e Rigorous results, in particular for Coulomb systems,

e Traps,

e Atomic clusters

e Few-body correlations in large systems,

e Applications to Astrophysics.

The Workshop was organised in the framework of the School of Critical Stability, whose
Director, André Martin, gave an introducing lecture, presenting the Ettore Majorana Cen-
tre of Erice, its history and its ongoing activities.

We had nearly fifty participants, coming from India, Brazil, United States and for most
of them, from nearby or remote European countries.

As for the three previous workshops, (Few-Body Syst. 31 (2002) 71-266; 34 (2004) 1-
208; 38:55-219,2006), the proceedings are published as a special issue of Few-Body Systems,
this ensuring a widespread diffusion. We thank the editors and staff members for their help.



This Workshop benefited from the generous support of the Furopean Science Foun-
dation (ESF), the Institut National de Physique Nucléaire et de Physique des Particules
(IN2P3), the Istituto Nazionale di Fisica Nucleare (INFN) and the Ettore Majorana Foun-
dation and Centre for Scientific Culture (CCSEM).

Special thanks are due to Pr. A. Zichichi for the hospitality provide to us at Erice, and
to Mrs. Fiorella Ruggiu for her efficient handling of the local organisation.
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Welcome address: Critical Stability
of Quantum Few-Body Systems

André Martin

Theory Division, CERN, CH 1211 Geneve 23

In the name of Professor Antonino Zichichi, I would like to welcome you at
the Ettore Majorana Foundation and Centre for Scientific Culture, here, in Erice,
for this workshop on Critical Stability of Quantum Few-Body Systems.

Since many of you are coming here for the first time, I would like to say a
few words on Professor Antonino Zichichi and the founding of the Centre; Ettore
Majorana; How I myself got interested in “Critical Stability”.

Antonino Zichichi and the Centre

Antonino Zichichi was born in Trapani, the city by the sea that you can see
from here. When he was young he used to go up to Erice on week-ends with
friends. Antonino Zichichi is a great experimental physicist in the field of sub-
nuclear physics. He has performed experiments at CERN, Frascati (near Rome)
and DESY in Hamburg. I shall only present a subset of his experiments, and I
shall not follow the chronological order.

e He was a member of a team of 6 physicists who measured for the first
time, at CERN, the anomalous magnetic moment of the muon, checking
the prediction of Schwinger (improved later by many others).

e In inelastic collisions he has discovered the “leading particle effect” and
the “effective energy”.

e He has invented a method to discover heavy leptons, heavier than the
electron and the muon. He has performed an experiment at Adone, the
Frascati electron-positron collider. This experiment gave a negative result
because the energy of Adone was too low. However, later, at the SLAC
collider, which had higher energy, in California, Martin Perl, using the
same method, discovered the 7 lepton, and eventually received the Nobel
Prize for this discovery.

Now come two important experiments involving antiparticles:

e The PAPEP experiment, which is the observation of the annihilation of a
proton with an antiproton producing an electron-positron pair. This exper-
iment was extremely difficult because one had to fight against a tremendous
background. 6
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e He was able to observe, for the first time, at CERN, what he called the pro-
duction of “anti-matter”, in the form of anti-deuterons, i.e. a bound state of
an antiproton and an antineutron. Previously only “elementary” antipar-
ticles had been observed (I speak of particles which can be isolated, which
excludes quarks), antiprotons, antineutrons, positrons, positive muons. The
new thing was that he had observed composite systems. Many years later,
at CERN, physicists have been able to manufacture anti-hydrogen, made
of an antiproton and a positron (see Dan Brown “Angels and Demons”).

Perhaps this explains the particular ties and admiration of Antonino Zichichi
for P.A.M. Dirac. Paul Adrien Maurice Dirac was a British theoretician of
French—Swiss origin. When I asked him here, in Erice, in 1982, if it was cor-
rect that his ancestors were coming from Saint-Maurice, in Valais, Switzerland,
he answered “actually my great grand father was coming from Poitou and fled
to Switzerland to avoid being recruited in Napoléon’s army. There were people
more famous than me, coming from Poitou, like Mr. Cadillac”. Well, Dirac tried
and succeeded to find a relativistic equation for the electron, explaining the spin
of the electron, its magnetic moment and the fine structure of hydrogen. How-
ever, he fell on a major difficulty: His equation seemed to have negative energy
solutions which were unacceptable. He solved the problem and predicted the
existence of antiparticles with positive energy.

In your folders you will find texts by Antonino Zichichi explaining that in
his eyes, Dirac was may be greater than Einstein. It is true indeed that for what
concerns special relativity, Einstein was very courageous and made a big step, but
he picked ripe fruits, prepared by Maxwell, Poincaré, Lorentz, and Minkowski,
while what Dirac discovered was completely unexpected, and extremely important.
Quantum electrodynamics, and later the electroweak theory and QCD (the so-
called standard model) rest very heavily on the existence of antiparticles.

The big bang model works because there exists particles and antiparticles,
because “In the beginning. .. the light shineth in the darkness” (John, I, 1-5).
Now, why is our Universe dominated by particles, protons, neutrons, electrons,
etc., and not antiparticles? Andrei Sakharov proposed that this is due to CP
violation, seen first in K decays and now in B decays.

Last week, Kobayashi and Maskawa were given half of the Nobel prize for
explaining CP violation by postulating the existence of 3 families of quarks and
leptons (it has indeed been observed that there are 3 and only 3 families), leading
to an irreducibly complex mixing matrix for charged currents in weak interac-
tions, which explains CP violation. I cannot resist showing you (below, left)
a picture of the recipient of the second half of the 2008 Nobel Prize, Yoshiro
Nambu, taken in Erice in 1972.

I shall now discuss the public role of A.Z., limiting myself to a few points,
once more not in chronological order:

e A.7.is a great populariser of science, which, he insists on that, is a part of
culture. Almost every Italian loves his TV programmes.

e When he was president of INFN (Istituto Nationale per la Fisica Nucle-
are), he played a major role. In particular he created the Gran-Sasso Un-
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derground Laboratory, where very important experiments have been made
and are being made now, for instance one on neutrino mixing using neu-
trinos coming from CERN through the terrestrial crust.

e He convinced pope John-Paul II to rehabilitate Galileo Galilei.

e In 1963 he created here, in Erice, the Ettore Majorana Foundation and
Centre for Scientific Culture. Notice the word “culture”. Initially, there
was only one school, the “School of Subnuclear Physics”. Participants were
lodged in the cottages of “La Pineta” and the lectures were taking place in
a relatively small lecture hall in San Lorenzo. Now there have been about
200 schools and workshops on different subjects taking place taking place
(you have the list on the side of your folders), and more than 50 every
year. The Centre also became bigger. After the acquisition of San Rocco,
which became the centre of the “centre”, San Francesco was added and
later the Paul Dirac lecture hall was constructed behind the facade of the
San Domenico church, in ruins. Below (right) is a picture of the opening
ceremony in 1963. Antonino Zichichi stands between the great theoretician
Victor Weisskpof, left, former director of CERN, recipient of the Wolf Prize
and Sidney Drell, right, an excellent theoretician from SLAC, who played
later a considerable role in the problem of arms control.

7R o = ‘

Among the many workshops, I would like to single out the one on “world
emergencies” which I had the privilege to attend last year. At the time of the cold
war there were meetings between American and Russian experts on disarmament.
Now the subjects are climatic change, energy saving, aids, Alzheimer’s disease.

I would like also to come back on the school of subnuclear physics. The
2008 session was devoted to the memory of the American theoretician from
Harvard Sidney Coleman, who died recently. Sidney has been lecturing many
times in Erice. His lectures were fantastic and he received the prize of the best
lecturer. Yet he violated a sacred rule because, in spite of the posters that you
see everywhere and the sheets in your folders, Sidney smoked everywhere. I am a
witness that once his cigarette was finished while he was lecturing in San Rocco
dressed in his impeccable white suit . He stopped and said “Nino, can you ask
one of your slaves to bring me some cigarettes”. Sure enough he got his cigarettes
and continued lecturing. So any rulg has exceptions!
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About Ettore Majorana

Ettore Majorana was a Sicilian theoretical physicist born in Catania in 1906. In
Rome, after a short time studying engineering, he moved to physics and joined
the Fermi group. He turned out to be a GENIUS (this is the word of Fermi!). He
has a relatively short list of publications in the field of atomic, molecular, and
nuclear physics because once he had found something he did not care to publish
it. Some of his most outstanding contributions are the Majorana neutrino which
is its own antiparticle and allows neutrino-less double beta decay, and particles of
arbitrary spins including what one would call now ”Regge trajectories”. I cannot
resist telling you a story that I heard from the great Gian-Carlo Wick. In 1931
Frédéric and Iréne Joliot-Curie discovered a mysterious penetrating neutral ra-
diation produced in the bombarding of Beryllium by alpha particles. When their
communication to the French Academy of Science arrived in Rome, Majorana
exclaimed “idiots! they have not seen that it is the neutron” (in Italian” Stronzi,
non hanno visto che & il neutrone”). However he did not publish anything about
this, and the world had to wait for the experiment of Chadwick, in 1932, to know
that the neutron existed.

After Rome Ettore Majorana visited the group of Niels Bohr in Copenhagen
and the group of Heisenberg in Leipzig. After his return to Rome he got a
professorship in Naples.

In 1938 he took a boat from Naples to Palermo, was seen in Palermo and
then was supposed to return to Naples, but was never seen again. Did he commit
suicide or had just decided to disappear from the world?

e In favour of the suicide thesis is the fact that before leaving Naples he had
written to a friend that he was going to put an end to his life, not to be
sad, not to wear black dresses. He had a rather strange character, was very
shy, with a tendency to depression.

e in favour of the disappearance, is the fact that from Palermo he wrote
to the same friend that he had changed his mind, but that he would not
return to physics. Also the fact that before leaving Naples he took all his
money from the bank, and finally that he was a very religious man. Then,
where did he disappear? some people claim that he fled to Argentina, but
this seems extremely unlikely. The evidence is very weak. He may just
have disappeared somewhere in Sicily, in a convent for instance. This is
quite possible when you see Mafia chiefs disappearing without being found
during 30 years. In France there is the example of the great mathematician
Alexander Groethendick who disappeared some years ago and is very likely
still alive. Now assuming that Majorana disappeared, why? The thesis of
the great Sicilian writer, Leonardo Sciaccia is that he was so clever that
he knew already the terrible consequences of the work on nuclear physics.
This does not seem very likely since nobody in Rome had thought of fission
reactions (“I missed fission“ said once Fermi to Jack Steinberger). Yet
fission was to be discovered one year later.

Fermi was so desperate of the disappearance of Majorana that he asked Mus-
solini to undertake intensive investigations to find him. As we know they were
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unsuccessful. Witnesses say that in Los Alamos, building the bomb, Fermi, faced
with a difficult problem, kept saying “If Ettore was here he would find the solu-
tion”.

For more about Ettore Majorana and the Erice centre, I recommend you to
read the book by Antonino Zichichi: “Ettore Majorana, his genius and his long
lasting legacy”.

Finally, I come to:

Critical binding and I

I believe that my interest in critical binding started from my contacts with the
Vienna school of theoretical physics, Walter Thirring, Harald Grosse and others.

In 1976, Thirring, Glaser, Grosse and I proved that the system proton-
electron- negative muon is not bound.

I was also much interested by the work of Hill who showed that the negative
hydrogen ion has one and only one bound state with natural parity, and also
by the work of Grosse and Pittner who showed that the same is true for un-
natural parity states. I was also impressed by Hill’s theorem that all systems
(AT, B~, B™) are bound.

In 1991-1992 with Jean-Marc Richard first, and then T.T. Wu, we under-
took a systematic study of systems of 3 unit-charge particles interacting by pure
Coulomb forces, using only very general properties such as convexity, and also
the typically French invention to represent any of these 3-body systems by a
point in a triangle.

In 2000 again with T.T. Wu but also A. Krikeb, we studied 3 body systems,
but, this time, with arbitrary charges. In particular we gave the first rigorous
proof that the system (o, p, ™) is unstable. Yet, Semen Gerstein has shown that
(a=,p, ™), (a,d, ) and (e, t,u~) are metastable with increasing lifetimes. I
have the impression that this subject is not treated in this workshop. Yet this is
crucial for catalysed fusion.

Finally, I acted as go-between between Jean-Marc Richard and Jurg Frolich.
Jurg noticed that there was no rigorous proof that the hydrogen molecule was
stable. The only “proofs” were using the Born-Oppenheimer approximation. Jurg
and his student had a very complicated method of proof, but Jean-Marc proposed
a super-simple proof based on the fact that many years ago, Hylleraas and Ore
proved that the (et,e™,eT,e”) system is stable (except for annihilation!), and
also on convexity. Later, Jean-Marc and his friends “proved” that all systems
(A*, AT, B~,C7) are stable. The quotations marks mean that even though they
used analytic methods in their variational approach, they made their calculations
for discrete values of the masses.

To finish, I would like to wish you a very successful workshop. Here again
I acted like a go-between, between Antonino Zichichi and the true organisers,
Jean-Marc Richard, co-director of the school, Aksel Jensen, Alessandro Kievski
and Laurent Wiesenfeld, the conveners. To them, to Antonino Zichichi who made
this workshop possible, and Fiorella Ruggiu for her very efficient help, I address
my deepest thanks.

10
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A Personal Journey Through Hadronic
Exotica*

Kamal K. Seth'**

Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA

Abstract. The search for exotic hadrons has been forever fascinating and
challenging. A review of many such searches, successful and unsuccessful, in
which the author has been involved, is presented.

1 Introduction

Exotica and Erotica differ only in one letter. They are equally addictive. Like
all addictions, they have consequences. They consume a lot of the resources.
They make you often do things you should not do. BUT, they are exciting, and
they give you a great surge of adrenaline.

I have to confess that over the years I have fallen for exotica, and often. So,
let me take you on a personal journey through exotica.

So, what is Exotic? Exotic has to be unexpected. Exotic has to have the
nature of the “forbidden fruit”. Exotic in hadronic physics often begins with
provocative suggestions by theorists, which drives experimentalists to search for
it, often at exotic cost (think Higgs). At other times, it begins with an unex-
pected experimental observation for which theorists come up with exotic expla-
nations (think J/1). I want to tell the story of the hadronic exotica, necessarily
from a personal point of view.

2 Chasing Exotica in Nuclear Physics

I began my career as a nuclear physicist. So, my first run in with exotica was in
the search for exotic nuclei. Nuclei are exotic if they are very rich in neutrons,
i.e., have an exceptionally large value of (N —Z2)/A., or if they are just very heavy,
A > 240. In the 1970’s, there were no easy ways of making a nucleus which was
very rich in neutrons, like '8C with 6 protons and 12 neutrons. And so we went for
it by the very exotic pion double charge exchange (DCX) reaction (7, 77). We

*Article based on the presentation by K.K. Seth at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received December 12, 2009; Accepted January 8, 2009.
** E-mail address: kseth@northwestern.edu] |
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powers.

discovered 18C by the reaction O (7=, 77)18C [1]. That was exciting. As I said
before, exotica is addictive. So, after 18C we went for “He, 2 protons+7 neutrons,
(N — Z)/A = 5/9, by means of the reaction *Be(r~, 77)He [2]. We found it,
and Bethe called it “a drop of neutron star”. How much more exotic can you
get? Well, how about °H by ®Li(7~, 77)5H. We tried and failed to find it, bound
or unbound [3].

So, running after exotica can lead to disappointments.

The other end of exotic nuclei is the superheavy nuclei. I have never worked
in this field. But Berkeley, Dubna, and GSI have crossed swords in claims about
who has the heaviest of the superheavy. After some embarrassing incidents, the
current winner is 2%4X;14 with 114 protons and 180 neutrons [4]. That is exotic!

3 Chasing Exotica in Quark Physics

Quarks carry color, and only color-neutral hadrons, gg mesons or qqq,
baryons exist in nature. In the quark bag model [5] hadrons with other color-
neutral combinations, such as (gqq)(qqq) dibaryons, or ¢qGq four-quark state
can exist. de Swart and colleagues calculated the masses of scores of dibaryons [6]
and started a stampede for the search of dibaryons.

Lots of people started looking for dibaryons in their old experiments, an-
alyzing old bubble chamber pictures and claiming observation of scores of
dibaryons. As many as 40 dibaryon states were claimed in the mass range
1900 — 2300 MeV (Fig. 1). We thought we could become famous by pinning
these dibaryons down since we had orders of magnitude greater luminosity and
energy resolution available at the Los Alamos Meson Factory. Instead of becom-
ing famous for discovering dibaryons, we became infamous for killing all of
them. No Dibaryons anywhere in Fjg. 2.
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4 Pentaquark

But that is not the end of this story. If not two baryons making a dibaryon, how
about a baryon+a meson, or a color-neutral pentaquark? It surfaced a few years
ago by the claim by Nakano et al. of a narrow peak, called ©F, with a mass of
M(O71) = 1540 £ 10 MeV, I'(©1) < 25 MeV, in the invariant mass of Kn in
the reaction yn — K~ (K1n) [7]. If true, it would have strangeness +1 and
at least five quarks/antiquarks. The object was so exotic that a stampede of
confirming claims flooded the literature. An equal number of non-observations
were reported. If you go to Google, you find 99,800 entries for pentaquark (before
this symposium), and it will be difficult to decide whether the pentaquark is alive
or not.

In a high-statistics repeat of their own measurement, JLab found that their
own earlier observation of @1 was false and no evidence for the existence of the
pentaquark exists [8]. However, rumor has it that Nakano et al. claim that they
still see the pentaquark in a high-statistics remeasurement.

So, once claimed, an exotic is difficult to kill! I end with a quote
from PDGO08 summarizing the saga of the pentaquark: “The whole story — the
discoveries themselves, the tidal wave of papers by theorists and phenomenologists
that followed, and the eventual ‘undiscovery’ — is a curious episode in the
history of science.”

5 Glueballs and Hybrids

Since glue carries color, it is possible to have hadrons build of pure glue, called
glueballs |gg), and hybrid mesons containing glue, |¢Gg). These have been pre-
dicted since the inception of QCD [9].

Glueballs have generally the same JZ¢ as g mesons, and they mix with them.
It is therefore essentially impossible to find a pure glueball. Nevertheless, brave
searches and claims and counter—claims have been made. The summary of the
situation is that pieces of the JX¢ = 0F* glueball are mixed into at least three
well-known isoscalar mesons, f,(1370,1500,1710) and the pure exotic, |gg, 0t ™)
has been lost. A tensor J©¢ = 27+ glueball has had equally disappointing fate.
It has surfaced many times, but I believe it was firmly put to rest by us in a pp
measurement at LEAR (CERN) [10].

Hybrids |¢gg) have an advantage over glueballs. They can have JI'C =
1=+, 2=, ... which are not permitted for g7 mesons. Such objects are manifestly
exotic. In our 77 p experiment (E852) at BNL we claimed to have discovered at
least three 1~ mesons 71(1400, 1600, 2000), and a 27~ meson hy(1900) [11]. I
have to admit that while these hadrons are definitely not ¢g mesons, they also
admit the possibility of being four—quark states, and not hybrids. In either case
they are exotic.

6 The H Dibaryon

The uuddss H dibaryon was predicted by Jaffe [12], but it became so exotic that
it was even considered a candidate for dark matter. Stubborn searches for the H
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Figure 2. Comparing Positronium (e*e™) and Charmonium (c¢) spectra.

were made for years at Brookhaven and KEK. The u,d quark dibaryons died a
long time ago, but the H dibaryon lived longer. By now, however, by common
consensus it is also considered dead. For a detailed history see [13].

7 Exotica in QCD

In Dec. 1974, a large narrow peak was disocvered at ~ 3.1 GeV mass at
Brookhaven and SLAC [14] in eTe™ formation and p™p~ decay. It was the
J /4 which launched the era of modern Quantum Chromodynamics (QCD).
It is amusing to note that barely four weeks later eight papers by theoretical
physicists (including four Nobel laureates) appeared in the Jan. 6, 1974 issue
of Physical Review Letters [15], offering explanations of what J/i) might be.
Several of them were truely exotic explanations, like J/1¢ was a bound state of
a baryon/antibaryon, or two spin—one mesons, or it was a member of a 15 @® 1
dimensional representation of SU(4). Tells you that nobody is immune to
the seduction of exotica.

I have been talking too much about the exotics which failed to materialize.
Let me now, for awhile, focus on exciting physics which is not exotica, but
excitica (my construct for something very exciting).

8 QCD versus QED

The QCD potential which arises due to the exchange of a massless vector photon
is V(r) o< aem/7. The QCD potential due to the exchange of a massless vector
gluon is V(1) o< Qstrong/T. Because free quarks do not exist, in QCD there is
an additional confinement term proportional to r.

With such close analogy to QED, it is interesting to compare the QCD
spectrum of charmonium with the QCD spectrum of positronium, with masses
and interactions miles apart. The similarity is nothing short of fantastic.
Nature repeats herself! with enpygy scales different by a factor ~ 101°.



K.K. Seth 5

R V=-1.02/r +0.927 ”
, =-1.02/r + 0.927r .
O Linear
ié i cc(2S)
b (1)
0.75 bb(lg)c( )

-0.25 Coulomb

-0.5

-0.75

L T L L T I I B
0.4 0.6 0.8 1 12 14 16
r (fm)
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radius of the ¢¢ potential.

9 Hyperfine Interaction in QCD

The Coulombic (o 1/r) part of the QCD interaction gives rise to the usual spin
dependence in the potential, with spin-orbit, tensor, and spin-spin components,
in addition to the central part. Of these three, arguably the most important is
the spin-spin interaction. For example, the ground state masses of gg mesons are:

M(q1G2) = mi(q1) + ma(q2) + Ahf {31 . 32]

mims

In order to determine the hyperfine interaction, Ay, it is necessary to measure
the hyperfine splitting between the spin—singlet and spin—triplet states. This
means identifying and measuring the massses of Ly and ! L states. The masses
of spin—triplet 3L ; states, 3S; and 2P; states are well-determined because ei-
ther they are directly populated in e*e™ annihilation (!351>) or they are reached
by strong E1 transitions from the }35’1> states (|35’1> — YE1 ‘3PJ>). The spin—
singlet states 'Lj_; can not be directly formed, and radiative transitions to
them from spin—triplet states are either forbidden or weak M1. The net result
is that our knowledge of the spin—singlet states, and therefore of the hyperfine
interaction, has been very poor in the past. Very recently this has changed.

For heavy quark systems, ¢ charmonium, and bb bottomonium, we would like
to know how the hyperfine interaction changes as we move from the Coulomb
dominated region of the ¢g potential to the confinement dominated region. We
would like to study the change in the hyperfine interaction

1. between c¢(15) and cc(2S5)
2. between c¢(1S) and bb(15)

3. between c¢(1S) and cc(1P) 15
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Figure 4. Identification of charmonium spin-singlet states: (left) n.(2'So) produced in vy
fusion, (right) he(1'P1) produced in ¢’ — 7°h.

Until recently, the only hyperfine splitting known was for the charmonium
1S states (see Fig. 3)

AM;,;(18) = M(J/1(1S)) — M(ne(1S)) = 116.7 & 1.2 MeV

n.(11Sp), he(11P1), and nu(11Sg) were not even identified. In the last five
years, all this has changed due to the measurements at Belle, BaBar, and CLEO.
The results are:

AMp5(28)ee = M (Y (25)) — M (n.(25)) = +43.2 £ 3.4 MeV (CLEO [16])
AMps(1P) ez = M({Xcs(1P))) — M (he(1P)) = +0.02 & 0.23 MeV (CLEO [17])

Even more recently BaBar has claimed the identification n,(1Sp) with the result
AMy(18)5 = M(T(1S)) — M(1p(1S)) = +71.4751 MeV (BaBar [18))

An overall understanding of these hyperfine splittings is going to be a challenge
to the theorists.

10 CHARMONIUM EXOTICS: The Unexpected States Above the
DD Threshold

I now return to the domain of Exotica. Recently, a number of new states have
been claimed in the mass region 3800-4700 MeV, above the DD breakup of
charmonium at 3730 MeV. Three years ago, all that was known above DD was
four vector states (3770, 4040, 4160, and 4415) observed as enhancements in
the ratio, R = o(hh)/o(u" ™). However, the great excitement, often called the
renaissance in hadron spectroscopy, has come from the recent discovery of a
whole host of unexpected states by the meson factory detectors, Belle and BaBar.

The new states are called “charmonium-like states”, not because they
naturally fit into the spectrum of charmonium states, but because they seem
to always decay into final states cggtaining a charm quark and an anti-charm
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quark. There are at least eleven of them around. The alphabet soup is getting
thick with reports of X(3872), Y(4260), Y(4361), Y(4660), X(3940), Y(3940),
7(3940), X(4160), Z*(4430), Zi(4051) and Z3 (4248). Except for the first two,
X(3872) and Y(4260), which have been observed in measurements at several
laboratories, the remaining nine come exclusively from Belle. They have not
been reported by BaBar with similar capabilities, and in two cases, Y(4325)
and the Z*, they have been contradiected by BaBar. Reminds you of the old
dibaryon story. I do not want to express my skepticism any further, but tell you
only about the two certain exotics, X(3872) and Y (4260).

10.1 X(3872) and the molecular model

This narrow state with M (X) = 3872.24+0.8 MeV, and I'(X) = 1.344+0.64 MeV,
has been observed by Belle, BaBar, CDF, D@, and it definitely exists. [PDGO0S|
CDF angular correlation studies show that its JP¢ = 17+ or 27F. X(3872)
does not easily fit in the charmonium spectrum. Since its mass is very close
to M (D) + M(D*), the most popular conjecture is that it is a weakly bound
molecule of D and D*. If so, our recent precision measurement of D mass at
CLEO gives M (D°D%) = 3871.81 4 0.36 MeV. This corresponds to X(3872)
being unbound by 0.4 + 0.8 MeV. If X(3872) were even bound by ~ 0.4 MeV,
the branching fraction for the molecule’s breakup into DD is predicted to be
factor 400 smaller than observed. These observations raise serious doubts about
the molecular model for X(3872).

Stop the presses: CDF now reports [19] M (X) = 3871.46 + 0.19 MeV. So
we now have X(3872) bound by 0.35 + 0.41 MeV. The problem of the almost-
bound /unbound nature of X(3872) is getting more and more sharply defined,
and it is getting to be more and more exotic.

10.2 Y(4260) and the strange Vector

The Y (4260) has been observed in ISR production by BaBar, CLEO and Belle,
and in direct production by CLEO. Y (4260) is clearly a vector with J7¢ =17,
All known charmonium vectors are seen prominently as huge enhancements i
hadronic decays, usually measured as the ratio R = o(h™h™)/o(u" ™). But this
vector is a very strange one, since it sits at a very deep minimum in R, with

M(Y(4260)) = 4263f§ MeV, I'(Y(4260)) =95+ 14 MeV (PDGOS8)
So it is not likely to be a charmonium vector, which are all spoken for, anyway.
So what is Y(4260)?

It is suggested that Y (4260) is a ccg charmonium hybrid. If so, there ought to
be 0~ and 1~ hybrids companions nearby. Where are they? It is a real experi-

mental challenge to clarify this situation before taking any theoretical conjecture
seriously.

11 Epilogue

The sum total of the experiences in this journey through hadronic exotica is
that the journey is certainly worth ity It is unquestionably exciting. But the road
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is full of pitfalls and disappointments.
Only the brave should enter!

They should be proud of their successes, and humble enough to admit their
failures.
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Abstract. On the basis of Faddeev equations the binding energies of the
systems ¢nn, ¢np and ¢pp are calculated. The results indicate the possibility
of new few - nucleon meson clusters.

As it was intensively discussed recently [1-7] there are indications on the strong
attraction of mesons with one strange quark K~ (K ) to the few-nucleon nu-
clei.Along this line it is interesting to look at the interaction of a meson with two
strange quarks like the ¢-meson with light nuclei. Already existing theoretical
investigations of the ¢-meson interaction show rather strong attraction between
a ¢-meson and a nucleon. Indeed, the calculation of the ¢ — N interaction within
the quark model [8], and on the basis of a totally different phenomenological
model [9] based on the dominant role of ss configuration in the ¢-meson struc-
ture, predicts considerable ¢ — N attraction with a binding energy of about 9
MeV for the ¢ N system.

Such a strong attraction in reality might be not very surprising if one agrees
with physical arguments, that strong K~ N attraction appeared due to the in-
fluence of subthreshold resonances A 1405 and X'13gs.

Indeed, let us compare the mass of the state ¢ + N with masses of two
subthreshold states K + A1405 and K + X1385. It turned out, that distances
of above subthreshold states from threshold ¢ + N state are the same order of
magnitude as in K~ N case, which means that as in K~ N system one can expect
strong influence of A 14095 and X'13g5 and strong attraction also in the ¢/N system.

Bearing in mind this sort of strong attraction in the ¢V system, it is interest-
ing to consider the possibility of bound states of a ¢-meson with few nucleons, in
particular with two neutrons or two protons. This is in fact a question concerning
the existence of new nuclear clusters. In what follows we calculate the binding
energies of the three-body systems ¢nn, ¢np and ¢pp.

As in [9] a Yukawa type potential is chosen for the ¢ — N interaction :

Von(r) = —ae ™" /r (1)

*Article based on the presentation by V. B. Belyaev at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received November 11, 2008gAccepted January 8, 2009.
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with @ = 1.25 and g = 600 MeV. This potential is rather deep and narrow
and supports binding in the ¢ N system with binding energies Ey, = —9.47 and
Ey4, = —9.40 MeV.

For the np triplet s-wave interaction the potential MTIII [10] has been used.
Our singlet s-wave interaction is based on the potential MTT [10] with the slight
modification of having now a parameter Ay = 2.617. This value is chosen in order
to reproduce the experimental value of the nn-scattering length a,, = —18.5
fm [11]. One can see that in the three-body systems ¢ NN there are two scales
of distances, related to the different ranges of the N — N and ¢ — N interactions.
This may produce a delicate interplay between a narrow attraction area of the
¢ — N interaction and repulsive parts of the MT-potentials, as it was emphasized
in [12]. Apart from that, different ranges of the interaction can provide the cluster
formation in the systems under consideration.

Let us start to describe a three particle system ¢ 4+ 2N. Our calculations are
based on Faddeev equations [13] in differential form [14] written down for the
3-body systems ¢ NN.

First, the Faddeev components of the wave function are expanded into partial

!pa(naaga) = Z

LMIX

waves:

1 .
Na ga U(%l)x(nav 506) Ylg\lM(ﬁougoz) (2)

and only the lowest partial waves (L =1 = X\ = 0) are taken into account. Here

Na = ”rla‘y o = ‘Ea’a o = na/!na\, éa = éa/lfa‘y Y&M are the bispherical
harmonics. The Jacobi coordinates 1, &, are as usual:

m;r; + m;r;
fr-i_rr-j:&’ T ]J_rk:& (3)
a g m; + m; ba

where r;, m; denote the radius-vector and the mass of particle 7, the total mass
is M = mq 4+ mo + ms,

B mim; mkm —i—m])
““‘\/<mz i o=y B

and indices « take on following values: o = 3 for (ij)k = (12)3, a = 1 for
(if)k = (23)1, a =2 for (ij)k = (31)2.

Since there are two identical particles in the system (we take m y = m,, for
¢np system) the following two coupled-differential Faddeev equations survive:

[f)ﬂ/i <pcow> - E] Ui(p, ¢)

a;
pCos
(252) 3 i [ 00

for i = 1,2 and Us = U, where pgjar coordinates p = /12 + £2, tang, =
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&a/Na are introduced and

~ R [ 02 1 0 1 0?
Vi=Van, Vo=Vyn, D=-— < >

M\ T pp T P 0P
o+ = min{‘gp—}’ya/a’ , T — (QO +f)/a’a)} , C— = ’30 - ’Ya’a’ (6)
. mkM
Yij = arcsm Sij , - S5 = (mq +my) (my + my)

where 4, j, k is an even permutation of 1,2, 3 and the indices correspond to 1 for
the ¢-meson, and 2 and 3 for the nucleons.

The two-dimensional system of Faddeev equations (5) has been solved by
discretization of variables hyperradius p and hyperangle ¢ with N and M mesh
points respectively. Stable results for three digits of binding energies were reached
at N =110, M = 210 and L(p variable cutoff) =9 fm.

As a result the binding energy of the system ¢nn with value Ey,,, = —21.8
MeV has been obtained and value Ey,, = —37.9 MeV for the binding of ¢np
system with np pair in triplet state. It should be noticed, that for this binding
energy in ¢np system both main ¢-meson decay channels on K-mesons are closed.
Let us comment last value of energy, which appeared rather large. From naive
reasons in the configuration ¢ + d one would expect binding of order 2 X Eyy +
FE 4, which is much smaller than calculated value. However due to the strong
attraction in ¢N - subsystem (E4n ~ —9 MeV) one can expect, that in 3-particle
¢np system, the configuration ¢+ d is rather suppressed. From that follows, that
in the above system there is no strong cancellation between potential and kinetic
energies of nucleons, like in deuteron and strong attractive triplet N — N potential
(V¢ ~ 100 MeV) show his full value.

The dependence of the binding energy of ¢nn system on the parameter o of
¢ — N interaction is investigated. It is shown on the Figure 1, that excited states
appear in this system.

As can be seen from the results, the binding in 3-particle systems like ¢ N N
is possible even at weaker ¢ — N attraction as compare to the potential (1) with
parameters given in work [9].

In conclusion, it is interesting to consider clusters with number of neutrons
more than two, for example four-body system ¢+3n. To take the first step to this
problem, folding model to describe ¢nn cluster has been used. In the description
of cluster ¢gnn model wave function was taken, which however reproduce binding
energy calculated above. Folding potential for the system (¢nn) 4 n is calculated.
Here, the third neutron is considered in p-wave with respect to the cluster ¢nn.
The potential, in which p-wave centrifugal barrier is taken into account, is shown
on the Figure 1. It appeared, that there is no bound state in this potential.
However, as we know from exact four-body calculations of 7. + 3n system [15]
folding model greatly underestimate the real binding of the system.

Acknowledgement. The work was supported financially by the Deutsche Forschungsgemeinschaft
(DFG grant no 436 RUS 113/761/0-2) ar@lthe Heisenberg-Landau Program 2008.
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system (¢nn) + n.

References

Doté, A., Hyodo, T., Weise, W.: ArXiv: nucl-th/0802.0238 (2008)
Yamazaki, T., Akaishi, Y.: Phys. Lett. B 535, 70 (2002)

Agnello, M., et al.: Phys. Rev. Lett. 94, 212303 (2005)

Magas, V. K., Oset, E., Ramos, A., Toki, H.: Phys. Rev. C74, 025206 (2006)
Yamazaki, T., Akaishi, Y.: Phys. Rev. C76, 045201 (2007)

Shevchenko, N. V., Gal, A., Mares, J.: Phys. Rev. Lett. 98, 082301 (2007)
Shevchenko, N. V., Gal, A., Mares, J., Révai, J.: Phys. Rev. C76, 044004 (2007)
Huang, F., Zhang, Z. Y., Yu, Y. W.: ArXiv: nucl-th/0601003 (2006)

Gao, H., Lee, T.-S. H., Marinov, V.: Phys. Rev. C63, 022201 (2001)
Malfliet, R. A., Tjon, J. A.: Nucl. Phys. A127, 161-168 (1969)

. Howell, C. R., et al.: Phys. Lett. B444, 252-259 (1998)

. Belyaev, V. B., Sandhas, W., Shlyk, I. I.: ArXiv: nucl-th/0707.4615 (2007)

. Faddeev, L. D.: Zh. Eksp. Teor. Fiz., 39, 1459 (1960) (Sov. Phys. JETP, 12, 1014,
1961)

14. Pupyshev, V. V.: Theor. Math. Phys., 81:1, 1072-1077 (1989)

15. Belyaev, V. B., Shevchenko, N. V., Fix, A., Sandhas, W.: Nucl. Phys. A780, 100-111
(2006)

© *° N ot W

I S
w N o= O

22



Few-Body Systems 0, 1-4 (2009) F W-
§ody
Systems

@© by Springer-Verlag 2009
Printed in Austria
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Abstract. The search for nuclear states of K mesons is presented and the
main uncertainties: off-shell extrapolation of meson-nucleon scattering ampli-
tudes, behavior of hadronic resonances in nuclei and extrapolation to high
density nuclear regions are discussed. A two step method to perform varia-
tional calculations in the K—few-nucleon systems is suggested.

1 Introduction

Low energy K mesons are attracted by nuclei. This attraction, well tested in
kaonic atoms, has been attributed to coupling of the KN system to the A(1405)
baryon. More generally the system of interest consists of three channels KN,
Y7, A coupled in the isospin 0, 1 states. The scattering and reactions are usually
described in terms of the K matrix related to the scattering matrix T by

T =K — KiQT, (1)

where Q is a diagonal matrix of the c.m. channel momenta. Phenomenological K-
matrix elements are fitted to the KN elastic and inelastic scattering as well as to
the X7 scattering data. An additional consistency condition has been formulated
in terms of dispersion relations [1, 2]. The solutions in the dominant isospin 0
state yield attractive and large elastic K kN,xN elements. These give rise to a
singularity of 7" in the complex energy plane which is interpreted as the A(1405)
being a KN quasi-bound state. The position of the A(1405) pole is not well fixed,
and different sets of K locate it in the region of 1405-1417 MeV, while the width
stays in the region of 35-50 MeV. In recent years other solutions for K based
on SU(3) chiral models have been used [3]. These generate two singularities,

* Article based on the presentation by S. Wycech at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received November 30, 2008; Accepted January 8, 2009.

** B-mail : wycech@fuw.edu.pl

*** E-mail : anthony.green@helsinki.fi
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one representing the KN quasi-bound state of energy about 1425 MeV and a
broad resonance in the X7 channel. At this moment the selection of a proper
model on the basis of two body states is not easy. The K-few-N quasi-bound
states may be helpful in this respect. On the experimental side there exists one
measurement that indicates the existence of a K~ pp state bound by ~ 115MeV
and ~ 67 MeV wide [4]. The experimental search has become very active after
Akaishi and Yamazaki showed that such bound states may exist in few nucleon
systems [5].

The K-few-N states offer a new physics that is interesting in two aspects:

e The binding is generated by exciting nucleons to A(1405) (and X(1385)).

e The bound states may involve very high nuclear densities.

2 Variational method

The variational method presented here allows one to find a satisfactory descrip-
tion of the K-N and N-N correlations at short distances. It consists of two steps:

(I) The meson wave function xx(x, x;) and complex energy F(z;) are found
for a system of K interacting with nucleons fixed at positions ;.

(IT) Next, the nucleon degrees of freedom are allowed to vary and the trial
K-few-N wave function is used in the form ¥ = xg(x, x;)xn(x;). The total
Hamiltonian involves the meson and nucleon kinetic energies, NN and KN in-
teractions. The minimal energy is found by varying parameters which enter xn
and the AV18 NN potential is used [6]. The stability of these systems is given
by the width determined as the average I'/2 = (U |Im[E(z;)]|¥).

The second step is standard, but the first one is not. It is presented here in
some detail for the KNN system with a simplified one channel S wave interaction.
Consider the scattering of a light meson bound on two identical fixed nucleons.
The meson wave function y g is given by the solution of the multiple scattering
equation

XK(X X1 X2 E/ GXPZP|X yH

2 Vi ; L (2
Tir | x-y| prNVEN(Y, %i) Xk (Y, X1,%2). (2)

One looks for solutions of Eq. (2) which determine the complex momentum
eigenvalue p(z;). It gives the energy and width of the quasi-bound system
for given nucleon positions x;. The potential is chosen in a separable form
Vin(x — %3, %" — %3 = A v(x — x3) v(x' — x3), with the Yamaguchi form-factor v
with inverse range k and a complex strength A. Equation (2) becomes a matrix
equation for wave amplitudes 1; defined at each scatterer ¢ by

i = A /dxv(x—x,-) Xk (X, X1, X2). (3)
To find equations for 1; one introduces matrix elements of the propagator

Gy = [ dyax vix—x) e UGS A VNV (1)

dr | x — x|

The diagonal value, G;; = G,, determines the meson nucleon scattering matrix
t by the well known relation t(E) = (1 + A G,)~! X which yields the full off-
shell scattering amplitude f(k, E,k") = v(k) t(E) v(k'). Equation (2) can be
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expressed in terms of scattering amplitudes ¢; at each nucleon ¢ and propagators
describing the passage from the nucleon i to the other nucleon j. One arrives at
a standard set of equations

Yi+ >t Gijih; =0. (5)
J#i
With two amplitudes 1; these reduce to
Y1+t G =0, thp+tGih=0, (6)

where G = G15. When the determinant D = 1 — (¢t G)? is put to zero, the
binding "momenta” p(r) may be obtained numerically. The solution of interest
corresponding to 1 + tG = 0 is symmetric, 12 = 11, and describes the meson in
the S state with respect to the NN center of mass. It exists for all inter-nucleon
distances provided there exists a singularity in ¢(E) below the KN threshold as
happens in the A(1405) case. In some energy region t = v2/(E— E*), where E* =
E,—1il,/2 is the complex binding energy of A(1405). The eigenvalue p(r) is given
by the condition 1 +tG = 0, which now takes the form E = E* —v2G(r,p). The
solution £ = Ep(r) — iI'(r)/2 depends on the N-N separation r. As Re[G(r,p)]
close to the resonance is positive, the binding of K to fixed NN pair is stronger
than the binding of K to a nucleon, |Eg(r)| > |E,|. Asymptotically for r — oo
one obtains G — 0 and E(r) — E*, i.e., the K meson becomes bound to one
of the nucleons. The lifetime of KNN becomes equal to the lifetime of A(1405).
Hence, the separation energy is understood here as the energy needed to split
K-N-N — A(1405)-N.

Eigenvalues corresponding to unstable quasi-bound states are obtained in the
second quadrant of the complex p(r) = pr + ipr plane. The propagator

K2 — p?

tG = f(p) lexp(—prr) exp(iprr) — exp(—~r) (1 + TT)]/T (7)

is exponentially damped at large distances as required by the asymptotic form of
the bound state wave function x . This shape of G(r) describes the K-N corre-
lations. At small r, i.e., at high nuclear densities p; increases and the correlation
range becomes smaller.

The difference between the binding at a given separation r and its asymptotic
value generates a potential Vi (r), which contracts the nucleons to a smaller
radius. It is defined as Re[Vk (r)] = Ep(r) — Ep(oo) and generates the bound
states. On the other hand some part of the binding is hidden in Ep(co) that is
in the structure of A(1405).

2.1 Results

The outlined method was used to study the KNN, KNNN and KNNNN sys-
tems [8]. The input was based on the K matrix from ref. [2] and eq.(5) was
generalized to include S + P wave interactions (the X(1385) excitations) and
the multiple scattering in KN and X7 channels. Some results are given in the
tables. These show a dramatic dependence of the binding on the A(1405) param-
eters which reflect uncertainties of the KN amplitudes at 100-200 MeV below the
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4 The K-few-N Levels

threshold. The ¥(1385) makes a weak impact in the S wave states. However, it
may generate P wave branches of the spectra, in particular a bound K ~nn state

8].

Table 1. Binding energies and widths [MeV] of the KNN, I, = 1/2, Inn = 1 space-symmetric
states [8]. The results on the left are based on parameters of ref.[2] extended off-shell by a
separable model [M, = 1409 MeV]. The results on the right are obtained with M, shifted
to 1405 MeV and with equally good fit to the data. The first column specifies the channels
explicitly involved in the multiple scattering and meson-nucleon partial waves. Ry, is the
radius mean squared of the N-N separation [fm]. The numbers in the second line of the right

sector are very close to the Faddeev solution obtained with a similar input [7].

Ep I' | Ryms Eg | I' | Rrms
KN; S 355 37| 24 50 | 51 | 2.05
KN, Yr; S 43 | 47| 21 71 | 85| 1.8
KN; S, P 50 | 36 | 3.3 65 |43 | 2.1
KN,Yr; S,P | 56.5| 39| 2.3 78 160 | 1.9

Table 2. Binding energies and widths [MeV] of the KNNNN, space-symmetric, Stz = 0,

Iiot = 1/2 states. The widths do not include non-mesonic decays. See caption to Table 1.

Ep | I | Ep| I
S 121 1 25 || 170 | 10
S+ P | 136 | 20 || 172 | 10
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Abstract. The physics of charm has become one of the best laboratories
exposing the limitations of the naive constituent quark model and also giving
hints into a more mature description of meson spectroscopy, beyond the simple
quark—antiquark configurations. In this talk we review some recent studies of
multiquark components in the charm sector and discuss in particular exotic
and non-exotic four-quark systems, both with pairwise and many-body forces.

More than thirty years after the so-called November revolution [1], heavy
hadron spectroscopy remains a challenge. The formerly comfortable world of
heavy mesons is shaken by new results [2]. This started in 2003 with the discovery
of the D?,(2317) and Ds;(2460) mesons in the open-charm sector. These positive-
parity states have masses lighter than expected from quark models, and also
smaller widths. Out of the many proposed explanations, the unquenching of the
naive quark model has been successful [3]. When a (¢q) pair occurs in a P-wave
but can couple to hadron pairs in S-wave, the latter configuration distorts the
(qq) picture. Therefore, the 0 and 17 (c5) states predicted above the DK (D*K)
thresholds couple to the continuum. This mixes meson—-meson components in the
wave function, an idea advocated long ago to explain the spectrum and properties
of light-scalar mesons [4].

This possibility of (¢snn) (n stands for a light quark) components in D} has
open the discussion about the presence of compact (ccnn) four-quark states in
the charmonium spectroscopy. Some states recently found in the hidden-charm
sector may fit in the simple quark-model description as (c¢) pairs (e.g., X (3940),
Y (3940), and Z(3940) as radially excited x.0, Xc1, and xc2), but others appear to
be more elusive, in particular X (3872), Z(4430)", and Y (4260). The debate on
the nature of these states is open, with special emphasis on the X (3872). Since it

*Article based on the presentations by J. Vijande and J.-M. Richard at the Fifth Workshop on
Critical Stability, Erice, Sicily, Received §fgbruary 2, 2009; Accepted February 9, 2009.



2 Four—quark stability

was first reported by Belle in 2003 [5], it has gradually become the flagship of the
new armada of states whose properties make their identification as traditional
(cc) states unlikely. An average mass of 3871.2 4+ 0.5 MeV and a narrow width of
less than 2.3 MeV have been reported for the X (3872). Note the vicinity of this
state to the DYD*? threshold, M (D" D*) = 3871.2 + 1.2 MeV. With respect
to the X (3872) quantum numbers, although some caution is still required until
better statistic is obtained [6], an isoscalar JP¢ = 1%+ state seems to be the
best candidate to describe the properties of the X (3872).

Another hot sector, at least for theorists, includes the (cecnn) states, which are
manifestly exotic with charm 2 and baryon number 0. Should they lie below the
threshold for dissociation into two ordinary hadrons, they would be narrow and
show up clearly in the experimental spectrum. There are already estimates of the
production rates indicating they could be produced and detected at present (and
future) experimental facilities [7]. The stability of such (QQqq) states has been
discussed since the early 80s [8], and there is a consensus that stability is reached
when the mass ratio M (Q)/m(q) becomes large enough. See, e.g., [9] for Refs.
This effect is also found in QCD sum rules [10]. This improved binding when
M /m increases is due to the same mechanism by which the hydrogen molecule
(p,p, e, e ) is much more bound than the positronium molecule (e, et e~ e™).
What matters is not the Coulomb character of the potential, but its property
to remain identical when the masses change. In quark physics, this property
is named flavour independence. It is reasonably well satisfied, with departures
mainly due to spin-dependent corrections.

The question is whether stability is already possible for (ccnn) or requires
heavier quarks. In Ref. [9], a marginal binding was found for a specific potential
for which earlier studies found no binding. This illustrates how difficult are such
four-body calculations.

In another recent investigation, the four-body Schrodinger equation has been
solved accurately using the hyperspherical harmonic (HH) formalism [11], with
two standard quark models containing a linear confinement supplemented by a
Fermi-Breit one-gluon exchange interaction (BCN), and also boson exchanges
between the light quarks (CQC). The model parameters were tuned in the meson
and baryon spectra. The results are given in Table 1, indicating the quantum
numbers of the state studied, the maximum value of the grand angular momen-
tum used in the HH expansion, K, and the energy difference between the mass
of the four-quark state, F;4, and that of the lowest two-meson threshold calcu-
lated with the same potential model, Ag. For the (ccnn) system we have also
calculated the radius of the four-quark state, Ry,, and its ratio to the sum of the
radii of the lowest two-meson threshold, Ag.

Besides trying to unravel the possible existence of bound (ccnn) and (cénn)
states one should aspire to understand whether it is possible to differentiate
between compact and molecular states. A molecular state may be understood
as a four-quark state containing a single physical two-meson component, i.e., a
unique singlet-singlet component in the colour wave function with well-defined
spin and isospin quantum numbers. One could expect these states not being
deeply bound and therefore having a size of the order of the two-meson system,
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Table 1. (cenn) (left) and (cciin) (right) results.

(cénn) cQC BCN (cenm) cQC

JPY(Ky) Ei Ap  Eiy  Ap || IJP(Kw) Ei Ap Ry Ag

)
07T (24) 3779 +34 3249 +75 |[ 007 (28) 4441 +15 0.624 > 1
0+~ (22) 4224 464 3778 +140 || 01F (24) 3861 —76 0.367 0.808
17+ (20) 3786 +41 3808 +153 || 02 (30) 4526 +27 0.987 >1
17 (22) 3728 +45 3319 +86 || 00~ (21) 3996 +59 0.739 > 1
2+ (26) 3774 429 3897 +23 || 017 (21) 3938 466 0.726 >1
2= (28) 4214 454 4328 432 || 027 (21) 4052 450 0.817 >1
177 (19) 3829 +84 3331 +157 |[ 107 (28) 3905 +50 0.817 > 1
17 (19) 3969 +97 3732 +94 || 117 (24) 3972 +33 0.752 > 1
0" (17) 3839 494 3760 +105 || 12+ (30) 4025 +22 0.879 > 1
0=~ (17) 3791 +108 3405 +172 || 10~ (21) 4004 +67 0.814 > 1
27t (21) 3820 475 3929 +55 || 117 (21) 4427 41 0516 0.876

(21) (21)

4054  +52 4092 452 127 4461 —38 0.465 0.766

i.e., Ar ~ 1. Opposite to that, a compact state may be characterized by its
involved structure on the colour space, its wave function containing different
singlet-singlet components with non negligible probabilities. One would expect
such states would be smaller than typical two-meson systems, i.e., Ar < 1. Let
us notice that while Ar > 1 but finite would correspond to a meson-meson

molecule Agr K= 6 would represent an unbound threshold.

As can be seen in Table 1 (left), in the case of the (cénn) there appear no
bound states for any set of quantum numbers, including the suggested assignment
for the X (3872). Independently of the quark—quark interaction and the quantum
numbers considered, the system evolves to a well separated two-meson state.
This is clearly seen in the energy, approaching the threshold made of two free
mesons, and also in the probabilities of the different colour components of the
wave function and in the radius [11]. Thus, in any manner one can claim for the
existence of a bound state for the (cénn) system.

A completely different behaviour is observed in Table 1 (right). Here, there
are some particular quantum numbers where the energy is quickly stabilized
below the theoretical threshold. Of particular interest is the 17 cciii state, whose
existence was predicted more than twenty years ago [12]. There is a remarkable
agreement on the existence of an isoscalar J© = 17 ccnn bound state using both
BCN and CQC models, if not in its properties. For the CQC model the predicted
binding energy is large, — 76 MeV, Ar < 1, and a very involved structure of
its wave function (the DD* component of its wave function only accounts for
the 50% of the total probability) what would fit into compact state. Opposite to
that, the BCN model predicts a rather small binding, —7 MeV, and Ag is larger
than 1, although finite. This state would naturally correspond to a meson-meson
molecule.

Concerning the other two states that are below threshold in Table 1 a more
careful analysis is required. T'wo-meson thresholds must be determined assuming
quantum number conservation withjy exactly the same scheme used in the four-
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quark calculation. Dealing with strongly interacting particles, the two-meson
states should have well defined total angular momentum, parity, and a prop-
erly symmetrized wave function if two identical mesons are considered (coupled
scheme). When noncentral forces are not taken into account, orbital angular mo-
mentum and total spin are also good quantum numbers (uncoupled scheme). We
would like to emphasize that although we use central forces in our calculation
the coupled scheme is the relevant one for observations, since a small non-central
component in the potential is enough to produce a sizeable effect on the width
of a state. These state are below the thresholds given by the uncoupled scheme
but above the ones given within the coupled scheme what discard these quantum
numbers as promising candidates for being observed experimentally.

Binding increases for larger M /m, but in the (bbnn) sector, there is no pro-
liferation of bound states. We have studied all ground states of (bbnn) using the
same interacting potentials as in the double-charm case. Only four bound states
have been found, with quantum numbers J(I) = 17(0) , 07(0), 37(1), and
17(0). The first three ones correspond to compact states.

Now, one could question the validity of the potential models used in these
estimates, or more precisely, of the extrapolation from mesons to baryons, and
then to multiquark states. For the short-range terms, in particular one-gluon
exchange, the additive rule

_ 3 () $(e)
V——Tﬁ )\Z ')\j ’U(Tij), (1)

is justified. Here v(r) is the quark—antiquark potential governing mesons, and ch)
is the colour generator. This is the non-Abelian version of the 1/r — > giq;/7i;
rule in atomic physics.

The confining part, however, is hardly of pairwise character. Several authors
have proposed that the linearly rising potential or of mesons (o is the string
tension) is generalised as

V = omin(dy + da + d3) , (2)

where d; is the distance from the i*® quark to a junction whose location is opti-
mised, exactly as in the famous problem of Fermat and Torricelli. Unfortunately,
the potential (2) differs little from the empirical ansatz (1) which here reduces
to o(r12 + r23 + 7r31) /2. Hence baryon spectroscopy cannot probe the three-body
character of confinement.

In the case of two quarks and two antiquarks, the confining potential reads

given by the minimum of a flip-flop potential V; and a Steiner-tree potential Vs,
sometimes named “butterfly” (see Fig. 1). In V}, each gluon flux goes from a
quark to an antiquark. The second term corresponds to a minimal Steiner tree,
with four terminals and two Steiner points. It is remarkable that this poten-
tial, which is supported by lattice QCD [13] is more attractive than the additive
ansatz. This is illustrated in Ref. §i], where the four-body problem is solved



J. Vijande 5

Figure 1. String model for four quarks: flip-flop (left) and Steiner-tree (right), an alternative
configuration that is favoured when the quarks (full disks) are well separated from the antiquarks

(open circles).

Table 2. Four—quark variational energy E4 of QQqq for the different confinement models (Vy
stands for the flip-flop interaction, Vi for the Steiner-tree potential, and V4 = min(Vy, Vs)),
compared to its threshold, and variational energy Ej of QQqq with the flip-flop model Vi,

compared to its threshold Ty as a function of the mass ratio.

M/m Eq Ty | E, T
Vi Vs V4 Vi

1 | 4.644 5886 4.639 4.676 | 4.644 4.676

2 | 4211 5300 4.206 4.248 | 4313 4.194

3 | 4.037 5031 4.032 4.086 | 4.193 3.959

4 3941 4868 3.936 3.998 | 4.117 3.811

5 |3.880 4.754 3.873 3.942 | 4060 3.705

with this confining term alone without short-range corrections. The results are
displayed in Table 2. This four-body calculation is rather involved, as the po-
tential at each point is obtained by a minimisation over several parameters. See
Ref. [14] for technical details about the models and the numerical techniques
used.

The results for the configurations (QQgq) and (QQqq) are shown in Table 2
as function of the heavy-to-light mass ratio. Clearly, as M /m increases, a deeper
binding is obtained for the flavour-exotic (QQGqG) system. For the hidden-flavour
(QQqq), however, the stability deteriorates, becoming unbound for M/m > 1.2.

More recently, the stability in this model has been demonstrated rigorously
in the limit of very large M /m. The first step is to show that

Vijo < \f (lz[ + yl) + |21 , (4)

in terms of the Jacobi variables, € = ro —r1, y =14 —r3 and z = (r3 + 74 —
r1 + 72)/2, so that the Hamiltonian describing the relative motion is bounded

by

2 2 2
H, = §;+aé§|m]+€s+a\§1y|+ﬁ
(w is the quark—antiquark reduced mass), which is ezactly solvable for its ground

state and gives binding for large M /m. Details will be published shortly [15].
To conclude, let us stress again the important difference between the two
physical systems which have been considered. While for the (ccnn), there are
two allowed physical decay channels, (cc) + (nn) and (cn) + (¢n), for the (ccnn)
only one physical system contains thq possible final states, (ci)+ (cn). Therefore,

+o|z|, (5)
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a (cenn) four-quark state will hardly present bound states, because the system
will reorder itself to become the lightest two-meson state, either (c¢é) + (nn) or
(cn)+(en). In other words, if the attraction is provided by the interaction between
particles ¢ and 7, it does also contribute to the asymptotic two-meson state. This
does not happen for the (ccnn) if the interaction between, for example, the two
quarks is strongly attractive. In this case there is no asymptotic two-meson state
including such attraction, and therefore the system might bind.

Once all possible (ccnn), (bbnn) and (cénn) quantum numbers have been
exhausted very few alternatives remain. If additional bound four-quark states or
higher configuration are experimentally found, then other mechanisms should be
at work, for instance based on diquarks [4, 16, 17].

Acknowledgement. This work has been partially funded by the Spanish Ministerio de Educacién
y Ciencia and EU FEDER under Contract No. FPA2007-65748, by Junta de Castilla y Leén
under Contract No. SA016A17, and by the Spanish Consolider-Ingenio 2010 Program CPAN
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Abstract.

It takes two nucleons to bind a A hyperon, and perhaps as many as three
nucleons to bind two A hyperons. Here I review few-body calculations which
consider the onset of binding in multi-strange hypernuclei, including = hy-
perons once the free-space strong-interaction conversion =N — AA becomes
Pauli forbidden in a A-abundant matter. Quasibound states of K mesons in
few-nucleon systems are also briefly discussed.

1 Introduction

The experimental information on hyperon interactions, with few exceptions, is
limited to single-A hypernuclei. Little is known on strangeness S = —2 hyper-
nuclei. The missing information is vital for extrapolating into strange hadronic
matter, for both finite systems and in bulk, and into neutron stars [1, 2]. Studying
the onset of nuclear binding for hyperons, in particular, is one of the most sen-
sitive means of deducing the strength of hyperon—nucleon and hyperon—hyperon
interactions. The onset of binding for A4 and AZ hypernuclei was reviewed at the
XVIIIth European Conference on Few-Body Problems in Physics [3]. This review
provides the starting point for the present discussion that hinges on few-body
hypernuclear systems. In addition to A and = hyperons, I will briefly discuss
also X hyperons and K mesons.

2 A hyperons

2.1 s-shell A and AA hypernuclei

Complete few-body calculations of the s-shell hypernuclei, for systems of nucleons
and A hyperons, with full account of coupled-channel effects due to the primary
AN — YN and AA — ZN mixings, were reported by Nemura et al. [4] using

*Article based on the presentation by A. Gal at the Fifth Workshop on Critical Stability, Erice,
Sicily, Received December 12, 2008; Acc%ed January 9, 2009.



2 Few-Body Hypernuclei

stochastic variational methods and phenomenological potentials based partly on
meson exchange models. The calculated spectra are shown in Fig. 1. In addition
to the well established single-A hypernuclei iH, ‘/11H — jllHe and aHe, bound
states are predicted for ,4H and ,3H - ,3He by fitting to ,$He, the only A4
hypernucleus established uniquely by experiment [5]. The calculated Baa( 4 1H)
is minute; given the uncertainties in the input and in the calculations, this system
could still prove unbound [6]. Note that the experimental evidence [7] for ,{H
has been challenged recently [8]. For ,3H and ,3He it is found that the primary
AN — X'N and the secondary =N — AX couplings enhance the primary AA— =N
mixing so that a fairly large = probability is obtained, even for a relatively weak
AA — ZEN coupling potential.

3
21| 02 4
3 4 4 5 5 6
1r 0.1'/\H /\/\H* /\H A/\H AHe /\/\I'|e ]
~ 0 0
2 1l -01~%3 | —— Pnz = 0.27% 1
() . Nz = 0.27%
p= A
= 21|02 M Pas=1.17% 1
Exp Calc Calc|
S 3|03 —| Exp  Cal —_— Pss= 0.05% 1
a|3 4 \ Exp Calc R
<h 5+ Py = 0.06% Calc T |
c|0 -6 Pas = 0.25% Pnz = 4.55% i) 1
T+ Pss = 0.00% Pas = 24% 2 b
g NN: Minnesota 006 B — %
-0 . PZZ= .06% N
YN: D216 cac  Exp
9+ YY:mNDg |

Figure 1. A and AA separation energies in s-shell hypernuclei, calculated by Nemura et al. [4]

using stochastic variational methods.

2.2 AA hypernuclei

Several few-body cluster calculations of AA hypernuclei in the neighborhood of
A/ﬁlHe have been reported. Two such calculations are depicted in Fig. 2. A nearly
linear correlation between AB44(,$He) and ABaa(,3H, ,5He) is shown on the
left-hand side, for Faddeev calculations using a variety of AA interactions [9].
Here,

> A-1
ABua(ihZ) = Baa(£h2) —2Ba(“ 1 2) (1)
where By( Af}lZ) is the AA separation energy of the hypernucleus A“}lZ and

BA((AXI)Z) is the (2J+1)-average of B, values for the (A/fl)Z hypernuclear core
levels. The roughly linear increase of B4 holds generally in three-body AAC
models (C standing for a cluster) over a wide range of values for the strength
parameter Vg, [9]. Given that AB(,$He) ~ 1 MeV, the figure demonstrates
that the I =1/2 , /51H - A/51He hypernuclei are particle stable. This conclusion is
confirmed by the calculation [4] shgwn in Fig. 1.
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Figure 2. AB4 values from Faddeev calculations [9] (left) and from three-body and four-body
cluster calculations [10] (right).

The right-hand side of Fig. 2 depicts AB 4 values for A = 7—10 in three-body
and four-body cluster variational calculations [10], normalizing the AA interac-
tion by requiring it to reproduce the well determined AB 44 value of A/GlHe within
the same calculations. The deviations from the value ABas ~ 1 MeV reflect
dynamical core polarization effects. Some information is available on AIXBe and
few neighboring AA hypernuclei. Although the associated AB44 values cannot
be uniquely assigned to specific AA hypernuclear states, acceptable assignments
do exist that make these values consistent with the scale of AB44 shown here.

3 X hyperons

A vast body of reported (K~,7n%) and (7, KT) spectra indicate a repulsive
X nuclear potential, with a substantial isospin dependence which for very light
nuclei may conspire in selected configurations to produce X hypernuclear qua-
sibound states, as shown on the left-hand side of Fig. 3 for 42He.1 These data
suggest that X hyperons do not bind in heavier nuclei.

A repulsive component of the X' nuclear potential is also revealed in X~ -atom
analyses of level shifts and widths, as shown on the right-hand side of Fig. 3. The
figure demonstrates that ReVy is attractive at low densities outside the nucleus,
changing into repulsion in the nuclear surface region, but well outside of the nu-
clear radius. Hence this transition is solidly substantiated by fitting to X~ -atom
data. The precise magnitude and shape of the repulsive component within the
nucleus is model dependent [13]. The inner repulsion bears interesting conse-
quences for the balance of strangeness in the inner crust of neutron stars [14],
primarily by delaying the appearance of X~ hyperons to higher densities, as
shown on the left-hand side of Fig. 4.

!The discovery of LHe, in K~ capture at rest, is due to R.S. Hayano et al.: Phys. Lett. B231,
355 (1989). 35
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Figure 3. Left: “He(K~,n%) spectra, as measured [11] and as calculated by Harada [12],
providing evidence for a He I = 1/2 quasibound state in the 7~ channel, with binding energy
Byt =4.440.34+1 MeV and width I" = 7.040.773:2 MeV. Right: ReVx— fitted to X~ atomic

data, for two potential models [13]. The half-density nuclear charge radius R, is indicated.

4 = hyperons

Very little is established experimentally on the interaction of = hyperons with
nuclei. Inclusive (K, K1) spectra on 2C [15] yield a moderately attractive po-
tential depth ReV= ~ —14 MeV when fitted near the =~ -hypernuclear threshold.
The most recent variant ESC04d of the Nijmegen YN potentials, adjusted to this
potential depth, gives rise to quasibound states in several light nuclear targets
that cope with the strong spin and isospin dependence in ESC04d, beginning
with “Li [16]. For such a shallow potential, =% hyperons do not bind to *He,
although =~ hyperons do bind owing to the Coulomb energy.

=" hyperons could become stabilized in multi-A hypernuclei once the decay
=N — AA, which releases &~ 25 MeV in free space, gets Pauli blocked. The onset
of Z binding would occur for _,He if Bzo(2,He) > 3 MeV [17], or for , [ He if
Bzo(2,He) > 1 MeV [18]. Particle stability for = hyperons becomes robust with
few more /s, even for as shallow =-nucleus potentials as discussed above. Fig. 4,
right-hand side, demonstrates that =s can be added to a core of 6Ni plus As,
reaching as high strangeness fraction as fg = —S/A = 0.7 while retaining particle
stability. This leads to the concept of Strange Hadronic Matter (SHM) consisting
of equal fractions of protons, neutrons, A, £° and =~ hyperons, with fg = 1,
as for Strange Quark Matter (SQM). Both SHM and SQM provide macroscopic
realizations of strangeness, but SHM is more plausible phenomenologically.

In a way of interim conclusions, few-body ‘strange’ systems provide a valuable
handle and means of extrapolation into SHM. Several day-1 experiments on =
hyperons and K mesons in nuclei are scheduled soon, at the high-intensity 50
GeV proton synchrotron in the J-PY}RC facility in Japan.
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Figure 4. Left: fractions of baryons and leptons in neutron star matter calculated in RMF
with weak Y'Y potentials [2]. Right: binding energy of 6Ni with added A and = hyperons as a

function of baryon number A [18].

5 Addendum: K mesons

Table 1. K~ pp binding energies & widths (MeV) calculated without KNN — YN

K NN single channel KNN — XN coupled channels
ATMS [20] AMD [21] Faddeev [22] Faddeev [23] variational [24]

B 48 17-23 50-70 60-95 40-80
I' 61 40-70 90-110 45-80 40-85

The K~ p interaction near threshold is dominated by the A(1405), a 7X res-
onance interpreted as a KN quasibound state. Some of the topical issues in K
nuclear physics, as reviewed in Ref. [19], are: (i) would K~ mesons form suffi-
ciently narrow quasibound states in nuclei? and (ii) could strangeness materialize
macroscopically in a K~ condensed phase rather than in SHM?

Next to A(1405), the lightest K nuclear state maximizing the strongly at-
tractive I = 0 KN interaction is [R’(NN)[:l]I:l/Q’JW:Of, loosely denoted K~ pp.
Results of few-body calculations for K ~pp are displayed in Table 1. The single-
channel calculations are variational, and the difference between the resulting
binding energies reflects the difference between the pole positions affecting the
I = 0 KN amplitude, whether at 1405 MeV [20] or at 1420 MeV [21]. In coupled-
channel calculations, the explicit use of the mX'N channel adds 20 +£ 5 MeV
with respect to single-channel calculations that use effective KN potentials. We
note that the K~ pp calculated widths are substantial, before even considering
KNN — YN decay widths which become substantial in denser systems [25].
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Abstract. This contribution reviews a number of applications of the ab initio
no-core shell model (NCSM) within nuclear physics and beyond. We will high-
light a nuclear-structure study of the A = 12 isobar using a chiral NN+3NF
interaction. In the spirit of this workshop we will also mention the new devel-
opment of the NCSM formalism to describe open channels and to approach
the problem of nuclear reactions. Finally, we will illustrate the universality
of the many-body problem by presenting the recent adaptation of the NCSM
effective-interaction approach to study the many-boson problem in an exter-
nal trapping potential with short-range interactions.

Introduction. A truly first-principles approach to the nuclear many-body
problem requires a nuclear Hamiltonian that is based on the underlying the-
ory of QCD. A candidate for providing the desired connection between QCD
and the low-energy nuclear physics sector is chiral perturbation theory (xPT),
see, e.g., the review by E. Epelbaum [1] and references therein. A very interest-
ing observation from xPT is that three-nucleon forces (3NF) appear naturally
already at the next-to-next-to-leading order of the expansion. This chiral 3NF
was recently implemented in nuclear many-body calculations as will be discussed
in the next section.

Regardless of its origin, high-precision nuclear Hamiltonians are very difficult
to implement when solving the nuclear many-body problem. At this workshop
we have heard about a number of methods that are available to solve the few-
body problem (A = 3 —4) to basically numerical precision. For more than four
particles there are only a handful of methods available when using modern,
realistic interactions. Much effort has been spent in studying different unitary
transformations of the interaction to make it tractable for actual many-body

* Article based on the presentation by C. Forssén at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received December 12, 2008; Accepted December 20, 2008
** E-mail address: christian.forssen@chalmgg.se



2 The ab initio no-core shell model

calculations. In particular, the ab initio no-core shell model (NCSM) is usually
combined with the cluster-approximated, Lee-Suzuki transformation to generate
effective interactions, see e.g., Refs. [2]. In short, the NCSM is a general approach
for studying strongly interacting, quantum many-body systems. It’s a matrix
diagonalization technique to solve the translational invariant A-body problem in
a finite harmonic oscillator basis. A particularly nice feature of the method is
the flexibility of the harmonic-oscillator model space that implies basically no
restrictions regarding the choice of Hamiltonian. Specifically, the NCSM method
allows to test the modern yPT interactions in many-body calculations.

Recent NCSM Results. The A = 12 nuclear systems provide a challenge for
modern ab initio methods. The systems can potentially act as new benchmarks as
relevant observables allow for sensitive tests of the nuclear Hamiltonians and the
computed wave functions. The current level of our experimental understanding of
12C includes two bound states and the triple-alpha threshold at 7.3 MeV. Above
this the picture becomes very complicated due to overlapping broad resonances.
A central question concerns the possible existence of broad 0™ and 2" resonances
in this region. An important concept that attracts much theoretical interest
is the interplay between triple-alpha and neutron-proton degrees of freedom.
Studies of ground- and excited states in A = 12 systems are possible within
the NCSM. These studies are particularly interesting since the chiral 3NF was
recently implemented by P. Navratil et al. [3]. The inclusion of these terms in the
NCSM gives the correct ordering of T' = 1 states with the isobaric analogue of the
128 and N ground states being the lowest. It also provides the correct ordering
of the 17 and 47 states although it over-corrects the spin-orbit strength [3]. Still,
regardless of the interaction being used, these results demonstrate a limitation
of the NCSM method. Whereas the spectrum and properties of shell-model like
states are reproduced very nicely, states that are known to exhibit a high degree
of clusterization are missing from the low-energy spectrum. They typically end
up at much higher excitation energy and are far from converged.

Open quantum systems. A long-term vision for nuclear theory is to achieve a
unified picture of the nuclear many-body system, including both bound and con-
tinuum states and the transitions between them. Preferably this picture should
be grounded in the fundamental interactions between the constituent nucleons.
In addition, the separation of scales known to occur in nuclear systems, should
be properly described. This requires the simultaneous modeling of small-scale
many-body degrees of freedom and large-scale few-body correlations. A possible
route towards achieving such a microscopic picture of open channels and nu-
clear reactions is explored at Livermore by combining the NCSM formalism with
resonating group methods (RGM) [4]. In the RGM approach the many-body
wave function is decomposed into contributions from various channels that are
distinguished by their different arrangement of the nucleons into clusters. By
defining a set of antisymmetrized cluster basis functions, and diagonalizing the
Hamiltonian in this space, one obtains a non-local, coupled-channels Schrodinger
Equation for the relative motion gf) the clusters in the different channels. In
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Ref. [4] this approach was implemented and tested for certain A = 4 — 5 low-
energy, single-nucleon scattering problems. In particular, n+*He scattering at
low energies represents a convenient training ground for many-body scattering
calculations. There is no A = 5 bound state, and single-channel scattering is
valid up to rather high energies. There is a sharp, low-energy resonance in the
3/2~ channel, and a broader, high-energy resonance in the 1/2~ channel. Scat-
tering in the s-wave channel is non-resonant but obviously depends critically on
proper antisymmetrization. Phase shifts for both n+*He and p+*He scattering,
calculated in the NCSM/RGM approach, are presented in Fig. 1. The method

A B e o o e o o e e
n+ o ARSI pt+a]
++++++ 1

+ + 4

0 4 8 12 0 4 8 12 16
Ekin [MeV] Ekin [MeV]

Figure 1. Phase shifts for n-a (left panels) and p-a (right panels) scattering. Recent
NCSM/RGM results compared to an R-matrix analysis of experimental data. From Ref. [4].

shows very good convergence behavior, but it’s clear that the position and widths
of the p-wave resonances depend sensitively on the interaction model.

Effective Interaction Approach to the Many-Boson Problem. The
emerging field of cold-atom physics has proven to be a very rich arena of research
for few- and many-body physicists. Particle numbers can be varied, the inter-
action strength can in many cases be tuned through Feshbach resonances, and
many different properties can be studied very cleanly in the laboratory. Nuclear
physics techniques and tools have proven to be very useful to describe the physics
of these systems. With trapping potentials that are very close to harmonic, the
NCSM should be a perfect method. We recently adapted the NCSM formalism
to describe a two-dimensional system of strongly interacting bosons [5]. A purely
repulsive, short-ranged interaction was modeled with a Gaussian potential. Note
that the different statistics of the bosonic many-body system required a complete
rewrite of the NCSM suite of codes.

The success of the NCSM effective-interaction approach is demonstrated in
Fig. 2. Ground- and excited-state energies are presented for a system of nine
atoms. The NCSM results are compared to the much slower convergence of
the standard configuration interaction (CI) method. The figure illustrates that
stronger correlations within the system are obtained when increasing the in-
teraction strength (right panel). Ingthis case, the computed energies still show
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Figure 2. Energies for a system of nine bosons and total angular momentum L = 0, for different
many-body space cutoffs (NMmax). Repulsive Gaussian interactions with range ¢ = 0.1 and two
different strengths (g) are used (oscillator units). The blue-dashed (red-solid) curves correspond

to standard CI (effective interaction approach) calculations. From Ref. [5].

a slow decrease with increasing model space (Mpax). Still, in comparison, the
energies obtained from the standard CI calculations show a much slower con-
vergence. These results represent an important first step of our new approach.
Three-dimensional systems and higher particle numbers should also be within
reach for future studies.

Conclusion. Recent applications of the ab initio NCSM within nuclear physics
and beyond has been reviewed. In particular, we have demonstrated the study
of chiral 3NF Hamiltonians in the p-shell, the treatment of open channels using
the NCSM/RGM approach, and the effective-interaction approach to the many-
boson problem.
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Abstract. It is not possible to reproduce both the three- and four-nucleon
binding energies using the available two-nucleon potentials. This is one man-
ifestation of the need to include a three-nucleon force in the corresponding
Hamiltonian. In this paper we will analyze the capability of a three-nucleon
force model to describe not only the aforementioned binding energies but also
some N — d low energy scattering observables.

1 Introduction

The realistic presently available NN potentials reproduce the experimental NN
scattering data up to energies of 350 MeV with a x? per datum close to 1. How-
ever, the use of these potentials for a study of the three- and four-nucleon bound
and scattering states gives a x? per datum very much larger than 1 (see for ex-
ample Ref.[1]). In order to improve that situation, different three-nucleon force
(TNF) models have been derived: widely used in the literature are the Tucson-
Melbourne (TM) and the Urbana IX (URIX) models [2, 3]. More recently, TNF
models have been derived [4] based on chiral effective field theory at next-to-
next-to-leading order. The local version of this interaction (hereafter referred as
N2LO) can be found in Ref. [5]. All these models contain a certain number of
parameters that are fixed to reproduce the three- and four-nucleon binding en-
ergies. In this paper we will analyze the quality of this agreement, the prediction
for the doublet n — d scattering length 2a,4 and some polarization observables
in p — d scattering. For this purpose we use the hyperspherical harmonic (HH)
method (for a recent review see Ref. [6]).

2 Binding energies and scattering lengths for A = 3,4

From the results obtained in Ref. [6], we report in Table 1 the triton and “He
binding energies, and the doublet n—d scattering length 2a,,4. These results were

*Article based on the presentation by A. Kievsky at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received January 14, 2009;48ccepted January 29, 2009.



2 Analysis of the three-nucleon force in A = 3,4 systems

obtained using the AV18 or the N3LO-Idaho two-nucleon potentials together
with the AV18+URIX and N3LO-Idaho+N2LO TNF models. The results are
compared to the experimental values also reported in the table. Worthy of notice
is the recent very accurate datum for 2a,q [9].

Table 1. The triton and *He binding energies B (MeV), and doublet scattering length *anq (fm)
calculated using the AV18 and the N3LO-Idaho two-nucleon potentials, and the AV18+URIX
and N3LO-Idaho+N2LO two- and three-nucleon interactions.

Potential B(*H) B(*He) Z2a,q
AV18 7.624 24.22  1.258
N3LO-Idaho 7.854  25.38  1.100
AV18+URIX 8.479  28.48  0.578
N3LO-Idaho+N2LO 8.474 2837  0.675
Exp. 8.482 2830  0.645+0.00340.007

From the table we may observe that only the results obtained using an inter-
action model that includes a TNF are close to the corresponding experimental
values. Moreover, the triton binding energy is well reproduced by choosing an
appropriate value for the strength of the TNF. However this is not true for the
4He binding energy and the scattering length 2a,q, especially in the case of the
AV18+URIX model.

The URIX potential has two free parameters which can be conveniently fixed.
The first one, called A;W, is related to the strength of the term produced by a 27-
exchange with an intermediate A excitation. This term is constructed from the
sum of two contributions with a relative strength Dfnw of 1/4 and proves to be
attractive. The second constant, called Ag, fixes the strength of a purely central
repulsive term introduced to compensate the attraction of the previous term,
which by itself would produce a large overbinding in infinite nuclear matter. The
original values of these parameters, AYW = —0.0293 MeV, A = 0.0048 MeV
and DIW = 0.25, has been fixed using the URIX with the AV18 two-nucleon
potential. The corresponding results for the quantities of interest are given in
Table 1. In order to improve these results we have varied the constants Agﬂw,
Ap and the relative strength DEW. For a given value of AZW | we have varied
Ag and DEW to reproduce B(*H) and 2a,4. Then we have calculated B(*He).
Surprisingly this last result turned out to be quite close to the experimental
value. The results of the analysis are given in Table 2 where five sets of values
which reproduce the mentioned quantities are reported.

From the table we observe that the values considered for DQP;W and Ag are
quite far from the original ones. In particular, the relative strength DEW differs
from the original value of 1/4. To extend the analysis further, the obtained set
of values can be used to study p — d scattering at low energy. In Fig 1 the
p — d analyzing power A, at Ej,, = 3 MeV is shown in correspondence to the
original AV18+URIX model (solid line) and the first three sets of values given
in Table 2 and indicated by (a), (b) and (c). As can be seen, the results for the
models (a), (b) and (c) are very close to each other. The same is true for the
last two choices of Table 2; howevgy, corresponding results are not shown for



A. Kievsky 3

Table 2. Different choices for the parameters of the URIX potential and the corresponding
triton and *He binding energies (in MeV) and scattering length 2a,q (in fm), calculated with
the AV184+URIX potential.

APW(MeV) DIV Ar(MeV) B(H) B(*He) Zang

-0.0200 1.625 0.0176 8.474  28.33 0.644
-0.0250 1.25 0.0182 8.474  28.34 0.644
-0.0293 1.00 0.0181 8.474  28.33 0.643
-0.0350 0.8125 0.0191 8.474  28.33 0.645
-0.0400 0.6875 0.0198 8.474  28.38 0.645

the sake of clarity. Besides the usual underprediction of the observable given by
the AV18+URIX model, we observe a substantially worse description when the
new sets of constants are used. In Fig. 2 the tensor analyzing power T5; is shown
corresponding to the same choice of parameters. The original AV184+URIX model
overpredicts the minimum close to 90°. Again the curves listed (a), (b) and (c)
nearly overlap and there is a substantially worse description of the observable
between 40° and 120°
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Figure 1. The p — d analyzing power A, for the models discussed in the text. Experimental
data are from Ref. [10].

3 Conclusions

Stimulated by the fact that the commonly used TNF models do not reproduce
simultaneously the triton and *He binding energy and the n—d doublet scattering
length, we have analyzed possible yxodifications of the AV18+URIX potential.
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Figure 2. The d—p analyzing power T, for for the models discussed in the text. Experimental
data are from Ref. [10].

We have varied the original parameter values of this model so as to improve
the description of these quantities. Five choices of the parameters have been
considered. However, the new models worsen the description of the shown p — d
polarization observables at low energies. Further work on this problem is in
progress.
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Abstract. The Kohn variational principle and the hyperspherical harmonics
technique are applied to study the n —3H elastic scattering at low energies. In
this contribution the first results obtained using a non-local realistic interac-
tion derived from the chiral perturbation theory are reported. They are found
to be in good agreement with those obtained solving the Faddeev-Yakubovsky
equations. The calculated total and differential cross sections are compared
with the available experimental data. The effect of including a three-nucleon
interaction is also discussed.

1 Introduction

In the last few years the scattering of nucleons by deuterons has been the subject
of a large number of investigations. This scattering problem is in fact a very
useful tool for testing the accuracy of our present knowledge of the nucleon—
nucleon (NN) and three nucleon (3N) interactions. Noticeable progress has been
achieved, but a number of relevant disagreements between theoretical predictions
and experimental results still remains to be solved [1, 2].

It is therefore of interest to extend the above mentioned analysis to four
nucleon scattering processes. In this case, an important goal for both theoretical
and experimental analysis is to reach a precision comparable to that achieved in
the N —d case. This is particularly challenging from the theoretical point of view,
since the study of A = 4 systems is noticeably more complicated than the A = 3
one. Recently, accurate calculations of four-body scattering observables have
been achieved in the framework of the Faddeev-Yakubovsky (FY) equations [3],
solved in momentum space, and treating the long-range Coulomb interaction
using the screening-renormalization method [4, 5].

In this contribution, the four-body scattering problem is solved using the
Kohn variational method and expanding the internal part of the wave function

* Article based on the presentation by M. Viviani at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received December 12, 2008; Accepted January 5, 2009.
** E-mail address: michele.viviani@pi.infn.if7



2 Neutron-triton elastic scattering

in terms of the hyperspherical harmonic (HH) functions. Previous applications
of this method [6, 7, 8] were limited so far to consider only local potentials, as
the Argonne V18 [9] NN potential. Recently, for bound-states, the HH method
has been extended to treat also non-local potentials, given either in coordinate-
or momentum-space [10]. Here, we report the first application of the HH method
to the four-body scattering problem with non-local potentials.

The potential used in this paper is the N3LO-Idaho model by Entem &
Machleidt [11], with cutoff A = 500 MeV. This potential has been derived using
an effective field theory approach and the chiral perturbation theory up to next-
to-next-to-next-to-leading order. We have also performed calculations by adding
to the N3LO-Idaho potential a 3N interaction, derived at next-to-next-to leading
order (N2LO) in Ref. [12] (N3LO-Idaho/N2LO interaction model). The two free
parameters in this N2LO 3N potential have been chosen from the combination
that reproduces the A = 3,4 binding energies [12]. The development of a 3N
interaction including N3LO contribution is still under progress [13].

This paper is organized as follows. In Section 2, a comparison between HH and
FY calculations is reported. We have performed this comparison for the N3LO-
Idaho potential for incident neutron energy F, = 4 MeV. Finally, in Section 3,
the theoretical calculations are compared with the available experimental data.

2 Comparison between HH and FY results

The calculated phase-shift and mixing angle parameters for n — >H elastic scat-
tering at E, = 4 MeV using the N3LO-Idaho potential are reported in Table 1.
The values reported in the columns labeled HH have been obtained using the
HH expansion and the Kohn variational principle, whereas those reported in the
columns labeled FY by solving the FY equations [4]. As can be seen, there is a
good overall agreement between the results of the two calculations.

Table 1. Phase-shift and mixing angle parameters for n — 3H elastic scattering at incident
neutron energy E, = 4 MeV calculated using the N3LO-Idaho potential. The values reported
in the columns labeled HH have been obtained using the HH expansion and the Kohn variational

principle, whereas those reported in the columns labeled FY by solving the FY equations [4].

Phase-shift HH FY Phase-shift HH FY
1S, —69.3 —69.1 | 3P, 23.2 23.3
ECH —614 —612 | 1P 22.7 225
3Dy —-1.14 —-1.10 | 3P 444 445
€ 0.77 0.80 |e 9.80 9.64
1Dy —-1.72 —-1.90 |3P; 48.4 48.7
3Dy —-0.94 —-1.01 |3F 0.07 0.09
€ 274 281 |e 1.24 1.26
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3 Results

The preliminary results for the n — 3H total cross section calculated with the
considered potential models are reported in Figure 1. As already known, the
calculated cross section with the AV18 potential overpredicts the experimental
data at low energies, and is well under the data in the peak region [8, 4]. The
problem at low energies is cured when the Urbana-IX 3N force [14] is consid-
ered [8]. In the peak region the inclusion of this 3N force slightly decreases the
cross section, increasing the disagreement with the data. On the other hands,
using the N3LO-Idaho a better agreement with experimental data is found [4].
Including the N2LO 3N force, there is now a perfect agreement at low energy
(in particular, in the minimum around E,, = 1 MeV). Also in the peak region a
slight better agreement is observed. The origin of the remaining discrepancy is
unclear, but it could be related to parts of 3N interaction not yet considered.
The quality of the agreement can be also seen by comparing the theoretical
and experimental differential cross sections, avaliable at £, = 1, 2, and 3.5 MeV.

3 T T T T T TT T T T T T TTI

— N3LO-ldaho
- |[---- N3LO-Idaho/N2LO |
— AV18

0 | | IIIIII| | | N I I I |
0 1 10

E, [MeV]

Figure 1. n — *H total cross sections calculated with the AV18 (thick solid line), N3LO-Idaho
(solid line), and the N3LO-Idaho/N2LO (dashed line) as function of the incident neutron energy
E,. The experimental data are form Ref. [15].
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Figure 2. n — *H differential cross sections calculated with the N3LO-Idaho (solid line) and
the N3LO-Idaho/N2LO (dashed line) interaction models for three different incident neutron

energies. The experimental data are from Ref. [16].
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Abstract. In this paper we investigate the feasibility of employing the Hy-
perspherical Adiabatic (HA) basis set to describe continuum states of the
Helium trimer molecule.

1 Introduction

The Helium trimer molecule (*Hes) has recently attracted considerable scien-
tific interest. The peculiar features of the He-He potential, that is, its extremely
shallow well associated to a very strong hard core, make the Helium dimer the
largest and weakliest bound homonuclear diatomic molecule known in Nature.
For the same reasons theoretical investigations of the trimer are computationally
challenging, and the Helium trimer has been used in recent years also as a bench-
mark system for testing different numerical approaches. Most studies addressed
the discrete part of the spectrum (see Ref. [1] and references therein), with a
particular attention to investigating the Efimov nature of the excited state, but
some have also investigated the low-energy part of the continuum [1, 2, 3].

This study represents the continuation of our previous work [4] on the ap-
plication of the Hyperspherical Adiabatic (HA) method to study the continuum
part of the energy spectrum for a three-body system. The HA expansion has
found many applications in different fields of few-body physics, from atomic to
molecular and nuclear physics. Its main advantage is the possibility to build
an optimum basis set by solving a parametric Schrodinger like equation, and
allowing for the original Hamiltonian problem to be solved with a two-step
procedure. However, most applications were restricted to study bound states,
and very few groups have applied to the continuum. Recently, Suno and Esry
[1] have investigated the low energy continuum of the Helium trimer using the
HA method. The main problem associated with this study is that, contrary to

*Article based on the presentation by P. Barletta at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received December 12, 200§;] Accepted January 16, 2009.



2 Scattering states of three-body systems with the Hypersherical Adiabatic method

the bound state case, for the continuum a large number of adiabatic channels is
necessary to reach convergence, and the associated system of one-dimensional
coupled differential equations becomes numerically more difficult to solve.

2 Method, Results and Conclusions

The set of hyperspherical coordinates {p, 2} is defined in a standard fashion (see
for instance Ref. [4] for details) for a system of three identical particles of mass
m (h%/m = 43.281307 K a3). The system wavefunction is expanded in terms of
the HA basis {®, }:

7= "u,(p)®y(p, 2). (1)

The HA basis is constructed by means of an expansion on Hyperspherical Har-
monics (HH). The notorious difficulty in obtaining the HA basis at large p is
overcome by solving numerically the asymptotic equation [5] in the asymptotic
region (p > 150 ag ). The HA basis elements were then represented by using up
to 900 HH in the core region and 5000 HH in the asymptotic region, including
the symmetrized (over particle permutation) angular channels (0,0), (2,2) and
(4,4) (where the pair (I,!,) indicate the partial angular momentum on the x
and y Jacobi coordinate, see Ref. [6] for more details). The HA functions and
related adiabatic potentials were then calculated on a non-uniform hyperradial
grid of 927 points spanning the range 0 — 10000 ag.

The Hes potential energy surface can be effectively modelled as a sum of
three pairwise interactions, as three-body effects are minimal. However, due to
the weakness of the He-He interaction, the determination of He-He potential has
proved challenging to quantum chemists, and there are many different potentials
available in the literature. In this work we have used the LM2M2 potential, and
the SAPT potential.

The next step is the determination of the set of functions {u,(p)}, and of
the scattering observable of interest. As a check of the goodness of HA basis
constructed, we have first performed a bound state calculation. The results are
presented in Table 1. The pattern of convergence as a function of number of
adiabatic channels N4 is relatively slow, possibly due to the very strong repulsive
core in the He-He interaction. The results obtained are in general agreement with
the literature, as it can be seen from the last rows of the table. For simplicity,
not all literature results are cited in the table.

In Ref. [4] two different approaches were investigated to determine the scat-
tering observables. In the first, indicated as “method HA1”, the system wave-
function for continuum energy was supplemented by a term containing explicitly
the scattering function. The second, “method HA2”, is a direct solution of the hy-
perradial system of equations with the appropriate boundary conditions. Both
approaches showed, when tested on the three nucleon system, a poor conver-
gence pattern.Method HA2 was thus preferred in this work, as method HA1
would probably require an intractably large basis, consequence of its unitary
correspondence to a HH expansiongoturthermore, we have restricted the wave-
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function’s expansion to the lowest adiabatic channels. The boundary conditions
to be imposed to the hyperradial functions u, (p) are the following. As p — oo the
lowest adiabatic function &1 (p, £2) — p>/2¢4(r), with ¢4 the dimer wave function
[4]. Therefore, in a zero energy process, the wave function ¥ — ¢4(1 — a142/y),
and, accordingly, the function u; at large p is

5/2

P ur(p) ~ p — as (2)

and all the other hyperradial functions wu,(p) — 0, for v > 1. Due to the finite
range of the dimer wave function, at very large values of the hyperradius we
have p — \/%y, with y the relative distance between the dimer and the third
particle. Therefore, as is related to the 1+ 2 scattering length as aj19 = \/ﬂas.
The approximation of retaining the lowest adiabatic curves in the wave function
expansion yields results very close to the converged values, as shown in Table
2. For the sake of comparison, in the table the results using different techniques
are also reported. However, a full convergence for the scattering length requires
a large number of HA channels, and it is difficult to achieve. Also the set of
hyperradial equations becomes more difficult to be solved than for the bound
state case [4]. How to obtain a satisfactory and converged solution to the set of
hyperradial differential equation is still an open problem .

Table 1. Convergence of the energies of the two “Hes bound states, in mK, in terms of Ny,
for two different He-He potentials. The results of the CHH method of Ref. [6] and the HA

expansion of Refs. [7, 8], are reported

LM2M?2 SAPT?2
Ny Eo Eq Eo Eq
1 -112.45 -2.114 -112.45 -2.663

-131.37 -2.258 -131.37 -2.825
-125.35 -2.269 -132.77 -2.837
12 | -125.83 -2.272 -133.27 -2.841
16 |-126.04 -2.274 -133.49 -2.842
20 | -126.15 -2.274 -133.61 -2.843
Ref. [6] | -126.4 -2.265 -135.1 -2.8%5
Ref. [7] | -125.2  -2.269

Ref. [8] | -125.2  -2.26

Q0 W~

Table 2. Convergence of the atom-diatom scattering length, in A, in terms of N4 for two

different He-He potentials. The results of Refs. [2, 3], using the Faddeev method, are reported.

Ny 1 4 5 20 | Ref. [3] Ref. [2]
LM2M2 | 14922 12210 121.39 12091 | 1187 1154
SAPT2 | 140.18 115.54 114.88 113.07 - 123.1
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For example, one possibility is to employ a DVR representation for the wave-
function [9]. In Fig. 1 the lowest hyperradial functions u;(p) are given for the
excited trimer state and for the zero energy state, showing strong similarities
between the two states.
In conclusion, the feasibility of the HA approach to calculate low-energy
scattering observables was tested on the *Hes system, which is challenging due
to the large basis set required. We have not achieved a full convergence for
the He+Hes scattering length, and further work is required in order to find a
satisfactory way of solving the large system of coupled hyperradial equations, in
the continuum, derived from the implementation of the HA approach.

Figure 1. Hyperradial function u;
for the excited trimer state (dashed
line) and zero energy state (dots
and continuum line). The excited
state function has been rescaled
to coincide with the the zero en-
ergy function at p = 23 ag. The
dots represent the DVR ampli-
tudes, whereas the continuum line
is the back-transformed function
(see Ref. [9]).

Kolganova, E.A., Motovilov, A K., Sandhas, W. : Few-Body Syst. 38, 205 (2006) .
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Abstract. We propose to use the hyperspherical harmonics (HH) basis to
solve the A-body system problem without explicit symmetrization or anti-
symmetrization of the basis functions as required by the statistic of the sys-
tem. Therefore, the HH basis set is expressed with respect to a given ordering
of the A particles. However, after diagonalization, the eigenvectors reflect the
symmetries of the Hamiltonian, and it is possible to identify the physical
states having the expected symmetry under particle permutation. As an ex-
ample we study the case of four particles interacting through a short-range
spin-dependent interaction and the Coulomb potential.

1 Introduction

A common method for solving the Schrédinger equation for few interacting parti-
cles is the variational method, and a widespread choice of basis set is represented
by the HH basis. This basis allows for a simple treatment of the kinetic energy,
and provides a systematic way of constructing the basis for a general number of
particles (see Ref. [?] and references therein). The major problem, when using
the HH basis, is the rapidly growing dimension of the basis as the number of
particles is increased. In the case of a system formed by identical particles, it is
common to use combinations of HH functions having the corresponding permu-
tational symmetry. They represent a subset of the basis which in general has a
much lower dimension than the complete basis [?, ?]. The problem, however, is
the increasing difficulty to carry out the symmetrization procedure as the number
of particle increases [?].

* Article based on the presentation by M. Gattobigio at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received January 15, 2009; Accepted January 31, 2009.
** E-mail address: mario.gattobigioQinln.cnrs.fr
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2 Non symmetrized basis function for identical particles

The HH functions do not have well defined properties under particle permu-
tation. They depend of the particular choice of Jacobi coordinates and of the
hyperangular coordinates used to define the HH functions. Changing the order-
ing of the particles also defines a new set of Jacobi coordinates and, thus, new
HH functions.

In the present paper, we propose to use the HH basis without prior sym-
metrization procedure. We loose the advantage of a reduced Hilbert space; how-
ever, we gain in simplicity in the calculation of the matrix elements. By including
all HH basis elements up to a certain grand angular momentum K, the diag-
onalization of the Hamiltonian matrix will produce eigenvectors reflecting its
symmetries. Therefore, it is possible to identify the eigenvectors with the desired
symmetry, and the corresponding eigenvalues are variational estimates of the
energies of the physical states. The disadvantage of this method lies in the large
dimension of the matrices to be diagonalized. However, different techniques are
available to treat (at least partially) this problem.

Following a previous study of the A = 3,4 systems interacting through a
short-range potential supplemented by the Coulomb interaction [?], we analyze
the case of a spin-dependent potential. Note that the method allows for a simple
treatment of symmetry-breaking terms, such as different particle masses, or the
Coulomb interaction between a particle pair.

The paper is organized as follows: in Section 77 we fix the notation introduc-
ing the Jacobi coordinates, the HH basis set, and the potential basis (PB). In
Section 77 we show how to use the PB to calculate the potential energy. In Sec-
tion 7?7 we apply our method to Volkov potential, for A = 4 particles, with and
without the Coulomb interaction, and to a spin-dependent Volkov-like potential.
In Section 7?7 we draw some conclusions.

2 The HH functions and the potential basis

We briefly review the main properties of the HH functions and we refer to Refs. [?,
?] for the full details. From a particular ordering of the particles, we can define
a set of Jacobi coordinates x1,...,xy, and the corresponding hyperspherical
coordinates, p, 2y = (Z1,...,EN,P2,...,¢n). The HH functions, coupled to a
given angular momentum LM, are defined as

N
Vi) = WG s.ovyen] (TIPS ] o)
LM

j=2

with [K] the set of quantum numbers L, M,[1,...,INn_1,n2,...,nn plus N — 2
intermediate [-values, and the K defined as K; = 7_,(l; +2n;) Iy = L,ny =
0,K=Kn.U )Péé;Kj ~*(¢;) is an hyperspherical polynomial. With the above defi-
nition, the HH functions are eigenvectors of the grand angular operator A% (£2y),
(A% (2N)+ K (K +3N —2)]V k) (£25) = 0, with K the grand angular momentum
quantum number.

The PB elements Péﬁ_l(ﬂm) form a subset of the HH basis, namely the

one which satisfies A?\,_I(QN_l)Péﬁl(ng) = 0, where the Jacobi variables are
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xy, ..., Ty = r9 — 11, and the hyperspherical variables are split into 2y =
(2N_1,ZN,0N), With 212 = (Zn,dn), and (n,l,m) = (nN7L M). One can
similarly define the PB depending on a generic pair (i, j) as PQn +Z(Q ), and a

very useful property is that we can express it as a combination of HH functions
defined in the reference set with the same grand angular momentum

Poi(2) = Y M0, (07) Vit (), (2)
[K'=2n+I]

where the coefficients (¥ )C”}’(l,](goij ) are known for each value of K and A. The

[

PB can be used to expand a generic function depending on the pair (i,j). In
particular the two-particle potential, can be expanded in the PB as

Z anm 2n+l('Q ) (3)
nlm

where the V1, (p) are the hyperradial multipoles.

3 The potential energy in term of HH functions

Once we have introduced the PB and its properties, we can use it to express the
full potential on HH functions. Let us consider, for concreteness, a spin-dependent
potential of the form

V(i,5) =VW(rij) + Vo (rij) oi - 0;. (4)

Using Eq. (??7) to expand the central parts of the potential on PB basis, and
Eq. (?7?) to rotate the PB on the reference permutation, we obtain (n = K/2)

Vi) =X (W0 + 0o 0;) V@ @] 6
[K] b=0

where, due to the central nature of the potential, [ = 0, m = 0, and they have
been omitted in the notation. The spherical harmonics of the HH’s have been
coupled to give total zero angular momentum. The total potential is the sum
over the pairs, and we obtain

V=3 V) Z(vnw<p>®gn< L+ V()0 3 0 (@)(0v0,)) (0

1<J i<j

where we have defined the matrices

Gu(2)= > > Mcry |:y[K (QN)] ; (7)

[K=2n] i<j L=0
and
Gi) = Y <N>cﬁq<w>[y[m<mv>] | ®)
[K=2n] L=0

We have written the expressions as an explicit tensor-product form. This sim-
plifies the matrix-vector product used to diagonalize the matrix by iterative
methods.

o7



4 Non symmetrized basis function for identical particles

4 Application to A =4
To solve the four-body problem we introduce the following basis set

m!

plmK]o) = (s [

L) (Bp) e ﬁﬂ/?)ym Vo), (9)

where L (ﬂp) is a Laguerre polynomial with o = 8 and 3 a variational non-
linear parameter, and |o) = |s152(s12)8354(834); s*°'s'°) is the total spin state,
obtained by coupling the four spins s; = 1/2. The kinetic-energy matrix is easily
calculated within this basis set

’ n o’ 5262 (1) ()
(m' K o[ T|m[K] o) = —— (T, = K(K+3N =2)T,00, )11 0070  (10)
with

1 m/! m! o
70 = s / o L)
mme g + (a+m)\ (a+m)! Jy e e Ly (@)

x [(_ a+2m )L(a>( ) + m;aLﬁjll(x)(l_(gmp)} )

2z 22

/1 | o0
T? = T e 2 e de L% (x) iz L), (12)
(a+mHV (a+m)! Jy x

and the kinetic energy matrix displays a tensor-product form too.

In the following we fix the value of the nucleon mass such that h?/m =
41.47 Mev fm™2 and we introduce two different potentials: (i) the spin-
independent Volkov potential (V7 (r) = 0); (ii) a modified version of the Volkov
potential including a spin-dependent term.

In the first case we have

VWi(r)=E e /B L By et/ (13)

with F; = 144.86 MeV, R; = 0.82 fm, Fy = —83.34 MeV, and Ry = 1.6 fm.
The results are given in Table ??7. The convergence of the ground-state energy
Ejy is shown as a function of the grand angular momentum K. The non-linear
parameter has been fixed 8 = 2, and the quantum number m = 25 is such that
the convergence has been reached with respect to this quantum number for each
value of K. For the sake of comparison, we also report the ground state energy
obtained using the stochastic variational method (SVM) [?], the shell model with
HH basis (SMHH) [?], and the symmetrlzed HH basis [?]. On the same table, we
calculate the ground state energy E0 in presence of a Coulomb potential between
two nucleons, with e? = 1.44 MeV fm. As the basis set is not symmetrized, it

can be used when adding a potential term between particles (1, 2)
e? B e?

T pcos ¢z

VC(T12) = (14)

o8
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Table 1. The ground-state energy Eo, with Volkov potential, as a function of Kmax, using 25
Laguerre polynomials, and 8 = 2fm™!. We also give the dimension Ny of the HH basis, and

the ground-state energy ES in the presence of an additional Coulomb interaction.

Kmax Nun Eoy (MeV) E§ (MeV)
0 1 28.580 27.748
2 6 28.580 27.750
4 21 29.283 28.455
6 56 29.812 28.986
8 126 30.162 29.338
10 252 30.278 29.456
12 462 30.365 29.544
14 792 30.392 29.572
16 1287 30.407 29.587
18 2002 30.413 29.593
20 3003 30.416 29.596
22 4368 30.417 29.597
SVM][?] 30.42
SM([?] 29.532
HH(?] 30.406

Note that, with this kind of potential, a symmetric basis set should involve
states with isospin T' = 0,1, 2; hence a symmetrized basis would be enlarged by
the presence of a symmetry-breaking term.

As a second example, we consider a spin-dependent potential. We use a
Volkov-like potential defined for singlet and triplet spin channels, S = 0,1,
namely

V(S) = E(S),l e_TZ/R%S%l + E(S),Q e_r2/R(25>¢2 , (15)

with E(g); = 144.86 MeV, R(g); = 0.82 fm, E(g)s = —66.7 MeV, and Ryg) 5 =
1.6 fm, and FE(;); = 144.86 MeV, Ry, = 0.82 fm, E1)o = —97.0 MeV, and
Ry = 1.6 fm. In terms of the potential defined in Eq. (??) we have Vi =
V(O)/4 + 3‘/(1)/4, and V, = —V(())/4 + V(1)/4.

Using this potential, a bound state appears for total spin s*** = 0; in
this case the spin-space has dimension two, and the two states |o) are |0) =
£2(0)33(0);00) and |1) = [33(1)33(1);00). The values of the Pauli matrix-
scalar product are the following

-3 0
(d'|o1 - o2]o) = (0'|o3 - o4l0) = ( 0 1)

o aula) = ooz nlo) = (05 ) (16
(0’01 - o4]0) = (o |ors - sl = (\% ‘@ .

In Table ?? we showt the results obtained with this potential for the ground-state
energy, Fy, and for the first excition, Fjy.
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Table 2. The ground-state energy Eo, with spin-dependent Volkov potential, as a function of
Kmax, using 25 Laguerre polynomials, and 8 = 2fm~!. We also give the energy of the first

excited state Ej.

Kmax E() (MGV) E1 (MeV)
0 26.319 2.566
2 26.964 2.881
4 27.793 5.115
6 28.302 6.330
8 28.650 6.982
10 28.768 7.363
12 28.858 7.617
14 28.888 7.782
16 28.904 7.910
18 28.911 8.008
20 28.915 8.088

5 Conclusions

In this paper we propose to solve the A-body system using the hyperspherical
harmonics functions without a preliminary symmetry-adaptation of the basis
set. We have shown the feasibility of this procedure in the case of four particle
interacting through a spin dependent short-range potential. We have also con-
sidered a purely central interaction including the Coulomb potential between a
pair. Skiping the explicit symmetrization of the basis, we have gained in simplic-
ity when the matrix elements of the potential are to be calculated, and without
increasing the dimension of the basis, we have considered potential terms which
break the permutational symmetry. This is of fundamental importance if we want
to consider a system of protons and neutrons in which the Coulomb interaction
between protons has to be included as well as their mass difference. The main
difficulty in the present method is the treatment of very large matrices. We have
shown that the Hamiltonian matrix can be written as a tensor product and this
particular form can be diagonalized very efficiently [?].
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Abstract. Nuclear reactions involving light nuclei require few-body models
to describe the nuclear structure and the reaction mechanism. The production
rates for the a + n+n — SHe 4+~ and o+ n +n+n — SHe +n processes are
discussed. Typically only very low relative energies are relevant. For environ-
ments with a high density, processes involving more particles could dominate.
The use of the adiabatic approach as a method to compute cross sections at
very low energies is proposed.

1 Introduction

When talking about reactions of astrophysical interest we refer to all those nu-
clear processes playing a role in the nucleosynthesis of the elements in the stars.
In particular, in this work we shall concentrate on those reactions involving light
nuclei, for which few-body models are needed at two different levels, to describe
the structure of the nuclei and also to describe the reaction mechanism.

The basic goal when investigating these reactions is to estimate their produc-
tion rate, which gives the velocity (number of reactions per unit time and unit
volume) at which the products of the reaction are created.

2 Production Rates

The production rate for a reaction involving N particles in the initial state is
obtained as PT = [dEB(E,T)P(E), where P(E) is the production rate at a
given kinetic energy E in the N-body center of mass, and B(E,T') is the Maxwell-
Boltzmann distribution giving the probability for finding the N particles with

* Article based on the presentation by I. Mazumdar at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received November 17, 2009; Accepted January 19, 2009.
** E-mail address: e.garrido@iem.cfmac.csiggs



2 Few-Body Reactions in Nuclear Astrophysics

that precise relative kinetic energy [1]. This distribution takes the form:

3N-—5

BET) = — 1 < E ) ? Rt (1)

F(3N273) KT \ KgT

where Kp is the Boltzmann constant and 7" is the temperature of the star.

The exponential in the previous expression implies that for a given tempera-
ture T', the only relevant energies correspond to £ < KgT'. Typical temperatures
in the stars (i.e., in the core of the sun) are of the order of 107 K, which leads
to KpT = 0.001 MeV. Therefore, in the stellar medium only very low relative
kinetic energies are relevant.

The total production rate at a given energy (P(FE)) is the product of the so
called reaction rate and the densities n; of the N nuclei (i = 1,---, N) involved
in the initial state. These densities are usually written as n; = pN A%, where N4
is the Avogrado number, A; and X; are the mass number and mass abundance
of the nucleus 7, and p is the density of the star [1]. The density is, together with
the temperature, the crucial property of the star determining the production
rate. In fact, P(F) is proportional to p", meaning that, for a sufficiently large
p, processes involving more particles could play a role.

Finally, the reaction rate (R(FE)) is given by the Fermi’s golden rule integrated
over all the possible momenta for the final products of the reaction. Assuming
M particles in the final state, R(FE) is written as:

Ppr Py

C RO ER

R(E) = | T NI(B)WI (E7) [ 5(E - Ey)

where ¥; and ¥y are the initial and final wave functions, pq,---,py are the
momenta of the final nuclei, and W represents the interaction. When only two
particles are involved in the initial state, the reaction rate is the cross section of
the process times the relative velocity between the two particles.

Obviously, the matrix element contained in the integrand of Eq. (2) is the
same for a given reaction and for the inverse process. It is then possible to relate
the reaction rates (and therefore the production rates) corresponding to both
processes. This means that the production rate for a reaction leading to two
particles in the final state can be written in terms of the cross section of the
inverse process. This is what happens in the two reactions briefly discussed in
the following subsections.

2.1 Two-Neutron Radiative Capture: The a +n +n — SHe + v Process

This a pure electromagnetic process where only the bound %He nucleus and a
photon are found in the final state. Following the discussion above, the corre-
sponding production rate can be written in terms of the photo-dissociation cross
section (o) of 6He. To be precise, this production rate takes the form:

3

R (me+2my\2 27 __Q [ __E_

Pyon(p,T) =n n2< - n) e KBT F?0.,(E)e F8TdE
Q, n(p ) (e} n02 mam% (KBT)3 0l ’Y( )
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where Q = Moo — Ma — 2Myp, and Mepge, My, and m, are the masses of °He, the
a particle, and the neutron, respectively.

The cross section o (E) is usually expanded in terms of electric and magnetic
multipoles, each of them given by a well known expression in terms of the strength
function of the reaction [2].

In the figure, the thick solid lines
are the computed electric dipole and
quadrupole reaction rates when the cor-
responding strength functions are ob-
= tained as described in [3]. This pro-
cedure includes all the possible cap-

El

12F [

Reaction Rate (c?fs)
=
S

:]_0’14 — E2, this work =
-~ E2, Gorres et al., PRC52 (1995) 2231 . . .
1" E2.Fovler ARAAL3 (197569 ture mechanisms: Resonant, sequential,
—_ , this worl ]
-~ E1, Ef I, Z. Phys. 1 1
1 T Ex Gores el phcss (909 2001 | and direct. As seen in the figure, the
10 — E1, Barlett etal., PRC 74 (2006) 015802 . .
E1, Barltt et al, PRC 74 (2006) 015800 quadrupole result agrees with previous
-20] 1 1 1 . .
10 1 2 o’ 4 5 estimates by Gorres (dot-dashed) and
T (GK

Fowler (dotted). For the dipole contri-
Figure 1. Dipole and quadrupole reaction bution our reaction rate is about one
rates for the & + n + n —% He + ~ process. order of magnitude higher than Gorres,
(ARAA: Ann. Rev. Astron. Astrophys.) Efros and Barlett. The reason is that

in these calculations a fully sequential
capture process is assumed. In fact, in the work by Barlett et al. they also esti-
mated the dipole reaction rate including the contribution from dineutron capture.
This estimate (dotted line) is above our calculation.

2.2 Four-Body Recombination: The o +n + n + n — SHe + n Process

In this process one neutron takes the excess of energy released when the remain-
ing particles combine into a bound state. Again, only two particles are found in
the final state, and the production rate takes the following form in terms of the
cross section o, (E) for the inverse process (neutron breakup of He):

3 5
Me +3mn> 2 h6(27r)29 o RET ”EUH(E)G—ﬁdE'
(KBT)2 QI
(4)

Calculation of o, (F) requires the proper description of the four-body inital
and final states. The initial state is described as a bound three-body system
(°He) plus a free neutron, and o, (F) is estimated assuming that the transition
amplitude can be written as the sum of the three amplitudes corresponding to
the interaction between the incident neutron and each of the three constituents
in ®He. Each of them factorizes into a term depending on the initial (bound)
and final (continuum) three-body structure of “He, and a second term giving the
two-body transition amplitude for the scattering of the incident neutron and the
corresponding constituent [4].

For a mass density of p =150 g/cm? (like in the core of the sun) and a
temperature of 15 GK the four-body recombination production rate is about four
orders of magnitude smaller than for the electromagnetic two-neutron capture.
However, since this production ratgsgoes like p*, while for the electromagnetic

Poz,Sn(pv T) :noén?uunﬁHe <

mem3
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capture it goes like p3, the four-body recombination mechanism could dominate
in an environment with a sufficiently large density (p > 1.5-10% g/cm?).

However, for very low temperatures the approximation described above is
very likely failing, and a proper calculation of o,,(F) is required.

3 The Adiabatic Approach and Nuclear Reactions at Low Energies

Given a particle hitting an N-body system, the adiabatic approach appears as an
efficient method to compute the corresponding cross section at very low energies.
The adiabatic expansion of the (N + 1)-body wave function permits to solve the
angular part of the equations for individual (frozen) values of the radial coordi-
nate. As a second step, one has to deal with a coupled set of radial equations
where a series of effective adiabatic potentials enters [5].

It can be proved that at large distances the eigenfunctions associated to each
of the adiabatic potentials correspond to very specific structures. A reduced
number of potentials are associated to the different possible asymptotics corre-
sponding to one (or more) bound subsystems and the remaining particle(s) in the
continuum. They are all the possible outgoing channels corresponding to elas-
tic, inelastic or rearrangement scattering. The incoming channel (N-body bound
target plus one particle in the continuum) is typically described by a single adi-
abatic potential. Therefore, in this approximation a limited and small number
of S-matrix elements are enough to describe the scattering process.

However, for a breakup process leading to N + 1 particles in the continuum,
the asymptotics is described by infinitely many adiabatic potentials. One of the
open questions is to establish how many of these potentials are needed to obtain
a converged breakup cross section.

4 Summary and Conclusions

Temperature and density are two crucial star properties which determine the
production rate of a given reaction. Typical temperatures are such that only very
low relative energies are relevant. A proper description of the radiative capture
processes requires inclusion of all the possible capture mechanisms. Usually those
processes involving less particles dominate over the competing reactions with
more particles involved. However, if the star density is large enough the latter
could be relevant. Finally, we propose the adiabatic approximation as a very
useful method in order to compute cross sections at very low energies.
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Abstract. The development of light, neutron-rich beams has opened in the
last decade new perspectives for the study of many-neutron systems. Breakup
experiments at GANIL are described, using beams of %®He, 'Li, “Be and
15B at several tens of MeV/N. Our approach is based on the detection in
coincidence of the breakup fragment and the neutrons in order to investigate
the different correlations in the final state of these very neutron-rich systems.
Several particular cases are discussed: fragment-n correlations in unbound
"He, 19Li and *He; 2n correlations in *He, ''Li and *Be; and three-body and
4n correlations in ®He and “Be.

1 Introduction

The very neutron-rich, light nuclei provide a fertile testing ground for our un-
derstanding of nuclear structure. From an experimental point of view this region
is the only one for which nuclei lying at and beyond the neutron dripline may
be accessed. Theoretically a wide range of models, including various shell model
approaches (e.g., the shell model in the continuum, the no-core shell model) and
more ab initio type models are capable of providing predictions. In addition,
the structure of some unbound systems, such as '°Li, is key to constructing
three-body descriptions of two-neutron halo nuclei, such as ''Li.

One of the best adapted tools to the study of nuclei far from stability is
that of “knockout” or breakup of a high-energy radioactive beam. The high
cross-section of these reactions make up for the low intensity of these very ex-
otic beams. Our group has been studying these systems at GANIL for the last
decade, with very neutron-rich beams accelerated at several tens of MeV /N. The
fragments following breakup are detected in coincidence with the multidetector
arrays CHARISSA (charged fragments) and DEMON (neutrons). Some examples
are described in the following.

* Article based on the presentation by F.M. Marqués at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received December 30, 2008; Accepted January 8, 2009.
** E-mail address: marques@lpccaen.in2p3 g



2 Light nuclei in the continuum

Figure 1. Zoom on the lighter part of the nuclear chart. The crosses correspond to unbound

nuclei studied at GANIL by our group.

2 Two-body, unbound systems

The unbound nuclei "He and '°Li have been investigated via the high-energy
breakup of 8He, "'Be and 'B. The decay-energy spectra were reconstructed
from coincident measurements of the charged fragments (¥He and °Li) with
Si-CsI telescopes from CHARISSA and the neutrons with the DEMON array.
A theoretical approach based on the sudden approximation was used to model
the reactions populating the unbound final states. The calculated decay-energy
spectra were convoluted with the response function of the experimental setup
using a simulation developed specifically for the present study and compared
with the experimental results [1].

The "He system was investigated with the three different beams. No evidence
for the existence of the proposed low-lying (E, > 1 MeV) spin-orbit partner
(1/27) of the ground state (3/27) could be found.

The 'Li system was produced using an 'Be beam and the results confirm
the continuation of the inversion of the 1/27 and 1/27 levels in the N = 7
isotopic chain (Fig. 2). The virtual s state is found to be the ground state with
a scattering length of a; = —14 + 2 fm. The production of '°Li using the ‘B
beam exhibits, in addition, a low-lying p excited state at about 500 keV.

The “He system was similarly produced using both ''Be and B beams,
and was the most exotic system studied. A structure was observed at very low
decay energy which very probably corresponds to a virtual s state (as > —3
fm). This result suggests that the level inversion also occurs in “He, but with a
much weaker core-neutron interaction than for 1°Li. For the data acquired from
the breakup of the B beam, the Glgcay energy spectrum exhibits a resonance
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Figure 2. Decay energy of the °Li system from the breakup of ''Be (left) and B (right)
[1]. The red line is the non-resonant background obtained by event mixing (dotted line) plus a
virtual s state at an energy corresponding to a scattering length of —14 fm (solid line) plus, on
the right, a p wave at 500 keV (dashed line).

around E, = 1.2 MeV, which most probably corresponds to an excited 1/2~
state in “He.

3 Three- and Four-body systems

The unbound systems described above were formed by knocking out some nu-
cleons from a heavier, exotic beam. More complex systems, like the two-neutron
haloes SHe, 11 Li and “Be (core+2n), or the four valence neutrons inside He and
Be (a+4n and °Be+4n), can be studied with the same techniques through the
excitation of these systems leading to breakup.

Concerning the former, the breakup of ®He, 'Li and *Be into their core plus
the two valence neutrons was studied using the technique of intensity interferom-
etry, and the rms distances between the two neutrons at breakup were measured
[2]. These distances were about 5-7 fm, relatively large. A more sophisticated
analysis on the breakup of 8He into He-+2n [3] lead to the measurement of both
the relative distance and the relative time between the neutrons in the sequential
channel (formation of an unbound "He resonance). The delay was found to be
consistent with the lifetime of "He.

The 4n system was studied in the breakup of *Be [4] and ®He [5]. Few events
were found to be consistent with the correlated decay of the four neutrons, either
as a bound or a low-lying resonant state [6]. The breakup of a higher intensity
beam of B was studied in 2006 at GANIL using the same techniques. The
idea is to knock out one proton from the beam and form an excited '“Be that
will decay in flight, either to 2Be+2n or °Be44n. Many events with a “Be
in coincidence with the neutron detectors were recorded, and the analysis is in

progress [7]. 67



4 Light nuclei in the continuum

4 Conclusion and perspectives

The recent study of very exotic unbound systems has lead to new results: ab-
sence of low-lying excited state in “He independently of the entrance channel,
precission measurement of the “Li+n scattering length, and s/p level inversion
in the N = 7 isotopic chain up to “He. The breakup of two-neutron halo systems
has been “mapped” in both space and time using the technique of intensity in-
terferometry. And the most neutron rich isotopes of He and Be have been excited
in order to liberate their four valence neutrons, leading to events consistent with
the formation of a correlated tetraneutron. All these axes are being studied in
depth following the breakup of a high intensity '°B beam, which lead to many
fragment+n, core+2n and core+4n exit channels [7].
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Abstract. We provide a brief overview of our theoretical investigations, car-
ried out in recent years, to study Efimov effect in 2-n halo nuclei. The calcu-
lations provide the evidence for the occurrence of at least two Efimov states
in 29C. These states disappear one by one as the two-body binding energy
is increased and show up as asymmetric resonances in the elastic scattering
cross section of n-19C system. The asymmetric nature of the resonances is
explained by invoking the mechanism of Fano resonance.

1 Introduction

The remarkable advancements in the production of Radioactive lon Beams and
detection facilities have opened up new vistas in contemporary nuclear physics.
It is now possible to produce exotic light nuclei close to the neutron drip line
and study their structural properties. The discovery of the halo structure formed
by the valence one or two neutrons outside a compact core has been one of the
most important findings of these studies. The very small one or two-neutron
separation energy and abnormally large root mean square radius, as confirmed
by measurements of interaction cross section and by momentum distribution
studies are some of the novel structural features of the halo nuclei. Some of the
2-neutron halo nuclei are also characterized by what is now known as the Bor-
romean property, which implies that while the binary subsystems, such as n-core
and n-n are unbound the three-body system comprising the n-n core gives rise
to a bound state. A typical example is that of 'Li, the most studied 2-n halo
nucleus. In addition to the studies of the structural properties of the halo nuclei
from a purely nuclear physics standpoint, the three-body structure of the 2-n
halo nuclei comprising a compact core and two neutrons with very low separa-
tion energy makes them ideally suited for studying the Efimov effect. Efimov
showed, over three decades ago, that a three-body quantum mechanical system
with resonating binary interactions gives rise to an effective attractive inverse

*Article based on the presentation by I. Mazumdar at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received January 1st, 2009g¢ccepted January 8, 2009.



2 Efimov Effect in 2-Neutron Halo Nuclei

quadratic potential as function of the three-body radial variable supporting an
infinite number of weakly bound states [1]. There have been extensive searches
for Efimov states in many areas of physics by both experimentalists and the-
orists. Indeed, the Efimov effect is now being recognised to play a central role
in Bose-Einstein condensation in dilute atomic gases. Very recently, the first ex-
perimental observation of Efimov states has been reported in ultracold cesium
trimers [2]. The material that follows will present our attempts to search for
Efimov states in 2-n halo nuclei.

2 Efimov Effect in “Be, 1B, and 2°C

Our formalism is based upon a three-body model of the 2-n halo nucleus com-
prising a compact core and two valence neutrons. We assume s-wave separable
potentials for the binary sub-systems [3]. Solving the three-body Schrodinger
equation in momentum space we obtain two coupled integral equations for the
spectator functions F(p) and G(p). These equations are recast involving only
dimensionless quantities for studying the sensitive computational details of the
Efimov effect. In this process the two-body strength and range parameters for
the n-n and n-core systems are made dimensionless. The details are provided in
[4] and will not be presented here. The first 2-n halo nucleus studied using this
formalism was *Be considered to be a three-body system of a >Be core and two
loosely bound valence neutrons [4]. Keeping the n-core range parameter fixed
the strength parameter was varied corresponding to n-'?Be virtual states from
50 keV to 0.01 keV. At 50 keV virtual state, the three-body system is found
to have binding energy close to the experimental value, but no excited state is
predicted. As the virtual state energy of n-?Be is decreased, we not only get
the ground state energy, but also the excited state energy for the *Be system.
In fact the first excited state appears for n-'2Be virtual state of about 4 keV
followed by the emergence of the second excited state at n-core virtual state of 2
keV. This methodology was followed to search for Efimov states in B, ?2C and
20C [5]. It was shown by numerical analysis and also from analytical considera-
tions that Borromean-type halo nuclei like B and 2?C, where n-n and n-core
are both unbound, are much less vulnerable to respond to the existence of the
Efimov effect. On the contrary, those nuclei, like 2°C in which the halo neutron
is supposed to be in the intruder low lying bound state with the core, appear to
be promising candidates to search for the occurrence of Efimov states at energies
below the n-(n-core) breakup threshold.

3 Movement of Efimov states in 2°C to resonances in n-1°C Scattering

In light of the uncertainties in the experimental data we have studied the effect
on the behaviour of Efimov states in 2°C by scanning a wide region of the n-
core binding energy from 60 to 500 keV. It has been noticed that as the two-
body binding energy reaches around 140 keV, the second Efimov state has its
energy less than that of the two-body leading to an unstable state. Similarly,
the first Efimov state also becomeppunstable for the two-body binding energy
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around 240 keV. This is in conformity with what was originally predicted by
Amado and Noble about the movement of Efimov states into the unphysical
sheet associated with the two-body unitarity cut on increasing the strength of the
binary interaction [6]. This particular behaviour was investigated by extending
the study in the scattering sector. We studied the elastic scattering amplitude
for n-19C system as a function of incident neutron energy by computing the
integral equations for the amplitude at energies below the three-body break up
threshold [7]. It was found that for binding energies greater than or equal to
250 keV for the n-'¥C system the disappearance of the first Efimov state gives
rise to a resonance at the neutron energy of 1.6 keV with a full width of around
0.25 keV. The same trend was also observed for binding energies of 200 and 350
keV with the resonances appearing at the same position with similar widths of
around 0.25 keV. The second excited state was also found to disappear above the
n+'8C threshold of about 140 keV with the appearance of a resonance showing
the generality of this behaviour.

4 Fano Resonances of Efimov States in 2°C

A very intriguing feature of the resonances described in the previous section
are their asymmetric profiles. This is unlike the symmetric Breit-Wigner or
Lorentzian shapes encountered more often in nuclear physics. We have inter-
preted the asymmetric shapes of the resonances as Fano resonances widely ob-
served and studied in atomic and molecular systems. The Fano resonances origi-
nate from the presence of two alternative pathways to the final state. One directly
into the continuum and the other through the embedded discrete state, interfere
both constructively and destructively to give the asymmetric resonance. In 2°C,
the very weak binding and large spatial spread of the Efimov states lead to a
strong overlap with the continuum states leading to comparable amplitudes of
the two pathways and the very asymmetric profile. We have fitted the resonances
by Fano profiles and have extracted the best fit Fano indices for the resonances
[8]. The fits to the resonances at 250 and 150 keV n-'3C binding energies yield
the same fano index (g), displaying their origin as members of the same family
of Efimov states. In very recent calculations we have revisited the problem of
the movement of Efimov states into resonances with increasing strength of the
n-core binary system. For a system of very heavy core (~100) with two valence
neutrons we reproduce the same behaviour as seen in 2°C. The results further
establish the finding of the movement of Efimov states into resonances beyond a
certain strength of the n-core bound system. The right panel of the Fig. 1. shows
the asymmetric resonance structures in the elastic scattering cross sections (for a
very heavy core) for three different n-core binding energies. We have also checked
the scattering length of the n-(n-+core) system for the incident energy tending
to zero to be positive and large, thereby, supporting a bound state. This result
for a hypothetical nucleus with a very heavy core (mass ~ 100) with two valence
halo neutrons show the same behaviour as that of a realistic 2-n halo nuclei, the
20C. This helps establishing the results obtained on a firmer foundation and over
a large mass range. The left panelrshows the peak position of the elastic cross
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sections for a system of three equal masses for three different n-core binding
energies. In this case the peak position has shifted towards the origin with very
large cross sections hinting at virtual states. The case for equal masses are being
studied and will be reported elsewhere. It would be really interesting to search
for the same effect of movement of Efimov states to resonances in lighter 2-n halo
nuclei with the halo neutron and the core forming a bound system. While 2°C
is by far the most promising case for an experimental campaign we may suggest
a few more nuclei, like, 3*Mg and 32Ne. For both these nuclei the 2-n separation
energies are comparable to that of 2°C (2570 and 1970 keV respectively) with
the n-core systems of 3"Mg and 3!Ne are nominally bound by 250 and 330 kev.

Acknowledgement. The results presented above have been arrived at in collaboration with
V. Arora, V.S. Bhasin and A.R.P. Rau. The author thanks them all.
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Systems in the Fermionic Molecular
Dynamics Approach*

T. Neft**, H. Feldmeier

GSI Helmholtzzentrum fiir Schwerionenforschung GmbH, Planckstrafle 1, 64291 Darmstadt,
Germany

Abstract. Fermionic Molecular Dynamics (FMD) is a microscopic approach
for the description of light nuclei in the p- and sd-shell. Many-body basis
states are Slater determinants of Gaussian wave-packets localized in phase
space. Brink-type cluster states and harmonic oscillator shell model states
are contained as special limiting cases in FMD. The FMD approach is used to
study the spectrum of '?C with special emphasis on states with pronounced
a-clustering including the Hoyle state. The FMD approach is also used to
study '"Ne which is a candidate for a two-proton halo nucleus.

1 Introduction

The nuclear-many problem is notoriously difficult to solve. Few-body approaches
provide exact solutions for the three- and four-body problem. For heavier nuclei
we can try to solve the many-body problem for example with the no-core shell
model. But there are problems for loosely bound systems with halo or cluster
structures. Cluster models — microscopic or non-microscopic — are often used to
study such systems. With the Fermionic Molecular Dynamics model we have a
microscopic approach that allows to treat well bound states with shell model
structure and loosely bound states with clustering or halos on the same footing.

2 Fermionic Molecular Dynamics

In the Fermionic Molecular Dynamics model [1, 2] Slater determinants are used
as many-body basis states

Q) =A{|a) ® - ®|qa)} (1)

* Article based on the presentation by T. Neff at the Fifth Workshop on Critical Stability, Erice,
Sicily, Received December 1st, 2009; Accepted December 12, 2009.
** E-mail address: t.neff@Qgsi.de 73




2 Few-Body Systems in the Fermionic Molecular Dynamics Approach

where the single-particle states ‘q> are given by a single or a superposition of
two Gaussian wave packets localized in phase space

(:IZ — bl)g

(ala) = Yo {520 bl 0 ) ®

207;

The complex parameter b encodes mean position and mean momentum of the
wave packet. The width a can be different for each wave packet. The spin can as-
sume any orientation, whereas the isospin is :I:% describing either protons or neu-
trons. The wave packet basis is very flexible. Harmonic oscillator single-particle
states are obtained as linear combinations of slightly shifted Gaussians. Bloch-
Brink type cluster states can be obtained by localizing groups of wave packets.

The FMD solution on the Hartree-Fock level is obtained by minimizing the
intrinsic Hamiltonian with respect to all the parameters of the single-particle

states.
min <Q |H - Tcm|Q>

{a:} <Q‘Q>

To restore the symmetries of the Hamiltonian the intrinsic state ‘Q> is projected
on parity, angular momentum and total linear momentum

(3)

|Q; "MK, P = 0) = P" Py PP=°|Q) (4)

As the correlation energies can be very large a variation after projection (VAP)
should be performed. This is numerically very expensive and only done for light
nuclei. For heavier nuclei we perform a variation after projection in a generator-
coordinate sense. The intrinsic state }Q> is minimized under certain constraints
like radius, quadrupole or octupole deformation and we search for the minimum
in the projected energy surface as a function of the generator coordinates. With
either approach we generate a set of intrinsic states ‘Q(a)>. In the end we solve
the generalized eigenvalue problem

> QW |(H = Tom) PPl PP=01QW) el =
K'b
EJTra Z <Q(a) |P7TPI%KlPP=0‘Q(b)> C}J;/? (5>
K'b

to obtain the multi-configuration mixing result.

We use an effective interaction that is based on the Vycowm interaction. In
the Unitary Correlation Operator Method [3, 4] short-range central and tensor
correlations are included explicitly by means of a unitary correlation operator.
To account for missing three-body correlations and three-body interactions a
momentum-dependent two-body term is added to the interaction and fitted to
binding energies and radii of closed-shell nuclei [1].

3 Hoyle State in 2C

The second 01 state in '2C, the famous Hoyle state, has been studied intensively
for many years. It is located slightlyzgbove the three-« threshold and is supposed
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Figure 1. Decomposition of the **C FMD Hoyle state wave function into N-/f2 shell model

components.

to feature a pronounced a-cluster nature. Microscopic cluster model calculations
within the RGM approach [5] were quite successful in describing its properties
but use simple effective interactions. Based on the cluster model wave function
an interpretation of this state as a Bose condensate of a-particles was proposed
recently [6].

In the FMD approach [7] a-cluster configurations are a subset of the Hilbert
space. Further configurations are obtained by VAP calculations with constraints
on radius and quadrupole deformation. These additional configurations are neces-
sary to describe properties of the ground state band where a-clusters are broken
due to the spin-orbit force. In a Hilbert space that consists only of a-cluster
configurations the FMD ground state is underbound by more than 10 MeV. In-
cluding all configurations we can reproduce the properties of the ground state
band as well as that of the Hoyle state. The Hoyle state has an overlap of 85%
with three-a configurations and has a very large radius of 3.38 fm. The spatially
extended nature of the Hoyle state is also tested by electron scattering data, mea-
suring the transition from the ground state to the Hoyle state. In Fig. 1 the FMD
Hoyle state is decomposed into NAS2 shell model configurations. The admixture
of shell model components manifests itself in the 0hf2 contribution. The three-«
configurations appear as coherent state extending beyond 50Aif2 excitations.

4 Two-proton Halo in '"Ne

1"Ne is considered as two-proton halo candidate because of its small two-proton
separation energy of 930 keV. Large interaction radii and narrow momentum dis-
tributions support the idea of a halo. Theoretical attempts to describe '"Ne in
the shell model and in cluster models came to different conclusions regarding the
valence protons. Shell model calculations [8] focused on the Coulomb displace-
ment energies between "Ne and "N and predicted an s?>-component of only
20%, while cluster model calculations [9, 10] found rather large s?-components
of about 45%.

Recent measurements of the chayge radii by the COLLAPS group at ISOLDE
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Figure 2. Proton and neutron density distribution for dominant intrinsic configuration of !"Ne.

Contours are in units of half nuclear matter density.

now allow for a direct test of the wave function. In a joint paper the experimental
results for the charge radii of !"~22Ne are compared with FMD calculations [11].
Minimizing the energy of the parity projected Slater determinant we find for
1"Ne two minima which correspond to s?- and d?-dominated configurations for
the valence protons around an O core. Additional configurations are created by
cranking the strength of the spin-orbit force. The intrinsic state with the greatest
weight in the multiconfiguration mixing calculation is shown in Fig. 2. The FMD

calculations reproduce the large experimental charge radius of 3.042(21) fm with

an s2-contribution of about 42%. A further test for the wave function is provided

by the B(E2) values [12] that are reproduced within the experimental error bars.
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Abstract. We discuss the three-body decay mechanisms of many-body reso-
nances. R-matrix sequential description is compared with full Faddeev com-
putation. The role of the angular momentum and boson symmetries is also
studied. As an illustration we show the computed a-particle energy distribu-
tion after the decay of 2C(1%) resonance at 12.7 MeV.

1 Introduction

The three-body decay of many-body resonances can be accurately measured in
complete kinematics. Information about the decaying state and the decay mech-
anism is usually extracted from the measurement of the three fragments after
the decay. Although this is a common practice, the situation is ambiguous. The
experimental analyses of these processes are based on the R-matrix formalism
which inherently assumes two successive two-body decays. The input are the
properties of the intermediate two-body states and the population of the nuclear
many-body initial state approximated as a three-body system.

Occasionally, in principle contrary descriptions are able to explain the ob-
served distributions making the understanding of the underlying physics diffi-
cult. An example demonstrating the difficulties is the 3o decay of 11 state in
12C which was successfully described by two opposite mechanisms: a sequential
decay via the 27 state in ®Be [1], and a direct decay into the three-body con-
tinuum [2]. This requires an explanation. What information is contained in a
full-kinematics measurement of three-body decay? Apparently unique informa-
tion can only be extracted under favorable conditions. The crux of the matter is
that the decay mechanism is related to a “decay path”, an intermediate structure,

*Article based on the presentation by R. Alvarez-Rodiguez at the Fifth Workshop on Critical
Stability, Erice, Sicily, Received November 28, 2008; Accepted January 19, 2009.

** Present address: INFN Sezione di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy. Electronic
address: raquel.alvarez@pi.infn.it. 77



2 Three-body decays: structure, decay mechanism and fragment properties

which in contrast to the final state signal in the detector is not an observable.
We shall in this contribution compare the results from three-body calculations
and experimental R-matrix analyses.

2 Energy distributions

The large-distance observable structure of the many-body initial state is a three-
body continuum state, therefore we compute the resonance structure in a three-
body cluster model [3]. We use the complex scaled hyperspherical adiabatic ex-
pansion method to solve the Faddeev equations which describe the 3-body sys-
tem. The appropriate coordinates are the so-called hyperspherical coordinates
and consist of the hyperradius p? = 4 Z?:l(ri — R)?, and five hyperangles. In
the adiabatic hyperspherical expansion method the angular part of the Faddeev
equations is solved first and the angular eigenfunctions @, 7s are then used as a
basis to expand the total wave function ¥7/M .

We include short-range [4] and Coulomb potentials. The many-body effects
that are present at short distances are assumed to be unimportant except for
the resonance energy. This is taken into account by using a structureless 3-body
interaction that fits the position of the resonance.

The resonance wave-function contains information about the decay mecha-
nism, and the large-distance properties reflect directly the measurable fragment
momentum distributions. The single particle probability distributions are ob-
tained after integration of the absolute square of the wave function over the four
hyperangles describing the directions of the momenta.

. g ~ Figure 1. (Color online) Regions of the 3«

L

' - .. Dalitz plot where the density must vanish (in
1 - black) for a 17 state (left). Dalitz plot for
u.; % ~ the 17 state of '2C. x-axis corresponds to
: - (Eal/ZEaz)/\ﬂ?)) and y-axis to F,1 in MeV.

1 15 2 25 3 35 4 45 5

The many-body initial state resonance evolves into three clusters at large dis-
tances. The total angular momentum and parity J7 is conserved in the process.
This symmetry combined with Bose-statistics imposes constraints on the result-
ing momentum distributions. An early example of these effects applied to three
pion decays can be found in ref. [5]. Fig. 1 shows the regions of the Dalitz plot
where the density must vanish for the decay of a 1T state into three a-particles.
This gives rise to the minima in the single a-particle energy distribution. The
Dalitz plot computed within the Faddeev framework is also shown and is in
agreement with these symmetry constraints.

Fig. 2 shows the single-a energy distributions, i.e. the probability for emer-
gence of one « particle with a given energy divided by its maximum allowed, for
the 11 state of 12C computed with R-matrix analysis [1,6]. This corresponds to
the projection of the Dalitz plot in fig. 1 on the y-axis. The decay is assumed to be
sequential via ®Be(21) since angular momentum forbids the decay via 8Be(07).
We have varied the two-body energygnd width. When both the two-body energy
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Figure 2. (Color online) Single a energy distributions from R-matrix analysis for the decay
into three a-particles of the 120(1+) resonance at 12.7 MeV of excitation energy. The energies
and widths of the intermediate ®Be(2") state are varied as specified in the panels. The green
dashed curve corresponds to the case where the symmetrization of the wave function is omitted.

The middle panel corresponds to the measured resonance energy.

and width are small (left) a narrow peak corresponding to the emission of the first
« arises. The other two a’s are related to the broad peaks. By increasing the two-
body energy and width the three-peak distribution becomes rather pronounced
and insensitive to the two-body parameters when either Es,/Es3, is larger than
about 0.5 or the two-body width is large. The same figure contains the curves
corresponding to the case where the boson symmetry is omitted. For a low and
narrow two-body state the effect of this symmetry seems to be unimportant, but
an increase on the width leads to a two-peak (not three-peak) distribution.

Fig. 3 shows the results from the full three-body computation and the compu-
tation from the lowest continuum three-body wave function (K=8) from ref. 7]
(democratic decay). This is the simplest assumption with the correct symme-
tries. We have varied the three-body energy and consequently the three-body
width. Two rotation angles have been considered: one of them is large enough
to accumulate the contribution of sequential decay through the ®Be resonance in
a single adiabatic potential, while the other is not. The calculations include the
boson symmetry of the a-particles. The results from the large rotation angle do
not include the contribution from the decay via 8Be(2%) and are very close to
the democratic decay. In the result from the full Faddeev computation the three
peaks are closer to each other and this approaches better the experiment. The
fractions of population at large distance are given in table 2 for the different val-
ues of Fj3, shown in fig. 3. We can observe that the sequential decay probability
increases as we increase the three-body energy.

3 Conclusions

We have computed the observable momentum distributions from decay of three-
body resonances by use of R-matrix simulations and from full Faddeev calcula-
tions. We have considered the example of the 1* resonance of '2C. The angular
momentum and boson symmetries constrain the resulting momentum distribu-
tions. The same measured momentagm distributions can be described in differ-
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Figure 3. (Color online) Single « energy distributions from Faddeev computation for direct
decay of the 12C(l*) resonance. The three-body energy is varied by changing the strength
of the three-body potential. The relative energies and widths of the intermediate ®Be(2")
resonance are specified in the panels. The solid (black) and dashed (green) curves correspond
to complex rotation angles of § = 0.25 and 0.1 respectively. The dotted (blue) curve corresponds

to democratic decay [7]. For 6 = 0.25 only direct decay is shown.

Table 1. The probability Ps., for populating the component related to the decay via 3Be(21)
at large distances in the computation of the 1% resonance of '2C for a complex rotation angle
6 = 0.25. The three-body energy (Es,) is varied by adjusting the strength of the three-body
potential. The 8Be(2+) two-body energy is maintained Fa, = 2.7 MeV. The energies are referred

to the 3« or 2« separation threshold.

2C(J™) | By /Esy  Iy/Es.  Es (MeV) Iy, (MeV) I, Py

0.86 0.43 3.5 0.005 2 0.001
1t 0.56 0.28 5.4 0.09 2 012
0.39 0.19 7.8 1.15 2 089

ent complete basis sets, e.g. either direct products of two-body states and their
center-of-mass motion relative to the third particle (R-matrix) or three-body
continuum wave functions (Faddeev). The fact that different descriptions seem
to work indicates that the same wave function could be described in different
ways. Extracting information of both structure and decay mechanism can then
be misleading and requires model interpretations. Full Faddeev computations
successfully reproduce the measured distributions.
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Abstract.

The excited 0; state of 12C is of key importance for description of the
triple-a reaction, which is the only way for helium burning in stars. Authors’
efforts to calculate the lowest 0T states within the framework of the a-cluster
model are summarized and discussed. In particular, the recently calculated
0; state’s width and O;r — Of transition density are in good agreement with
the experimental data.

The '2C(05 ) state was predicted by Hoyle [1] and experimentally observed [2,
3] more than 50 years ago. This amazing prediction is based merely on observable
abundance of elements in the universe by assuming that sufficiently fast helium
burning in stars proceed via the resonance reaction 3o — ®Be +a — 120(05F ) —
12C4-+. During the recent years, there is a continuous interest to the experimental
and theoretical study of the 2C nucleus [5, 6, 7, 8]. While the Hoyle state is fairly
well studied experimentally, e.g., its extremely small width I' and O; — Of
transition density (in particular, the monopole transition matrix element M,
and the transition radius Ry.) have been accurately measured, the theoretical
description of a comparable accuracy is still lacking. One of the tough problems
in the theory is connected with the necessity to describe the continuum wave
function of few charged particles.

In a set of calculations [9, 10, 11, 12] the a-cluster model is used to obtain the
lowest 2C(0%)-states properties with particular attention to reliable description
of the 0; state. These results are summarized and discussed in order to determine
the ability of the a-cluster model to describe the experimentally observed O;r
state’s width I, 03 — 0{ monopole transition matrix element M, and 05 — 07
transition radius Ry,.

The effective two-body potential of the a-cluster model is taken in the Ali-
Bodmer form [13] as a sum of two Gaussians, which parameters in the s-wave
channel are chosen to fix the ®Be energy Fs, and its width v at the experimental
values 92.04+0.05 keV and 5.57+0.25 eV [14]. Generally, the parameters of the

* Article based on the presentation by O.I. Kartavtsev at the Fifth Workshop on Critical Sta-
bility, Erice, Sicily, Received December 4, 2008; Accepted January 30, 2009.
** E-mail address: oik@nusun.jinr.ru 81



2 Consistent description of

two-body potential in s-, d-, g-channels are determined to adjust the experimen-
tal a-« elastic-scattering phase shifts.

The effective three-body potential V3 is introduced to take into account those
effects, which are not described by a sum of the effective two-body potentials.
A simple dependence of V3 on the hyperradius p is assumed [6, 9, 10, 11, 12];
the parameters of V3 are chosen to fix the ground-state E,s and excited-state
E, energies of 12C, as well as the ground-state root-mean-square (rms) radius
RM at their experimental values Eys = —7.2747 MeV, E, = 0.3795 MeV [15],
R = 2.48+0.022 fm [16, 17]. Although the ground state is not of the a-cluster
structure, the calculation of the ground state within the a-cluster model is nec-
essary to provide the overall description of the non-a-cluster component, which
contribute substantially also in the excited state. Furthermore, both the excited
and ground state wave functions have to be calculated within the framework of
the same approach to obtain the experimentally available Mo and Ry,.

The method of calculation is based on the expansion of the total wave func-
tion in a set of eigenfunctions on a hypersphere (at the fixed p); the detailed
description is given in [9, 10]. It is of most importance that the properties of the
0; state are obtained by solving the scattering problem of two clusters (o and
8Be), which greatly simplifies the calculations by avoiding a tremendous prob-
lem of determination of the wave function of three outgoing charged particles.
The reliability of this approximation is closely related to the sequential decay
mechanism via intermediate emission of ¥Be (12C(0J) — a + ®Be — 3a). The
sequential mechanism was approved in the experiment [4] where the branching
ratio for the non-sequential decay >C — 3a is estimated to be less than 1%.

In calculations [9, 10, 11], the local two-body potential was used to under-
stand how sensitive are the characteristics of the O; state to variations of the
potential parameters. In addition, dependences of Mio, I', and the excited-state
rms radius R? on one of the parameters of V3 are studied provided other pa-
rameters of V3 (taken as a sum of two Gaussians) are chosen to fix Eg, E,, and
RW Tt is found that for any reliable three-body potential the values of I", M,
and R are located within the narrow intervals, which are marked by triangles
in Fig. 1. The calculations performed for two families of the two-body potentials
show that I", Mjs, and R® are comparatively stable under variations of the
two-body potential (Fig. 1). Thus, the results are robust to the variations of the
effective potentials and the calculated I" and Mjo overestimate the experimen-
tal values by a factor 2. This surprising agreement gives a clear evidence that
the dominant contribution to the final result comes from the s-wave part of the
interaction.

To provide better agreement of the calculated and experimental values, the
recent caculations have been performed by using the effective two-body potential
properly describing the a@ — « interaction also in higher partial waves. The pre-
liminary results will be presented below while the details of calculations will be
published elsewhere [12]. The three-parameter’s Woods-Saxon form is found to
be suitable for the three-body potential V3, which turns out to be flexible enough
to fix at the experimental values Ey,, E,, and mostly RM . As a result, a set of
two-body potentials and corresponding V3 is found, for which both I' and Mo
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Figure 1. Dependences of the monopole 0; — 01+ transition matrix element Mz vs the
width I' of the 0F state for two families of local two-body potentials (shown by solid and
dashed lines). The point with errorbars shows the experimental data I' = 8.5+ 1.0 eV [19] and
Mo = 5.48 4 0.22 fm? [19]. The corresponding dependences R vs I" are shown in the inset.

are in excellent agreement with the experimental data (Fig. 2). Correspondingly,
the transition radius Ry, varies within the interval 4.84 fm < Ry < 4.90 fm being
slightly above the experimental value 4.396 + 0.27 fm [19]. The Ry, is defined as
in [19] by B2 = >, (W) ‘ri‘ @(2)) /My, where 1y, is a center-of-mass position
vector of the k-th proton and a sum is taken over all protons.

W 2488
2.502
5.6 » 2.496
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2
M12(fm ) »m

v
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Figure 2. Monopole 0 — 07 transition matrix element Mi2 and width I" of the 0F state for
a set of seven two-body potentials. The point with errorbars shows the experimental data. The
ground-state rms radius R™ is fixed either at the experimental value 2.48 fm or at slightly

different values specified in the inset.
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In conclusion, it is found that the a-cluster model, in spite of its simplicity,
is amazingly effective in description of 2C (0) states. One should note that the
three-body calculations leave enough room for further improvement of the model.
In particular, the investigation of the electromagnetic (a-a bremsstrahlung) and
(a, ) reactions could be used for construction of the exact effective potentials.
Furthermore, the calculation of the 12C (0]) state is a necessary step towards
study of helium burning at ultra-low temperatures and high densities, which
takes place, e.g., in accretion on white dwarfs and neutron stars [20]. The present
approach is promising for calculation of the triple-a reaction below the three-
body resonance thus providing the unified treatment of the crossover from the
resonant to the non-resonant mechanism of the reaction.
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Abstract. Relativistic Faddeev equations for three-body scattering are solved
at arbitrary energies in terms of momentum vectors without employing a
partial wave decomposition. Relativistic invariance is incorporated withing
the framework of Poincaré invariant quantum mechanics. Based on a Malfliet-
Tjon interaction, observables for elastic and breakup scattering are calculated
and compared to non-relativistic ones.

A consistent treatment of intermediate energy reactions requires a Poincaré
symmetric quantum theory [1]. In addition, the standard partial wave decompo-
sition, successfully applied below the pion-production threshold [2], is no longer
an adequate numerical scheme due to the proliferation of the number of par-
tial waves. Thus, the intermediate energy regime is a new territory for few-body
calculations, which waits to be explored.

This work addresses two aspects in this list of challenges: exact Poincaré
invariance and calculations using vector variables instead of partial waves. In
Ref. [3] the non-relativistic Faddeev equations were solved directly as function
of vector variables for scattering at intermediate energies. A key advantage of
this formulation lies in its applicability at higher energies, where the number of
partial waves proliferates. The Faddeev equation, based on a Poincaré invariant
mass operator, has been formulated in detail in [4] and has both kinematical and
dynamical differences with respect to the corresponding non-relativistic equation.

The formulation of the theory is given in a representation of Poincaré in-
variant quantum mechanics where the interactions are invariant with respect to
kinematic translations and rotations [5]. The model Hilbert space is a three-
nucleon Hilbert space (thus not allowing for absorptive processes). The method
introduces the NN interactions in the unitary representation of the Poincaré
group and allows to input e.g. high-precision NN interactions in a way that re-
produces the measured two-body observables. However in this study we use a

* Article based on the presentation by Charlotte Elster at the Fifth Workshop on Critical Sta-
bility, Erice, Sicily, Received November 29, 2008; Accepted January 8, 2009.
** E-mail address: charlotte.elster@gmail. c®p
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Figure 1. The total elastic c.m. cross section for elastic (top left) and for breakup scattering
(bottom left) calculated from a Malfliet-Tjon type potential as function of the projectile kinetic
laboratory energy. The labels ‘R’ (‘NR’) stand for relativistic (non-relativistic) calculations. The
Faddeev calculations in the first order in ¢ are marked with ‘Ist’, the converged full Faddeev
calculations with ‘full’. To show the difference, the percentage difference between the relativistic

and corresponding non-relativistic calculations are displayed on the right.

simpler interaction consisting of a superposition of an attractive and a repulsive
Yukawa interaction with parameters chosen such that a bound state at gy = -
2.23 MeV is supported [4]. Poincaré invariance and S-matrix cluster properties
dictate how the two-body interactions must be embedded in the three-body dy-
namical generators. Scattering observables are calculated using Faddeev equa-
tions formulated with the mass Casimir operator (rest Hamiltonian) constructed
from these generators.

To obtain a valid estimate of the size of relativistic effects, it is important that
the interactions employed in the relativistic and non-relativistic calculations are
phase-shift equivalent. We follow the suggestion by Coester, Piper, and Serduke
(CPS) and construct a phase equivalent interaction from a non-relativistic 2N
interaction [6] by adding the interaction to the square of the mass operator. In
this CPS method the relativistic interaction can not be analytically calculated
from the non-relativistic one. However, there is a simple analytic connection
between the relativistic and non-relativistic two-body t-matrices

2m
/. rely __ /. nr
tre(pa p 72Ep ) - \/m2 + p2 + \/mQ + p/2 tnr(p7 p a2Ep )7

where QE;EZ = 2y/m? +p? and 2B} = % + 2m. This relativistic two-body t-
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Figure 2. The exclusive differential cross section for the reaction 2H(p,2p)n at 508 MeV labo-
ratory projectile energy for different proton angle pairs 1 — 62 symmetric around the beam axis
as function of the laboratory kinetic energy of one of the outgoing protons. The meaning of the
curves are the same as in Fig. 1, except that here ‘1’ denotes the 1st order Faddeev calculation,
‘F’ the fully converged one. In the curves labeled Ryin only relativistic kinematics is taken into

account. The data are taken from Ref. [10].

matrix t,..(p, p’; QE;el ) is scattering equivalent to the non-relativistic one at the
same relative momentum p [7]. This t-matrix is the input for the Poincaré in-
variant transition amplitude of the 2N subsystem embedded in the three-particle
Hilbert space obtained via a first resolvent method as layed out in Ref. [4].

By construction, differences in the relativistic and non-relativistic calcula-
tions first appear in the three-body calculations. Those differences are in the
choice of kinematic variables (Jacobi momenta are constructed using Lorentz
boosts rather then Galilean boosts) and in the embedding of the two-body in-
teractions in the three-body problem, which is a consequence of the non-linear
relation between the two and three-body mass operators. These differences mod-
ify the permutation operators and the off-shell properties of the kernel of the
Faddeev equations [9].

In Fig. 1 the total cross sections for elastic and breakup cross sections are
displayed as function of the projectile kinetic energy up to 1.5 GeV obtained from
our fully converged relativistic Faddeev calculation as well as the one obtained
from the first-order term, 7'% = ¢P, with P being the permutation operator for
three identical particles. It is obvious that, especially for energies below 300 MeV,
the contribution of rescattering teriys is huge. However, for extracting the size of
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relativistic effect, it is more useful to consider the relative difference between the
relativistic and non-relativistic calculations. In first order, there is essentially no
effect in the total elastic cross section, which is consistent with the observation
that the relativistic two-body ¢t-matrix is constructed to be phase-shift equivalent
to the non-relativistic one. The same comparison with fully converged Faddeev
calculations indicates that relativistic effects in the three-body problem increase
the total cross section for elastic scattering with increasing energy, whereas it is
slightly reduced in the total breakup cross section.

Considering exclusive breakup reactions, differences between a relativistic
and non-relativistic calculation are more pronounced and strongly depend on the
configuration. Though our two-body force is simple, we compare to a 2H(p,2p)n
experiment at 508 MeV [10] to see if our calculation captures essential features
of the measurement. Differences in the predictions of our relativistic and non-
relativistic calculations are very pronounced at this energy as can be seen in
Fig. 2, which shows selected angle pairs 6; — 03 from Ref. [10], which are sym-
metric around the beam axis. The cross section is plotted against the laboratory
kinetic energy of one of the outgoing protons. It is interesting to observe that
for smaller angle pairs the relativistic cross sections (RF) are considerably larger
than the non-relativistic ones (NRF). For larger angle pairs the situation reverses.
It is further noteworthy, that in the configurations of Fig. 2, which are close to
quasi-free, rescattering effects (or equivalently higher order contributions of the
Faddeev multiple scattering series) are very small (curves ‘1’ and ‘F’ are almost
identical). To show that peak-positions are given by kinematics, we added curves
labeled ‘Rg;,,’, which stands for a non-relativistic calculation in which only kine-
matics and phase space factors are replaced by the relativistic ones. We want to
note that the above comparisons do not involve a non-relativistic limit, instead
relativistic and non-relativistic three-body calculations with interactions that are
fit to the same two-body data are compared. All of the differences are due to the
different ways two-body dynamics is incorporated in the three-body problem.
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Abstract. The method of screening and renormalization for including the
Coulomb interaction in the framework of momentum-space integral equations
is applied to the three- and four-body nuclear reactions. The Coulomb effect
on the observables and the ability of the present nuclear potential models to
describe the experimental data is discussed.

The Coulomb interaction, due to its long range, does not satisfy the mathe-
matical properties required for the formulation of the standard scattering theory.
However, since in nature the Coulomb potential is always screened, one could
expect that the physical observables become insensitive to the screening pro-
vided it takes place at sufficiently large distances R and, therefore, the R — oo
limit should correspond to the proper Coulomb. This was proved by Taylor [1]
in the context of the two-particle system: though the on-shell screened Coulomb
transition matrix diverges in the R — oo limit, after renormalization by (an
equally) diverging phase factor it converges as a distribution to the well known
proper Coulomb amplitude and therefore yields identical results for the physi-
cal observables. A similar renormalization relates screened and proper Coulomb
wave functions [2].

The method of screening and renormalization can be used for the systems
with more particles [3], albeit with some limitations. Here we briefly recall the
procedure which is described in detail in ref. [4]. In the transition operators de-
rived from nuclear plus screened Coulomb potentials one has to isolate the diverg-
ing screened Coulomb contributions in the form of a two-body on-shell transition
matrix and two-body wave function with known renormalization properties. This
can be achieved using the two-potential formalism as long as in the initial/final
states there are no more than two charged bodies (clusters). At the same time
this procedure separates long-range and Coulomb-distorted short-range parts of
the transition amplitude, the former being the two-body on-shell transition ma-
trix derived from the screened Coulomb potential between the centers of mass

*Article based on the presentation by A.Deltuva at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received November 7, 20088@ccepted January 16, 2009.
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(c.m.) of the two charged bodies that is present in the elastic scattering only.
After renormalization this contribution converges towards its R — oo limit very
slowly but the result, the pure Coulomb amplitude of two-body nature, is known
analytically. The remaining part of the elastic scattering amplitude as well as the
amplitudes for transfer and breakup are complicated short-range operators that
are externally distorted by Coulomb. However, due to their short-range nature,
convergence with R after the renormalization by the corresponding phase fac-
tors is fast and, therefore, they are calculated numerically at finite R using the
standard scattering theory and making sure that R is large enough for the conver-
gence of the results. We solve Faddeev-like Alt, Grassberger, and Sandhas (AGS)
equations for three- and four-particle scattering [5, 6] using the momentum-space
partial-wave basis as described in detail in refs. [7, 8, 9] for three- and four-
nucleon scattering without the Coulomb force. However, the screened Coulomb
interaction, due to its longer range, compared to the nuclear interaction, brings
additional difficulties: quasisingular nature of the potential and slow convergence
of the partial-wave expansion. The right choice of the screening is essential in
resolving those difficulties. The convergence of the partial-wave expansion with
our new screening function [4] is fast enough and thereby allows us to avoid the
approximations used in the previous implementations [10, 11] of the screening
and renormalization approach and obtain reliable results.

The most important criterion for the reliability of the screening and renormal-
ization method is the convergence of the observables with the screening radius
R used to calculate the Coulomb-distorted short-range part of the amplitudes.
Numerous examples can be found in refs. [4, 12, 13]. In most cases the conver-
gence is impressively fast and only becomes slower for the observables at very
low energies. Furthermore, as demonstrated in ref. [14], our results for p-d elastic
scattering agree well over a wide energy range with those of ref. [15] obtained from
the variational solution of the three-nucleon Schrodinger equation in configura-
tion space with the inclusion of an unscreened Coulomb potential and imposing
the proper Coulomb boundary conditions explicitly.

The present method was used to study three-nucleon hadronic and electro-
magnetic (e.m.) reactions in refs. [4, 16, 17, 18]. Furthermore, it was applied to
the nuclear reactions dominated by three-body degrees of freedom like av+d [12],
d+12C, and p + Be [19, 20]. Finally, in refs. [9, 13, 21] all elastic and transfer
four-nucleon reactions below three-body breakup threshold have been studied.
The importance of the Coulomb at low energies is demonstrated in Fig. 1 for
elastic d-a scattering. It may be very strong at all energies in p-d breakup and
three-body e.m. disintegration of 3He in kinematical regimes with low relative
pp energy where the Coulomb repulsion converts the cross section peak obtained
in the absence of Coulomb into a minimum as can be seen in the the experi-
mental data as well [16, 18]. However, even after the inclusion of the Coulomb
interaction and the three-nucleon force some discrepancies between experiment
and theory like the space star anomaly in p-d breakup [4, 18] and the A,-puzzle
in p-d [4, 15] and p->He [13, 24] elastic scattering still persist. Furthermore, 4,
is described quite well in the n-3He and p-2H elastic scattering but not in the
p+3H — n+3He transfer reaction. A very strong Coulomb effect manifests itself

90
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and supports Pauli-forbidden bound state which is projected out are shown as solid (dashed)
curves with (without) Coulomb. The results including Coulomb but with local repulsive N-«

S-wave potential are given by dotted curves. The experimental data are from refs. [22, 23]
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Figure 2. Differential cross section of a-d breakup at E, = 15 MeV in selected kinematical

configurations. Curves as in Fig. 1. The experimental data are from ref. [22, 23]

in the a-d breakup where the shift of ap P-wave resonance position leads to the
corresponding shifts of the differential cross section peaks as shown in Fig. 2.
In addition, Figs. 1 and 2 as well as the results of ref. [12] demonstrate the su-
periority of the attractive N-a S-wave potentials supporting a Pauli-forbidden
bound state that is projected out over the local repulsive S-wave potentials which,
because of their simplicity, are very often used in the configuration space calcu-
lations of resonances and e.m. reactions.

In conclusion, the Coulomb interaction between the charged particles was
included in few-body scattering calculations using the old idea of screening and
renormalization [1] but with novel practical realization that avoids all the ap-
proximations of the previous works [10, 11] and yields fully converged results.
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Abstract. An overview is given on experiments under progress at the An-
tiproton Decelerator of CERN which aim at precision spectroscopy of an-
tiprotonic helium, an exotic three-body system containing an antiproton, a
helium nucleus, and an electron. An outlook towards the next generation Fa-
cility for Low-energy Antiproton and Ion Research (FLAIR) at Darmstadt is
presented.

1 Introduction

The only currently available source of low-energy antiprotons is the Antiproton
Decelerator (AD) which is in operation at CERN since 2000. Two collaborations,
ATRAP and ALPHA, are devoted to the formation of cold antihydrogen (pe™)
with the goal of measuring the 1s-2s two-photon transition for a comparison to
hydrogen as a test of CPT symmetry. The ASACUSA collaboration, of which
the author is a member, studies exotic atomic systems containing an antipro-
ton as well as collision processes with low-energy antiprotons. Most relevant for
this conference is the precision spectroscopy of antiprotonic helium (pHe™) as
well as the plan to measure the ground-state hyperfine structure of antihydro-
gen as a complementary measurement to the 1s-2s spectroscopy pursued by the
other two collaborations. Just recently a fourth collaboration AEGIS has been
approved which aims at a study of the gravitation of antimatter using ultra-cold
antihydrogen.

A broader physics program will be available at the FLAIR facility (Facility
for Low-energy Antiproton and Ion Research) planned at the FAIR facility in
Darmstadt. The availability of cooled antiprotons in pulsed and continuous ex-
traction at a factor 100 lower energy than at the AD will greatly improve the
progress of current experiments and make many new experiments in nuclear and
particle physics possible as described in [1].

* Article based on the presentation by E. Widmann at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received December 22, 2008; Accepted January 9, 2009.
** E-mail address: eberhard.widmann@oeaggic.at
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2 Antiprotonic helium: a unique three-body system

Antiprotonic helium is an exotic three-body system consisting of a helium nu-
cleus, an antiproton and an electron (He?T—p-e~ = pHe™) which has a series of
long-lived metastable states with principal and angular quantum numbers of the
antiproton of (n,l) = 31...39 (cf. Fig. 1). It has been studied in great detail by
the PS205 collaboration at LEAR [2] and by ASACUSA at the AD [3].

. Energy (a.u.)
He 50
lonized pHe ™ ___.
1,=0.90 a.u. Fel1/2 Il
(246 eV) L3 v
J=l1
Vhe*
He’ -3.0F Vue
VHE™
JU=LH
Fr=L+1/2 4{ Vert
! Je=L

T 0(s) 30

Figure 1. Level diagram of antiprotonic helium. Straight lines correspond to metastable states
(life time ~ ps), wavy lines denote Auger-dominated short-lived states (life time < 10 ns).
The lines shown in the left-side diagram actually consist of quadruplets due to the magnetic

interaction of its constituents, leading to the hyperfine structure shown at the right-hand side.

In a series of laser spectroscopy experiments, the energy levels of the an-
tiproton have been measured with increasing precision, while the theoretical
description has similarily improved. Fig. 2 left shows a comparison of the most
recent laser spectroscopy results with two calculations by Korobov and Kino. The
agreement of our experimental values to the caclulations of Korobov is in general
within the experimental error bars which are of the order of 20 ppb. Since theory
uses the numerical value of the proton mass for thr antiproton, a comparison of
theory and experiment can be used to extract a CPT test of the proton and
antiproton mass. Averaging over all transitions measured in p*He"and p>He™,
a precision of 2 ppb was reached for the relative difference of p mass and charge.

A second quantity of interest for testing CTP with pHe"is the magnetic
moment g of the antiproton, which is known experimentally only to 0.3 % [7].
It manifests itself in a unique hyperfine splitting (cf. Fig. 1) where the dominant
splitting arises from the interaction of the antiproton magnetic moment and the
electron spin magnetic moment (hyperfine HF structure), while kp leads to a
finer splitting (super hyperfine SHF structure). Using a laser-microwave-laser
method, the two M1 transitions labelled I/f_"fF and vy in Fig. 1 were measured
first in 2001 to a precision of 30 ppm [8], slightly better than the estimated error
of theory of ~ 10~% [9]. Since the M1 transitions are dominated by a spin flip of
the electron, they are only indirectly sensitive to ps. The combination Avyp =
Vap — VﬁF = I/;HF — Vgyp on the other hand is directly proportional to p, but
since it is determined by subtractingtwo large frequencies, its accuracy is much
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Figure 2. Left: comparison of the most recent laser spectroscopy results (filled circles with
error bars [4]) with two calculations by Korobov (squares [5]) and Kino (triangles [6]). Plotted
is the relative deviation of theory and experiment in ppb (10%). Right: Achieved precision of

the laser spectroscopy of antiprotonic helium as a function of time.

smaller. The 2001 result corresponds to an error of 1.6 % .

With the aim of improving the experimental accuracy by a factor of 10, a new
experiment was performed using a newly developed seeded pulsed laser system
similar to the one employed for the precision laser spectroscopy experiments
[4]. In a first step, an statistical uncertainty for VﬁF of 2.3 ppm was already
achieved [13] (cf. Fig. 3 left). Likewise, the statistical error on Avyr was reduced
to 0.2 %. Fig. 3 (right) shows a comparison of our experimental results for Avyp
compared to several theoretical calculations. As can be seen, the experimental
value moved closer to theory, although there is still a difference of ~ 20 to the
most precise calculation BK [9]. This might be explained by a density shift of
the resonance lines as predicted by Korenman [14], so further measurements
at different densities as well as checks of other possible systematic errors are
needed before a final comparison to theory to extract a value of the antiproton
spin magnetic moment can be made.
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Figure 3. Left: Recent results of the microwave spectroscopy of antiprotonic helium. Right:
Comparison of two experimental results with theoretical calculations (K [10] YK [11] KB [9]

BK [12]) for Avur.
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4 Experimental Low-Energy Antiproton Physics

3 Outlook

Antiprotonic helium is a unique example of how the common efforts by theory
and experiment can advance the understanding of the structure of a three-body
system, which can generate a means to make precision comparison of the prop-
erties of its constituents. The laser spectroscopy measurements have lead to one
of the most sensitive tests of CPT in the baryon sector, and the microwave spec-
troscopy will provide a value of the spin magnetic moment of the antiproton with
higher precision than currently known.
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Abstract. It is well known that the system made up of a fixed proton and
antiproton and an electron (or a positron) has no bound states if the inter-
nuclear distance R < 0.639aq. In this paper, I consider the more complicated
system in which the electron and the positron are both present and investi-
gate the possibility of obtaining a lower bound on the value of R for which
the system has no bound states. I also investigate the implications of the
existence of bound states of the simpler, one light particle system regarding
bound states of the more complicated system.

1 Introduction

The system made up of a fixed proton and antiproton and an electron or a
positron is a particular case of a charged particle in a dipole field. Many calcu-
lations have been carried out on this system.

The first determination of the critical internuclear distance, R., below which
the dipole cannot bind an electron (or a positron) was carried out by Fermi and
Teller. They stated that R, = 0.639ag. No details were given of the calculation.

Turner [1] gives a good overall review of the calculations on this system, start-
ing with Fermi and Teller. Crawford [2] was able to show that if the internuclear
distance R > R., a countable infinity of bound states exists.

It is of interest to consider the more complicated system in which both the
electron and the positron are present. In this case the threshold for binding moves
down from zero to *% a.u., the ground state energy of positronium (Ps). Clearly,
there is no binding if R = 0. It is reasonable to assume that there exists a critical
value of R, R.,, below which the nuclei are unable to bind the electron and the
positron.

*Article based on the presentation by E. A. G. Armour at the Fifth Workshop on Critical
Stability, Erice, Sicily, Received November 28, 2008; Accepted January 9, 2009.
** E-mail address: edward.armour@nottingham.ac.uk
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2 Binding in some few-body systems containing antimatter

Armour et al. [3] showed using a variational calculation with trial function
with 32 basis functions in terms of prolate spheroidal coordinates, some of them
Hylleraas-type functions and one basis function representing very weakly bound
positronium, that R., < 0.8ag. More recently, Strasburger [4] showed using a
variational calculation with a trial function containing 64 to 256 explicitly cor-
related Gaussian functions that R., < 0.744a0.

In this paper, I will investigate the possibility of obtaining a lower bound on
R, and other conditions on the existence of bound states.

2 Towards a lower bound on R,

One way to obtain a lower bound on R., would be to show that R., > R, =
0.639aq, the critical value for ppe~ and ppe’, when only the electron or the
positron is present. This could be proved if it were possible to show that:

A bound state of HH at R < R, => A bound state of

ppe” and ppet at R < R.. (1)

For we know that no such bound state of ppe™ and ppe™ exists. Thus taking the
contrapositive of (1) = no bound state of HH at R < R..
Can we prove proposition (1)?
The Hamiltonian, Hy, for the system is of the form
ﬁ:—lv2—1v2+V—i=ﬁd- 1 (2)
R ri2 Py

where V' is the dipole potential. H s can also be expressed in the form

—i—V—i, (3)

& 172 2
Hf:_zvp_v 7112

12
where p is the position vector of the centre of mass of the positronium w.r.t. the
centre of mass of the nuclei. 715 is the position vector of the positron (particle 2)
w.r.t. the electron (particle 1).

Suppose that a bound state of the full system does exist for some value of R,
i.e., there exists some square-integrable function ¢(71,73), within the domain of
H ¢, for which

Hip = Ed (4)
where

E=-1—¢ (e>0). (5)

If more than one exists, we shall assume that ¢ is the lowest in energy.
It follows from (4) that

ﬁfc¢c = E¢ca (6)
where R R
Hy.=CH;C™',  ¢.=Co. (7)
Take
. ari2
O =exp |:1+(57“12:| ’ (8)
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where a and § are positive constants. Note that C' is non-singular as 15 > 0 and
6 > 0. Since a
lim C =exp {f] , 9)

T12—00 )
as ¢ is square-integrable, so is ¢..

As § — 0+, ¢. becomes more and more diffuse, and the effect of the Coulom-
bic interaction becomes less and less. The aim is to use this to uncover the role
in binding of the dipole potential V in H I

It follows from equation (5) and (6) that

<¢c | I;[fc | ¢C>
(@c | dc)
It is shown in ref. [5] that it follows from this that

<¢c ‘ ﬁdip | ¢c> < <¢c | % | ¢c>
(Pe | de) = (¢e| be)

A tentative proof is given in ref. [5] that it follows from (11) that

<¢c | ﬁdip | ¢c>
(¢ | dc)

This result would imply that, for sufficiently small , there exists a square-
integrable function, ¢., such that

<¢c | }AIdip | ¢c>
(¢c | de)

It follows from the variational theorem that a bound state of the system exists
when the interaction between the electron and the positron is set to zero. This
would imply that a bound state of the dipole system made up of the proton and
the antiproton and the electron or the positron exists.

—E=-1_¢ (e>0) (10)

—€ (e>0). (11)

<WwiT+0@B)—e (€>0; 0<w< ). (12)

< 0. (13)

3 Qualification

We know from Strasburger’s variational calculation [4] that for R = 0.8ay,
¢ > 0.0013148 a.u. (14)

Also we know from Wallis et al.’s exact solution [6] for the system made up of
a proton, an antiproton and an electron or a positron, that in the case of the
binding energy, ¢,;, for the two non-interacting particles, if R = 0.8ay,

€ni < 0.0000464 a.u. (15)

Take
€ > 0.0013148.

The inequality (13) implies that it should be possible to find a ¢ such that

<¢c | ﬁdip | ¢c>
(¢ | @)

This is a contradiction. Further investigation is necessary to determine its cause.

< —€p; = —0.0000464.
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4 Binding in some few-body systems containing antimatter

4 Implications from the existence of a bound state of the non-
interacting system regarding the existence of bound states of the
interacting system

Suppose that the electron and the positron interact through a potential, —vy/r12,

where v > 0. Suppose ﬁdip has a bound state, ¢g4, of energy —n, where n > 0.
Recall that there are a countable infinity of bound states of the non-

interacting system if R > R.. Thus, for sufficiently small v, it can be shown

that )
(Ga | Hp(7) | ¢a)
(Ga | Pa)

for as many of these states as we please [5]. It is straightforward to show using
the Hylleraas—Undheim theorem that it follows from (17) that if v is such that
N such states exist, there must exist M bound states where 1 < M < N. M can
be expected to increase as N increases.

Strasburger [4] has shown that a bound state of H #(7) exists for v = 1 if
R > 0.744a9. It would thus seem likely that v, > 1 if R > 0.744ay.

<—-17 (16)

5 Conclusion

I have set out a tentative proof that R, > R., where R, = 0.639q0 is the critical
value below which the proton and the antiproton cannot bind an electron (or a
positron), on its own. The proof is not satisfactory at present as it gives rise to
a contradiction. I hope to be able to resolve this problem.

I have shown that it is comparatively straightforward to make predictions
about the existence of bound states of the system containing both light particles
from known results for the one particle system, provided the interaction between
them is of the form —~v/ri2, where ~ is a sufficiently small, positive number.

References

1. Turner, J. E.: Am. J. Phys. 45, 758 (1977).

2. Crawford, O. H.: Proc. Phys. Soc. (London) 91, 279 (1967).

3. Armour, E. A. G., Zeman, V. and Carr, J. M.: J. Phys. B 31, L679 (1998).

4. Strasburger, K.: J. Phys. B 35, L435 (2002).

5. Website, Conference on ‘Critical Stability’, Ettore Magorana Centre for Scientific

Culture, Erice, Sicily, October 2008.
6. Wallis, R. F., Herman, R. and Milnes, H. W.: J. Molec. Spectroscopy 4, 51 (1960).

100



Few-Body Systems 0, 1-6 (2009) FeW—
Body
Systems

@© by Springer-Verlag 2009
Printed in Austria

Can one bind three electrons with a single
proton?*

D. Bressanini"**, R. Brummelhuis? ***T, P. Duclos® ', R. Ruamps®*

! Dipartimento di Scienze Chimiche, Fisiche e Matematiche - Universita’dell’Insubria, Italy
2 Université de Reims, FRE 3111, Département de mathématique et informatique, Moulin de
la Housse, BP 1039 51687 Reims cedex 2, France

3 Centre de Physique Théorique de Marseille UMR 6207 - Unité Mixte de Recherche du CNRS
et des Universités Aix-Marseille I, Aix-Marseille 11 et de I’ Université du Sud Toulon-Var -
Laboratoire affilié & la FRUMAM, Luminy Case 907, 13288 Marseille cedex 9, France

47 place des Pradettes 31100 Toulouse

Abstract. Of course not for an ideal H™~ atom. But with the help of an in-
tense homogeneous magnetic field B, the question deserves to be reconsidered.
It is known (see e.g. [BSY, BD]) that as B — oo and in the clamped nucleus
approximation, this ion is described by a one dimensional Hamiltonian

N
do-5 —Zb@)+ D dwi—wy) acingin LARY) (1)
=1

1<i<j<N

where N = 3, Z = 1 is the charge of the nucleus, and ¢ stands for the well
known “delta” point interaction. We present an extension of the “skeleton
method”, see [CDR1, CDR2], to the case of three degree of freedom . This is
a tool, that we learn from [R] for the case N = 2, which reduces the spectral
analysis of (1) to determining the kernel a system of linear integral operators
acting on the supports of the delta interactions. As an application of this
method we present numerical results which indicates that (1) has a bound
state for Z =1 and N = 3.

*Article based on the presentation by P. Duclos at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received December 16, 2008; Accepted January 27, 2009.
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Statistics, Malet Street, WC1E 7THX, London, UK
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2 Can one bind three electrons with a single proton?

1 Introduction

It is known by Lieb’s inequality [L] that an atom with a nucleus charge Z and
an infinite nuclear mass can bind at most N electrons with NV < 2Z + 1, so that
the answer to the question posed in the title is no for such an atom. Even it
is strongly believed and numerically and experimentally verified that the bound
should be N < Z + 1. However if one puts the atom in an intense homogeneous
magnetic field the number of electrons that can be bound by a nuclear charge Z
may increase drastically. The Hamiltonian in such conditions reads

B(N, 2) :Z

j=1 173l 1<j<k<N

B/\T]) 7 1
RS DR

where r; is the position of the 4™ electron with respect to the fixed nucleus and
B is a constant magnetic field of strength B. If one introduces the critical number
of electrons as (spect ;X stands for discrete spectrum of X)

Ne(B, Z) := max{N,spect ;JH?(N, Z) # 0}
it was shown in [LSY, Th. 1.5] that

N.(B,Z)

lim inf > 2

Z&%Hoo
and they conjectured that the above limit should be indeed 2. The main moti-
vation of the present work is to start the study of the ratio N/Z.(B, N) with

Ze(B,N) := inf{Z, spect JH?(N, Z) # 0}

for finite Z and N and large B in order to explore how many electrons a charge
Z can bind thanks to this strong magnetic field.

The mechanism by which this binding enhancement occurs is well understood:
high intensity magnetic fields make the atom one dimensional. It has even been
shown, see [BD, Th.1.5], that HZ(N, Z), restricted to any fixed total angular
momentum along the magnetic field axis, is asymptotic in the norm resolvent
sense to a rescaled version of (1) as B — oo, at least for spectral parameters
in a suitable neighbourhood of the bottom of the spectrum of H?(N, Z). Thus
if we prove that (1) has a discrete eigenvalue for a given charge Z, we can
guarantee that this remains true for H?(N, Z), for a large enough intensity of the
magnetic field B. To appreciate the importance of this binding enhancement we
shall compare the ratio N/Z.(B = oo, N) with the same ones for zero magnetic
field with bosonic statistics, see Table 1.

As often in these atomic problems it is convenient to work with the following
rescaled version of (1)

A
=D -5 @) HA D -, A= (3)

i=1 1<i<j<N
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We also remark that to prove the existence of a bound state for N = 3 we
need only consider h := h(3,7) in the bosonic sector, see [BD, Th. 1.8 and the
discussion in §IX], providing we take the part of H®(N,Z) with total angular
momentum with respect to the magnetic field axis M > %N(N —1) with N = 3,
ie. M > 3.

2 Simple variational approaches

We define a critical value of Z attached to (1) as follows

inf{Z, spect 4h(N,\ = l) # 0}

Z(N) = -

which may be considered according to the discussion in §1 as Z.(B = oo, N). It
is natural to try to find a wave function ¥ so that (h¥,¥) is below X(Z = 1/)\),
the infimum of the essential spectrum of h; X'(Z), which, by the HVZ theorem, is
equal to inf ~(2, A), is known only numerically but thanks to the skeleton methods
of Rosenthal, [R, Table I, the curve Z — X(Z) is known with a fairly good
accuracy, sufficient for our purposes, see the solid curve in Figure 1 below. The
trial function we take is ¥ () := Pyose H?:1 aze~ 19T g, > 0 where Ppos denotes
the projector on the functions which are invariant under the exchange of particles.
With a1 = as = a3 = a one gets: (hW,¥) = %aQ —3a + %a and optimizing over
a leads to (hW,¥) = —2(\ — 2)%. Requiring that this value is below X gives
20(3) < 1.75. Then with a two parameter function with a1 = as = a and a3 = b
we get

8a?b ab
A + .
(Ba+b)(a+b) a+b

Looking for the highest possible value of A so that (h¥,¥) is below X by a
“contour plot”, gives 20(3) < 1.45. We have also done the computation with
three parameters and obtained Z.(3) < 1.32. One could of course try more
elaborate trial functions; we prefer instead to switch to:

B 4a2b B 4ab
(a+b)? a+d

2a3b + 4a2b?
(a+b)?

(hW, W) =

3 The skeleton method

Let 73, resp. 7; j denote the trace (restriction) operators to the plane z; = 0, resp.
x; = x;. To identify these planes with R2, we choose an oriented basis in each of
them as follows: let {41, A2, A3} denote the canonical basis of R3

equ. basis normal trace op.
Tl = 0 b(l) = {AQ,A;J,} A1 T1
€Tro = 0 b(2) = {A3,A1} AQ T2
xr3 = 0 b(s) = {Al,AQ} Ag T3
T =9 | bW = {AILQAQ,A;),} 7_‘4\2/‘5‘41 = Ay | ui=T12
o = I3 b(5) = {142#2143’141} 7714\?’/%142 = A5 T5 := T2,3
r3 = I b(6) = {%,AQ} 7_14\1/;:'43 = A6 T6 = T3,1
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4 Can one bind three electrons with a single proton?

and define: (1;¥)(s) = zb(slbgz) + Sng)). Let H!(R?) denote the usual
Sobolev space and 7 : HY(R3) — @%,L?(R?) be defined by 7¥ :=
(MW, 7oW, T3W, 71 oW, T2 3W, T31¥). Let hg := —A/2 acting on L*(R3) and ro(E) :=
(hg — E)~! its resolvent. One can rewrite h := h(3,\) in the sense of quadratic
forms as h = ho+7*g7 where g stands for the 6 x 6 diagonal matrix with diagonal
(=1, —1,—=1,A\/vV2,A\/v/2,\/\/2). If we let r(E) := (h— E)~! then one has using
the second resolvent equation that r(E) = ro(E) — ro(E)T*S(E) " 11ro(E) with
S(E):=g '+ K(E) and K(E) := 7ro(E)7*. We shall use a theorem (see e.g.
[CDR2, Th. 2.3] for a proof) which asserts that

X(Z) > —k? € spect gh <= ker S(—k?) # {0}. (4)

It will be easier to work in the Fourier image and to perform a scaling so that

—

S(—k?) appears to be unitarily equivalent to k(g~'k+ K (—1)). In view of (4) we

have to find k > v/—X so that ker g~ 'k + K/(_—\l) # {0} where the hat stands for
the Fourier transform. Such a spectral problem in & is sometimes call an operator

pencil. We shall call g1k + K/(——\l) the skeleton of h. K(—1) is a 6x6 matrix of
integral operators on L?(R?). To give a flavour we explicitly write down two of

them; with the notations: Ty := K;;(—1), Ti j := miro(—1)77
6(q1 — p2)
m (01 + 93 +43) +2)

— Slp —
To(p.q) = riro( Dt = 22=9 13,05, ) =

VP +2

It turns out that these integral operators 7; ; depend mostly on the angle between

the planes on which 7; and 7; operate their restriction. That is why we adopt
the following notations: Tg = T2, T% = T4, Tg = 115, Tg = Ty 5. Thanks
to the fact that we are working in the bosonic sector, the skeleton reduces by
symmetry to

—k + Tp + 2T% 37%
2 4

)
3(T% )* M2k + Ty + 27 ©)
4

with (et(p, q) == ¥(q:p)) T = % (Tg + T%), Té =4 ((1 + )T +f%) . Mul-
tiplying (5) on the left by the diagonal matrix with diagonal (1, \/v/2) we arrive
at a classical but non selfadjoint eigenvalue problem. We analyse its spectrum
numerically using the set of 9 trial functions ®3(p) = ¢g, (p1)¢s, (P2), with
B €{0.27,1.7,6}* and pg,(u) := exp(—F;u?), u € R. We get the highest (gen-
eralized) eigenvalue k of (5) as a function of A see Figure 1. This shows that

Z.(3) < 0.86.

Although we do believe that this value 0.86 is very likely to be an upper bound

on 25(3) we warn the reader that beside the uncertainty due to numerics there
is also a gap in our reasoning since we are not yet able to justify our use of
variational technics for a non selfadjoint operator.
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k —K?
-06

-0.8

0.2 0.4 0.57 0.8

Figure 1. On the letf: the dotted line gives the highest eigenvalue of (5) and the solid line
the essential spectrum of (3). On the right: the square dots stand for the energy of the three
electrons atoms in R® with bosonic statistics obtained by the Diffusion Monte Carlo method

[BMBM] and the circle dots for the corresponding two electrons system.

Table 1. Critical ratio

N 2 3
N/Z,(0,N) 219 1.71
N/Z.(N) 531 >348

4 Conclusions

As announced in the introduction, we display in Table 1 the numbers of electron
per unit of nucleus charge at the critical values of these charges. We have used
Z,(0,2) ~ 0.9112 from [StSt, (2.12) and references therein] and Z,(2) ~ 0.377
from [R]. Z.(3) has been studied in §3. In order to estimate the critical charge
Z(0,3) for binding three bosonic electrons we used the Diffusion Monte Carlo
method [BMBM], which is known to give exact results, within the statistical
uncertainty of the method, for bosonic systems. This method employs a guided
random walk that sample the exact, unknown ground state function. To guide
the random walk and reduce the statistical uncertainty of the results we used a
properly symmetrized guiding function of the kind

3

W = Phose | [ exp(=laalri) [T ex(birig/ (1 + cijrig).
i=1 i<j

The parameters have been optimized for each value of A = 1/Z. We performed
simulations for A = 0.1,0.2,0.3,0.4,0.5,0.6. Comparing the energies with the
corresponding ones of the 2-body system we located the critical A between 0.5
and 0.6. In order to locate it more precisely we performed additional simulations
in that interval, at steps of 0.025, fitted the results, for both two and three body
systems, with quartic polynomials and computed the intersection. We estimate
Ae = 0.570, see Figure 1 on the right.
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Abstract. We study the bound states of relativistic hydrogen-like atoms
coupled to strong homogeneous magnetic fields, assuming a fixed, infinitely
heavy nucleus. Working in the adiabatic approximation in which the electron
is confined to the lowest Landau level, we show that the corresponding Dirac
Hamiltonian always has an infinite discrete spectrum accumulating at mc?,
m being the electron mass, and that, as the field strength increases, its eigen-
values successively descend into the lower part of the continuous spectrum,

(—00, —mc?]. This phenomenon is for large B roughly periodical in log B.

1 Introduction

The Dirac Hamiltonian for a hydrogen-like atom with nuclear charge Z in a
constant magnetic field B of size B in the z-direction is given by

DBzDE—%,Dﬁzﬁ-@+m+ﬁ, (1.1)

where we use coordinates r = (z,y, z) € R® and where p = i~'V,.. Furthermore,

v = aZ with a the fine structure constant, § and @ = (ag,ay,a;) are the
Dirac matrices:

0 i . 0 I
= (o 5 ) G=ewa 5= (5 1),

*Article based on the presentation by R. Brummelhuis at the Fifth Workshop on Critical
Stability, Erice, Sicily, Received December 16, 2008; Accepted January 27, 2009.
** B-mail address: raymond.brummelhuis@univ-reims.fr
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2 Relativistic hydrogen is strong magnetic fields

with o; the well-known Pauli matrices, I is the 2 x 2-identity matrix, and A is
the vector potential, which we choose as A := B Ar = 1B (—y,x,0).

1.1 Spectral decomposition of D(’)B

Since A has a component 0 in the z-direction, we can decompose D(]]g into a
transversal and a parallel operator with respect to the magnetic field: Dé3 =
D(thr + Dy, //, where Dy // := a.p. + #m is independent