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Preface

This issue contains the Proceedings of the Workshop on the Critical Stability of Few-
Body Quantum Systems, held at Erice, Sicily (Italy) from October 10 to 18, 2008.

This was the fifth Workshop on this subject, after Trento (1997), Les Houches (2001),
Trento (2003) and Dresden (2005). As for these previous workshops, emphasis was put
on the interdisciplinary character, with participants coming from theoretical chemistry,
atomic, nuclear and particle physics, and mathematical physics and some of the topics
touching few-body correlations in large systems, or applications to astrophysics.

To avoid too spread a variety of subjects, we suggested contributions on the following
topics:

• Exotic hadrons,

• Antiproton physics,

• Light nuclei and hypernuclei,

• New methods in nuclear physics,

• Efimov states,

• Resonances, scattering on composite targets,

• Rigorous results, in particular for Coulomb systems,

• Traps,

• Atomic clusters

• Few-body correlations in large systems,

• Applications to Astrophysics.

The Workshop was organised in the framework of the School of Critical Stability, whose
Director, André Martin, gave an introducing lecture, presenting the Ettore Majorana Cen-
tre of Erice, its history and its ongoing activities.

We had nearly fifty participants, coming from India, Brazil, United States and for most
of them, from nearby or remote European countries.

As for the three previous workshops, (Few-Body Syst. 31 (2002) 71-266; 34 (2004) 1-
208; 38:55-219,2006), the proceedings are published as a special issue of Few-Body Systems,
this ensuring a widespread diffusion. We thank the editors and staff members for their help.
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In the name of Professor Antonino Zichichi, I would like to welcome you at
the Ettore Majorana Foundation and Centre for Scientific Culture, here, in Erice,
for this workshop on Critical Stability of Quantum Few-Body Systems.

Since many of you are coming here for the first time, I would like to say a
few words on Professor Antonino Zichichi and the founding of the Centre; Ettore
Majorana; How I myself got interested in “Critical Stability”.

Antonino Zichichi and the Centre

Antonino Zichichi was born in Trapani, the city by the sea that you can see
from here. When he was young he used to go up to Erice on week-ends with
friends. Antonino Zichichi is a great experimental physicist in the field of sub-
nuclear physics. He has performed experiments at CERN, Frascati (near Rome)
and DESY in Hamburg. I shall only present a subset of his experiments, and I
shall not follow the chronological order.

• He was a member of a team of 6 physicists who measured for the first
time, at CERN, the anomalous magnetic moment of the muon, checking
the prediction of Schwinger (improved later by many others).

• In inelastic collisions he has discovered the “leading particle effect” and
the “effective energy”.

• He has invented a method to discover heavy leptons, heavier than the
electron and the muon. He has performed an experiment at Adone, the
Frascati electron-positron collider. This experiment gave a negative result
because the energy of Adone was too low. However, later, at the SLAC
collider, which had higher energy, in California, Martin Perl, using the
same method, discovered the τ lepton, and eventually received the Nobel
Prize for this discovery.

Now come two important experiments involving antiparticles:

• The PAPEP experiment, which is the observation of the annihilation of a
proton with an antiproton producing an electron-positron pair. This exper-
iment was extremely difficult because one had to fight against a tremendous
background. 6
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• He was able to observe, for the first time, at CERN, what he called the pro-
duction of “anti-matter”, in the form of anti-deuterons, i.e. a bound state of
an antiproton and an antineutron. Previously only “elementary” antipar-
ticles had been observed (I speak of particles which can be isolated, which
excludes quarks), antiprotons, antineutrons, positrons, positive muons. The
new thing was that he had observed composite systems. Many years later,
at CERN, physicists have been able to manufacture anti-hydrogen, made
of an antiproton and a positron (see Dan Brown “Angels and Demons”).

Perhaps this explains the particular ties and admiration of Antonino Zichichi
for P.A.M. Dirac. Paul Adrien Maurice Dirac was a British theoretician of
French–Swiss origin. When I asked him here, in Erice, in 1982, if it was cor-
rect that his ancestors were coming from Saint-Maurice, in Valais, Switzerland,
he answered “actually my great grand father was coming from Poitou and fled
to Switzerland to avoid being recruited in Napoléon’s army. There were people
more famous than me, coming from Poitou, like Mr. Cadillac”. Well, Dirac tried
and succeeded to find a relativistic equation for the electron, explaining the spin
of the electron, its magnetic moment and the fine structure of hydrogen. How-
ever, he fell on a major difficulty: His equation seemed to have negative energy
solutions which were unacceptable. He solved the problem and predicted the
existence of antiparticles with positive energy.

In your folders you will find texts by Antonino Zichichi explaining that in
his eyes, Dirac was may be greater than Einstein. It is true indeed that for what
concerns special relativity, Einstein was very courageous and made a big step, but
he picked ripe fruits, prepared by Maxwell, Poincaré, Lorentz, and Minkowski,
while what Dirac discovered was completely unexpected, and extremely important.
Quantum electrodynamics, and later the electroweak theory and QCD (the so-
called standard model) rest very heavily on the existence of antiparticles.

The big bang model works because there exists particles and antiparticles,
because “In the beginning. . . the light shineth in the darkness” (John, I, 1-5).
Now, why is our Universe dominated by particles, protons, neutrons, electrons,
etc., and not antiparticles? Andrei Sakharov proposed that this is due to CP
violation, seen first in K decays and now in B decays.

Last week, Kobayashi and Maskawa were given half of the Nobel prize for
explaining CP violation by postulating the existence of 3 families of quarks and
leptons (it has indeed been observed that there are 3 and only 3 families), leading
to an irreducibly complex mixing matrix for charged currents in weak interac-
tions, which explains CP violation. I cannot resist showing you (below, left)
a picture of the recipient of the second half of the 2008 Nobel Prize, Yoshiro
Nambu, taken in Erice in 1972.

I shall now discuss the public role of A.Z., limiting myself to a few points,
once more not in chronological order:

• A.Z. is a great populariser of science, which, he insists on that, is a part of
culture. Almost every Italian loves his TV programmes.

• When he was president of INFN (Istituto Nationale per la Fisica Nucle-
are), he played a major role. In particular he created the Gran-Sasso Un-7
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derground Laboratory, where very important experiments have been made
and are being made now, for instance one on neutrino mixing using neu-
trinos coming from CERN through the terrestrial crust.

• He convinced pope John-Paul II to rehabilitate Galileo Galilei.

• In 1963 he created here, in Erice, the Ettore Majorana Foundation and
Centre for Scientific Culture. Notice the word “culture”. Initially, there
was only one school, the “School of Subnuclear Physics”. Participants were
lodged in the cottages of “La Pineta” and the lectures were taking place in
a relatively small lecture hall in San Lorenzo. Now there have been about
200 schools and workshops on different subjects taking place taking place
(you have the list on the side of your folders), and more than 50 every
year. The Centre also became bigger. After the acquisition of San Rocco,
which became the centre of the “centre”, San Francesco was added and
later the Paul Dirac lecture hall was constructed behind the facade of the
San Domenico church, in ruins. Below (right) is a picture of the opening
ceremony in 1963. Antonino Zichichi stands between the great theoretician
Victor Weisskpof, left, former director of CERN, recipient of the Wolf Prize
and Sidney Drell, right, an excellent theoretician from SLAC, who played
later a considerable role in the problem of arms control.

Among the many workshops, I would like to single out the one on “world
emergencies” which I had the privilege to attend last year. At the time of the cold
war there were meetings between American and Russian experts on disarmament.
Now the subjects are climatic change, energy saving, aids, Alzheimer’s disease.

I would like also to come back on the school of subnuclear physics. The
2008 session was devoted to the memory of the American theoretician from
Harvard Sidney Coleman, who died recently. Sidney has been lecturing many
times in Erice. His lectures were fantastic and he received the prize of the best
lecturer. Yet he violated a sacred rule because, in spite of the posters that you
see everywhere and the sheets in your folders, Sidney smoked everywhere. I am a
witness that once his cigarette was finished while he was lecturing in San Rocco
dressed in his impeccable white suit . He stopped and said “Nino, can you ask
one of your slaves to bring me some cigarettes”. Sure enough he got his cigarettes
and continued lecturing. So any rule has exceptions!8



A. Martin 5

About Ettore Majorana

Ettore Majorana was a Sicilian theoretical physicist born in Catania in 1906. In
Rome, after a short time studying engineering, he moved to physics and joined
the Fermi group. He turned out to be a GENIUS (this is the word of Fermi!). He
has a relatively short list of publications in the field of atomic, molecular, and
nuclear physics because once he had found something he did not care to publish
it. Some of his most outstanding contributions are the Majorana neutrino which
is its own antiparticle and allows neutrino-less double beta decay, and particles of
arbitrary spins including what one would call now ”Regge trajectories”. I cannot
resist telling you a story that I heard from the great Gian-Carlo Wick. In 1931
Frédéric and Irène Joliot-Curie discovered a mysterious penetrating neutral ra-
diation produced in the bombarding of Beryllium by alpha particles. When their
communication to the French Academy of Science arrived in Rome, Majorana
exclaimed “idiots! they have not seen that it is the neutron” (in Italian”Stronzi,
non hanno visto che è il neutrone”). However he did not publish anything about
this, and the world had to wait for the experiment of Chadwick, in 1932, to know
that the neutron existed.

After Rome Ettore Majorana visited the group of Niels Bohr in Copenhagen
and the group of Heisenberg in Leipzig. After his return to Rome he got a
professorship in Naples.

In 1938 he took a boat from Naples to Palermo, was seen in Palermo and
then was supposed to return to Naples, but was never seen again. Did he commit
suicide or had just decided to disappear from the world?

• In favour of the suicide thesis is the fact that before leaving Naples he had
written to a friend that he was going to put an end to his life, not to be
sad, not to wear black dresses. He had a rather strange character, was very
shy, with a tendency to depression.

• in favour of the disappearance, is the fact that from Palermo he wrote
to the same friend that he had changed his mind, but that he would not
return to physics. Also the fact that before leaving Naples he took all his
money from the bank, and finally that he was a very religious man. Then,
where did he disappear? some people claim that he fled to Argentina, but
this seems extremely unlikely. The evidence is very weak. He may just
have disappeared somewhere in Sicily, in a convent for instance. This is
quite possible when you see Mafia chiefs disappearing without being found
during 30 years. In France there is the example of the great mathematician
Alexander Groethendick who disappeared some years ago and is very likely
still alive. Now assuming that Majorana disappeared, why? The thesis of
the great Sicilian writer, Leonardo Sciaccia is that he was so clever that
he knew already the terrible consequences of the work on nuclear physics.
This does not seem very likely since nobody in Rome had thought of fission
reactions (“I missed fission“ said once Fermi to Jack Steinberger). Yet
fission was to be discovered one year later.

Fermi was so desperate of the disappearance of Majorana that he asked Mus-
solini to undertake intensive investigations to find him. As we know they were9
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unsuccessful. Witnesses say that in Los Alamos, building the bomb, Fermi, faced
with a difficult problem, kept saying “If Ettore was here he would find the solu-
tion”.

For more about Ettore Majorana and the Erice centre, I recommend you to
read the book by Antonino Zichichi: “Ettore Majorana, his genius and his long
lasting legacy”.

Finally, I come to:

Critical binding and I

I believe that my interest in critical binding started from my contacts with the
Vienna school of theoretical physics, Walter Thirring, Harald Grosse and others.

In 1976, Thirring, Glaser, Grosse and I proved that the system proton-
electron- negative muon is not bound.

I was also much interested by the work of Hill who showed that the negative
hydrogen ion has one and only one bound state with natural parity, and also
by the work of Grosse and Pittner who showed that the same is true for un-
natural parity states. I was also impressed by Hill’s theorem that all systems
(A+, B−, B−) are bound.

In 1991-1992 with Jean-Marc Richard first, and then T.T. Wu, we under-
took a systematic study of systems of 3 unit-charge particles interacting by pure
Coulomb forces, using only very general properties such as convexity, and also
the typically French invention to represent any of these 3-body systems by a
point in a triangle.

In 2000 again with T.T. Wu but also A. Krikeb, we studied 3 body systems,
but, this time, with arbitrary charges. In particular we gave the first rigorous
proof that the system (α,p, µ−) is unstable. Yet, Semen Gerstein has shown that
(α−, p, µ−), (α,d, µ−) and (α, t, µ−) are metastable with increasing lifetimes. I
have the impression that this subject is not treated in this workshop. Yet this is
crucial for catalysed fusion.

Finally, I acted as go-between between Jean-Marc Richard and Jurg Frölich.
Jurg noticed that there was no rigorous proof that the hydrogen molecule was
stable. The only “proofs” were using the Born-Oppenheimer approximation. Jurg
and his student had a very complicated method of proof, but Jean-Marc proposed
a super-simple proof based on the fact that many years ago, Hylleraas and Øre
proved that the (e+, e−, e+, e−) system is stable (except for annihilation!), and
also on convexity. Later, Jean-Marc and his friends “proved” that all systems
(A+, A+, B−, C−) are stable. The quotations marks mean that even though they
used analytic methods in their variational approach, they made their calculations
for discrete values of the masses.

To finish, I would like to wish you a very successful workshop. Here again
I acted like a go-between, between Antonino Zichichi and the true organisers,
Jean-Marc Richard, co-director of the school, Aksel Jensen, Alessandro Kievski
and Laurent Wiesenfeld, the conveners. To them, to Antonino Zichichi who made
this workshop possible, and Fiorella Ruggiu for her very efficient help, I address
my deepest thanks.
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A Personal Journey Through Hadronic

Exotica∗

Kamal K. Seth,∗∗

Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA

Abstract. The search for exotic hadrons has been forever fascinating and
challenging. A review of many such searches, successful and unsuccessful, in
which the author has been involved, is presented.

1 Introduction

Exotica and Erotica differ only in one letter. They are equally addictive. Like
all addictions, they have consequences. They consume a lot of the resources.
They make you often do things you should not do. BUT, they are exciting, and
they give you a great surge of adrenaline.

I have to confess that over the years I have fallen for exotica, and often. So,
let me take you on a personal journey through exotica.

So, what is Exotic? Exotic has to be unexpected. Exotic has to have the
nature of the “forbidden fruit”. Exotic in hadronic physics often begins with
provocative suggestions by theorists, which drives experimentalists to search for
it, often at exotic cost (think Higgs). At other times, it begins with an unex-
pected experimental observation for which theorists come up with exotic expla-
nations (think J/ψ). I want to tell the story of the hadronic exotica, necessarily
from a personal point of view.

2 Chasing Exotica in Nuclear Physics

I began my career as a nuclear physicist. So, my first run in with exotica was in
the search for exotic nuclei. Nuclei are exotic if they are very rich in neutrons,
i.e., have an exceptionally large value of (N−Z)/A., or if they are just very heavy,
A� 240. In the 1970’s, there were no easy ways of making a nucleus which was
very rich in neutrons, like 18C with 6 protons and 12 neutrons. And so we went for
it by the very exotic pion double charge exchange (DCX) reaction (π+, π−). We
∗Article based on the presentation by K.K. Seth at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received December 12, 2009; Accepted January 8, 2009.

∗∗E-mail address: kseth@northwestern.edu11



2 A Personal Journey Through Hadronic Exotica

Figure 1. (Left) Claims for dibaryons. The ordinate shows calimed mass (points) and widths

(error bars). (Right) p+d→ p′+X at Tp = 800 MeV, Θ = 15◦: Vertical lines mark the masses

of the dibaryons claimed. (Upper panel) Differential cross sections. (Lower panel) Analyzing

powers.

discovered 18C by the reaction 18O(π−, π+)18C [1]. That was exciting. As I said
before, exotica is addictive. So, after 18C we went for 9He, 2 protons+7 neutrons,
(N − Z)/A = 5/9, by means of the reaction 9Be(π−, π+)9He [2]. We found it,
and Bethe called it “a drop of neutron star”. How much more exotic can you
get? Well, how about 6H by 6Li(π−, π+)6H. We tried and failed to find it, bound
or unbound [3].

So, running after exotica can lead to disappointments.
The other end of exotic nuclei is the superheavy nuclei. I have never worked

in this field. But Berkeley, Dubna, and GSI have crossed swords in claims about
who has the heaviest of the superheavy. After some embarrassing incidents, the
current winner is 294X114 with 114 protons and 180 neutrons [4]. That is exotic!

3 Chasing Exotica in Quark Physics

Quarks carry color, and only color-neutral hadrons, qq̄ mesons or qqq,
baryons exist in nature. In the quark bag model [5] hadrons with other color-
neutral combinations, such as (qqq)(qqq) dibaryons, or qqq̄q̄ four-quark state
can exist. de Swart and colleagues calculated the masses of scores of dibaryons [6]
and started a stampede for the search of dibaryons.

Lots of people started looking for dibaryons in their old experiments, an-
alyzing old bubble chamber pictures and claiming observation of scores of
dibaryons. As many as 40 dibaryon states were claimed in the mass range
1900 − 2300 MeV (Fig. 1). We thought we could become famous by pinning
these dibaryons down since we had orders of magnitude greater luminosity and
energy resolution available at the Los Alamos Meson Factory. Instead of becom-
ing famous for discovering dibaryons, we became infamous for killing all of
them. No Dibaryons anywhere in Fig. 2.12
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4 Pentaquark

But that is not the end of this story. If not two baryons making a dibaryon, how
about a baryon+a meson, or a color-neutral pentaquark? It surfaced a few years
ago by the claim by Nakano et al. of a narrow peak, called Θ+, with a mass of
M(Θ+) = 1540 ± 10 MeV, Γ (Θ+) < 25 MeV, in the invariant mass of K+n in
the reaction γn → K−(K+n) [7]. If true, it would have strangeness +1 and
at least five quarks/antiquarks. The object was so exotic that a stampede of
confirming claims flooded the literature. An equal number of non-observations
were reported. If you go to Google, you find 99,800 entries for pentaquark (before
this symposium), and it will be difficult to decide whether the pentaquark is alive
or not.

In a high-statistics repeat of their own measurement, JLab found that their
own earlier observation of Θ+ was false and no evidence for the existence of the
pentaquark exists [8]. However, rumor has it that Nakano et al. claim that they
still see the pentaquark in a high-statistics remeasurement.

So, once claimed, an exotic is difficult to kill! I end with a quote
from PDG08 summarizing the saga of the pentaquark: “The whole story — the
discoveries themselves, the tidal wave of papers by theorists and phenomenologists
that followed, and the eventual ‘undiscovery’ — is a curious episode in the
history of science.”

5 Glueballs and Hybrids

Since glue carries color, it is possible to have hadrons build of pure glue, called
glueballs |gg〉, and hybrid mesons containing glue, |qq̄g〉. These have been pre-
dicted since the inception of QCD [9].

Glueballs have generally the same JPC as qq̄ mesons, and they mix with them.
It is therefore essentially impossible to find a pure glueball. Nevertheless, brave
searches and claims and counter–claims have been made. The summary of the
situation is that pieces of the JPC = 0++ glueball are mixed into at least three
well–known isoscalar mesons, f0(1370, 1500, 1710) and the pure exotic, |gg, 0++〉
has been lost. A tensor JPC = 2++ glueball has had equally disappointing fate.
It has surfaced many times, but I believe it was firmly put to rest by us in a pp̄
measurement at LEAR (CERN) [10].

Hybrids |qq̄g〉 have an advantage over glueballs. They can have JPC =
1−+, 2+−, . . . which are not permitted for qq̄ mesons. Such objects are manifestly
exotic. In our π−p experiment (E852) at BNL we claimed to have discovered at
least three 1−+ mesons π1(1400, 1600, 2000), and a 2+− meson h2(1900) [11]. I
have to admit that while these hadrons are definitely not qq̄ mesons, they also
admit the possibility of being four–quark states, and not hybrids. In either case
they are exotic.

6 The H Dibaryon

The uuddss H dibaryon was predicted by Jaffe [12], but it became so exotic that
it was even considered a candidate for dark matter. Stubborn searches for the H13
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Figure 2. Comparing Positronium (e+e−) and Charmonium (cc̄) spectra.

were made for years at Brookhaven and KEK. The u, d quark dibaryons died a
long time ago, but the H dibaryon lived longer. By now, however, by common
consensus it is also considered dead. For a detailed history see [13].

7 Exotica in QCD

In Dec. 1974, a large narrow peak was disocvered at ∼ 3.1 GeV mass at
Brookhaven and SLAC [14] in e+e− formation and µ+µ− decay. It was the
J/ψ which launched the era of modern Quantum Chromodynamics (QCD).
It is amusing to note that barely four weeks later eight papers by theoretical
physicists (including four Nobel laureates) appeared in the Jan. 6, 1974 issue
of Physical Review Letters [15], offering explanations of what J/ψ might be.
Several of them were truely exotic explanations, like J/ψ was a bound state of
a baryon/antibaryon, or two spin–one mesons, or it was a member of a 15 ⊕ 1
dimensional representation of SU(4). Tells you that nobody is immune to
the seduction of exotica.

I have been talking too much about the exotics which failed to materialize.
Let me now, for awhile, focus on exciting physics which is not exotica, but
excitica (my construct for something very exciting).

8 QCD versus QED

The QCD potential which arises due to the exchange of a massless vector photon
is V (r) ∝ αem/r. The QCD potential due to the exchange of a massless vector
gluon is V (r) ∝ αstrong/r. Because free quarks do not exist, in QCD there is
an additional confinement term proportional to r.

With such close analogy to QED, it is interesting to compare the QCD
spectrum of charmonium with the QCD spectrum of positronium, with masses
and interactions miles apart. The similarity is nothing short of fantastic.
Nature repeats herself! with energy scales different by a factor ∼ 1010.14
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radius of the qq̄ potential.

9 Hyperfine Interaction in QCD

The Coulombic (∝ 1/r) part of the QCD interaction gives rise to the usual spin
dependence in the potential, with spin-orbit, tensor, and spin-spin components,
in addition to the central part. Of these three, arguably the most important is
the spin-spin interaction. For example, the ground state masses of qq̄ mesons are:

M(q1q̄2) = m1(q1) +m2(q2) +Ahf

[
s1 · s2

m1m2

]

In order to determine the hyperfine interaction, Ahf , it is necessary to measure
the hyperfine splitting between the spin–singlet and spin–triplet states. This
means identifying and measuring the massses of 3LJ and 1LJ states. The masses
of spin–triplet 3LJ states, 3S1 and 3PJ states are well-determined because ei-
ther they are directly populated in e+e− annihilation (

∣∣3S1

〉
) or they are reached

by strong E1 transitions from the
∣∣3S1

〉
states (

∣∣3S1

〉
→ γE1

∣∣3PJ

〉
). The spin–

singlet states 1LJ=L can not be directly formed, and radiative transitions to
them from spin–triplet states are either forbidden or weak M1. The net result
is that our knowledge of the spin–singlet states, and therefore of the hyperfine
interaction, has been very poor in the past. Very recently this has changed.

For heavy quark systems, cc̄ charmonium, and bb̄ bottomonium, we would like
to know how the hyperfine interaction changes as we move from the Coulomb
dominated region of the qq̄ potential to the confinement dominated region. We
would like to study the change in the hyperfine interaction

1. between cc̄(1S) and cc̄(2S)

2. between cc̄(1S) and bb̄(1S)

3. between cc̄(1S) and cc̄(1P ) 15
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Figure 4. Identification of charmonium spin–singlet states: (left) η′c(21S0) produced in γγ

fusion, (right) hc(11P1) produced in ψ′ → π0hc.

Until recently, the only hyperfine splitting known was for the charmonium
1S states (see Fig. 3)

∆Mhf (1S) ≡M(J/ψ(1S))−M(ηc(1S)) = 116.7± 1.2 MeV

η′c(1
1S0), hc(11P1), and ηb(11S0) were not even identified. In the last five

years, all this has changed due to the measurements at Belle, BaBar, and CLEO.
The results are:

∆Mhf (2S)cc̄ ≡M(ψ′(2S))−M(η′c(2S)) = +43.2± 3.4 MeV (CLEO [16])
∆Mhf (1P )cc̄ ≡M(〈χcJ(1P )〉)−M(hc(1P )) = +0.02± 0.23 MeV (CLEO [17])

Even more recently BaBar has claimed the identification ηb(1S0) with the result

∆Mhf (1S)bb̄ ≡M(Υ (1S))−M(ηb(1S)) = +71.4+4.1
−3.5 MeV (BaBar [18])

An overall understanding of these hyperfine splittings is going to be a challenge
to the theorists.

10 CHARMONIUM EXOTICS: The Unexpected States Above the
DD Threshold

I now return to the domain of Exotica. Recently, a number of new states have
been claimed in the mass region 3800–4700 MeV, above the DD breakup of
charmonium at 3730 MeV. Three years ago, all that was known above DD was
four vector states ψ(3770, 4040, 4160, and 4415) observed as enhancements in
the ratio, R = σ(hh)/σ(µ+µ−). However, the great excitement, often called the
renaissance in hadron spectroscopy, has come from the recent discovery of a
whole host of unexpected states by the meson factory detectors, Belle and BaBar.

The new states are called “charmonium-like states”, not because they
naturally fit into the spectrum of charmonium states, but because they seem
to always decay into final states containing a charm quark and an anti-charm16
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quark. There are at least eleven of them around. The alphabet soup is getting
thick with reports of X(3872), Y(4260), Y(4361), Y(4660), X(3940), Y(3940),
Z(3940), X(4160), Z±(4430), Z±1 (4051) and Z±2 (4248). Except for the first two,
X(3872) and Y(4260), which have been observed in measurements at several
laboratories, the remaining nine come exclusively from Belle. They have not
been reported by BaBar with similar capabilities, and in two cases, Y(4325)
and the Z±, they have been contradiected by BaBar. Reminds you of the old
dibaryon story. I do not want to express my skepticism any further, but tell you
only about the two certain exotics, X(3872) and Y(4260).

10.1 X(3872) and the molecular model

This narrow state withM(X) = 3872.2±0.8 MeV, and Γ (X) = 1.34±0.64 MeV,
has been observed by Belle, BaBar, CDF, DØ, and it definitely exists. [PDG08]
CDF angular correlation studies show that its JPC = 1++ or 2−+. X(3872)
does not easily fit in the charmonium spectrum. Since its mass is very close
to M(D) + M(D∗), the most popular conjecture is that it is a weakly bound
molecule of D and D∗. If so, our recent precision measurement of D0 mass at
CLEO gives M(D0D0∗) = 3871.81± 0.36 MeV. This corresponds to X(3872)
being unbound by 0.4± 0.8 MeV. If X(3872) were even bound by ∼ 0.4 MeV,
the branching fraction for the molecule’s breakup into DDπ is predicted to be
factor 400 smaller than observed. These observations raise serious doubts about
the molecular model for X(3872).

Stop the presses: CDF now reports [19] M(X) = 3871.46 ± 0.19 MeV. So
we now have X(3872) bound by 0.35 ± 0.41 MeV. The problem of the almost-
bound/unbound nature of X(3872) is getting more and more sharply defined,
and it is getting to be more and more exotic.

10.2 Y(4260) and the strange Vector

The Y(4260) has been observed in ISR production by BaBar, CLEO and Belle,
and in direct production by CLEO. Y(4260) is clearly a vector with JPC = 1−−.
All known charmonium vectors are seen prominently as huge enhancements i
hadronic decays, usually measured as the ratio R = σ(h+h−)/σ(µ+µ−). But this
vector is a very strange one, since it sits at a very deep minimum in R, with

M(Y(4260)) = 4263+8
−9 MeV, Γ (Y(4260)) = 95± 14 MeV (PDG08)

So it is not likely to be a charmonium vector, which are all spoken for, anyway.
So what is Y(4260)?

It is suggested that Y(4260) is a cc̄g charmonium hybrid. If so, there ought to
be 0−+ and 1−+ hybrids companions nearby. Where are they? It is a real experi-
mental challenge to clarify this situation before taking any theoretical conjecture
seriously.

11 Epilogue

The sum total of the experiences in this journey through hadronic exotica is
that the journey is certainly worth it. It is unquestionably exciting. But the road17
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is full of pitfalls and disappointments.

Only the brave should enter!

They should be proud of their successes, and humble enough to admit their
failures.
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Abstract. On the basis of Faddeev equations the binding energies of the
systems φnn, φnp and φpp are calculated. The results indicate the possibility
of new few - nucleon meson clusters.

As it was intensively discussed recently [1-7] there are indications on the strong
attraction of mesons with one strange quark K− (K ) to the few-nucleon nu-
clei.Along this line it is interesting to look at the interaction of a meson with two
strange quarks like the φ-meson with light nuclei. Already existing theoretical
investigations of the φ-meson interaction show rather strong attraction between
a φ-meson and a nucleon. Indeed, the calculation of the φ−N interaction within
the quark model [8], and on the basis of a totally different phenomenological
model [9] based on the dominant role of ss configuration in the φ-meson struc-
ture, predicts considerable φ − N attraction with a binding energy of about 9
MeV for the φN system.

Such a strong attraction in reality might be not very surprising if one agrees
with physical arguments, that strong K−N attraction appeared due to the in-
fluence of subthreshold resonances Λ 1405 and Σ 1385.

Indeed, let us compare the mass of the state φ + N with masses of two
subthreshold states K + Λ 1405 and K + Σ 1385. It turned out, that distances
of above subthreshold states from threshold φ + N state are the same order of
magnitude as in K−N case, which means that as in K−N system one can expect
strong influence of Λ 1405 and Σ 1385 and strong attraction also in the φN system.

Bearing in mind this sort of strong attraction in the φN system, it is interest-
ing to consider the possibility of bound states of a φ-meson with few nucleons, in
particular with two neutrons or two protons. This is in fact a question concerning
the existence of new nuclear clusters. In what follows we calculate the binding
energies of the three-body systems φnn, φnp and φpp.

As in [9] a Yukawa type potential is chosen for the φ−N interaction :

VφN (r) = −α e−µ r/r (1)

∗Article based on the presentation by V. B. Belyaev at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received November 11, 2008; Accepted January 8, 2009.19
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with α = 1.25 and µ = 600 MeV. This potential is rather deep and narrow
and supports binding in the φN system with binding energies Eφn = −9.47 and
Eφp = −9.40 MeV.

For the np triplet s-wave interaction the potential MTIII [10] has been used.
Our singlet s-wave interaction is based on the potential MTI [10] with the slight
modification of having now a parameter λA = 2.617. This value is chosen in order
to reproduce the experimental value of the nn-scattering length ann = −18.5
fm [11]. One can see that in the three-body systems φNN there are two scales
of distances, related to the different ranges of the N −N and φ−N interactions.
This may produce a delicate interplay between a narrow attraction area of the
φ−N interaction and repulsive parts of the MT-potentials, as it was emphasized
in [12]. Apart from that, different ranges of the interaction can provide the cluster
formation in the systems under consideration.

Let us start to describe a three particle system φ+ 2N . Our calculations are
based on Faddeev equations [13] in differential form [14] written down for the
3-body systems φNN .

First, the Faddeev components of the wave function are expanded into partial
waves:

Ψα(ηα, ξα) =
∑

LM l λ

1
ηα ξα

U L
α lλ(ηα, ξα)Y LM

lλ (η̂α, ξ̂α) (2)

and only the lowest partial waves (L = l = λ = 0) are taken into account. Here
ηα = |ηα|, ξα = |ξα|, η̂α = ηα/ |ηα|, ξ̂α = ξα/ |ξα|, Y LM

lλ are the bispherical
harmonics. The Jacobi coordinates ηα, ξα are as usual:

r i − r j =
ηα
aα

,
m i r i + m j r j
m i + m j

− r k =
ξα
bα

(3)

where ri, mi denote the radius-vector and the mass of particle i, the total mass
is M = m1 +m2 +m3,

aα =

√
m im j

(m i + m j)M
, bα =

√
m k(m i + m j)

M 2
, (4)

and indices α take on following values: α = 3 for (ij)k = (12)3, α = 1 for
(ij)k = (23)1, α = 2 for (ij)k = (31)2.

Since there are two identical particles in the system (we take mN = mn for
φnp system) the following two coupled-differential Faddeev equations survive:

[
D̂ + Vi

(
ρ cosϕ
ai

)
− E

]
Ui(ρ, ϕ)

= −Vi
(
ρ cosϕ
ai

)∑

α′ 6=i

1
sin (2γα′i)

c+∫

c−

Uα′(ρ, ϕ′) dϕ (5)

for i = 1, 2 and U3 ≡ U2 where polar coordinates ρ =
√
η 2
α + ξ 2

α , tanϕα =20
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ξα/ηα are introduced and

V1 = VNN , V2 = VφN , D̂ = − ~2

2M

(
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂ϕ2

)

c+ = min {|ϕ+ γα′α| , π − (ϕ+ γα′α)} , c− = |ϕ− γα′α|

γij = arcsin sij , s ij =

√
mkM

(mi +mk) (mj + mk)
,

(6)

where i, j, k is an even permutation of 1, 2, 3 and the indices correspond to 1 for
the φ-meson, and 2 and 3 for the nucleons.

The two-dimensional system of Faddeev equations (5) has been solved by
discretization of variables hyperradius ρ and hyperangle ϕ with N and M mesh
points respectively. Stable results for three digits of binding energies were reached
at N = 110, M = 210 and L(ρ variable cutoff) = 9 fm.

As a result the binding energy of the system φnn with value Eφnn = −21.8
MeV has been obtained and value Eφnp = −37.9 MeV for the binding of φnp
system with np pair in triplet state. It should be noticed, that for this binding
energy in φnp system both main φ-meson decay channels onK-mesons are closed.
Let us comment last value of energy, which appeared rather large. From naive
reasons in the configuration φ+ d one would expect binding of order 2×EφN +
E d, which is much smaller than calculated value. However due to the strong
attraction in φN - subsystem (EφN ∼ −9 MeV) one can expect, that in 3-particle
φnp system, the configuration φ+d is rather suppressed. From that follows, that
in the above system there is no strong cancellation between potential and kinetic
energies of nucleons, like in deuteron and strong attractive triplet N−N potential
(V t ∼ 100 MeV) show his full value.

The dependence of the binding energy of φnn system on the parameter α of
φ−N interaction is investigated. It is shown on the Figure 1, that excited states
appear in this system.

As can be seen from the results, the binding in 3-particle systems like φNN
is possible even at weaker φ−N attraction as compare to the potential (1) with
parameters given in work [9].

In conclusion, it is interesting to consider clusters with number of neutrons
more than two, for example four-body system φ+3n. To take the first step to this
problem, folding model to describe φnn cluster has been used. In the description
of cluster φnn model wave function was taken, which however reproduce binding
energy calculated above. Folding potential for the system (φnn) + n is calculated.
Here, the third neutron is considered in p-wave with respect to the cluster φnn.
The potential, in which p-wave centrifugal barrier is taken into account, is shown
on the Figure 1. It appeared, that there is no bound state in this potential.
However, as we know from exact four-body calculations of ηc + 3n system [15]
folding model greatly underestimate the real binding of the system.

Acknowledgement. The work was supported financially by the Deutsche Forschungsgemeinschaft
(DFG grant no 436 RUS 113/761/0-2) and the Heisenberg-Landau Program 2008.21
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Figure 1. Left: The dependence of the binding energy of φnn system on the parameter α of

φ − N interaction. Right: Folding potential with p-wave centrifugal barrier for the four-body

system (φnn) + n.
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2 Helsinki Institute of Physics, P.O. Box 64, FIN-00014, Helsinki, Finland

Abstract. The search for nuclear states of K mesons is presented and the
main uncertainties: off-shell extrapolation of meson-nucleon scattering ampli-
tudes, behavior of hadronic resonances in nuclei and extrapolation to high
density nuclear regions are discussed. A two step method to perform varia-
tional calculations in the K–few-nucleon systems is suggested.

1 Introduction

Low energy K mesons are attracted by nuclei. This attraction, well tested in
kaonic atoms, has been attributed to coupling of the KN system to the Λ(1405)
baryon. More generally the system of interest consists of three channels KN,
Σπ,Λπ coupled in the isospin 0, 1 states. The scattering and reactions are usually
described in terms of the K̂ matrix related to the scattering matrix T̂ by

T̂ = K̂ − K̂iQ̂T̂ , (1)

where Q̂ is a diagonal matrix of the c.m. channel momenta. Phenomenological K̂-
matrix elements are fitted to the KN elastic and inelastic scattering as well as to
the Σπ scattering data. An additional consistency condition has been formulated
in terms of dispersion relations [1, 2]. The solutions in the dominant isospin 0
state yield attractive and large elastic K̂KN,KN elements. These give rise to a
singularity of T̂ in the complex energy plane which is interpreted as the Λ(1405)
being a KN quasi-bound state. The position of the Λ(1405) pole is not well fixed,
and different sets of K̂ locate it in the region of 1405-1417 MeV, while the width
stays in the region of 35–50 MeV. In recent years other solutions for K̂ based
on SU(3) chiral models have been used [3]. These generate two singularities,

∗Article based on the presentation by S. Wycech at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received November 30, 2008; Accepted January 8, 2009.

∗∗E-mail : wycech@fuw.edu.pl
∗∗∗E-mail : anthony.green@helsinki.fi
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2 The K-few-N Levels

one representing the KN quasi-bound state of energy about 1425 MeV and a
broad resonance in the Σπ channel. At this moment the selection of a proper
model on the basis of two body states is not easy. The K-few-N quasi-bound
states may be helpful in this respect. On the experimental side there exists one
measurement that indicates the existence of a K−pp state bound by ≈ 115MeV
and ≈ 67 MeV wide [4]. The experimental search has become very active after
Akaishi and Yamazaki showed that such bound states may exist in few nucleon
systems [5].

The K-few-N states offer a new physics that is interesting in two aspects:
• The binding is generated by exciting nucleons to Λ(1405) (and Σ(1385)).
• The bound states may involve very high nuclear densities.

2 Variational method

The variational method presented here allows one to find a satisfactory descrip-
tion of the K-N and N-N correlations at short distances. It consists of two steps:

(I) The meson wave function χK(x, xi) and complex energy E(xi) are found
for a system of K interacting with nucleons fixed at positions xi.

(II) Next, the nucleon degrees of freedom are allowed to vary and the trial
K-few-N wave function is used in the form Ψ = χK(x, xi)χN (xi). The total
Hamiltonian involves the meson and nucleon kinetic energies, NN and KN in-
teractions. The minimal energy is found by varying parameters which enter χN

and the AV18 NN potential is used [6]. The stability of these systems is given
by the width determined as the average Γ/2 = 〈Ψ |Im[E(xi)]|Ψ〉.

The second step is standard, but the first one is not. It is presented here in
some detail for the KNN system with a simplified one channel S wave interaction.
Consider the scattering of a light meson bound on two identical fixed nucleons.
The meson wave function χK is given by the solution of the multiple scattering
equation

χK(x,x1,x2) = Σi

∫
dy

exp[i p | x− y |]
4π | x− y | 2µKNVKN (y,xi) χK(y,x1,x2). (2)

One looks for solutions of Eq. (2) which determine the complex momentum
eigenvalue p(xi). It gives the energy and width of the quasi-bound system
for given nucleon positions xi. The potential is chosen in a separable form
VKN (x− xi,x′ − xi = λ υ(x− xi) υ(x′ − xi), with the Yamaguchi form-factor υ
with inverse range κ and a complex strength λ. Equation (2) becomes a matrix
equation for wave amplitudes ψi defined at each scatterer i by

ψi = λ

∫
dx υ(x− xi)χK(x,x1,x2). (3)

To find equations for ψi one introduces matrix elements of the propagator

Gi,j =
∫
dydx υ(x− xi)

exp(i k | xy |)
4π | x− x | υ(y − xj). (4)

The diagonal value, Gi,i ≡ Go, determines the meson nucleon scattering matrix
t by the well known relation t(E) = (1 + λ Go)−1 λ which yields the full off-
shell scattering amplitude f(k,E, k′) = υ(k) t(E) υ(k′). Equation (2) can be
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expressed in terms of scattering amplitudes ti at each nucleon i and propagators
describing the passage from the nucleon i to the other nucleon j. One arrives at
a standard set of equations

ψi +
∑

j 6=i

tj Gi,j ψj = 0. (5)

With two amplitudes ψi these reduce to

ψ1 + t G ψ2 = 0, ψ2 + t G ψ1 = 0, (6)

where G = G1,2. When the determinant D = 1 − (t G)2 is put to zero, the
binding ”momenta” p(r) may be obtained numerically. The solution of interest
corresponding to 1 + tG = 0 is symmetric, ψ2 = ψ1, and describes the meson in
the S state with respect to the NN center of mass. It exists for all inter-nucleon
distances provided there exists a singularity in t(E) below the KN threshold as
happens in the Λ(1405) case. In some energy region t = γ2/(E−E∗), where E∗ =
Eo−iΓo/2 is the complex binding energy of Λ(1405). The eigenvalue p(r) is given
by the condition 1 + tG = 0, which now takes the form E = E∗− γ2G(r, p). The
solution E ≡ EB(r)− iΓ (r)/2 depends on the N-N separation r. As Re[G(r, p)]
close to the resonance is positive, the binding of K to fixed NN pair is stronger
than the binding of K to a nucleon, |EB(r)| > |Eo|. Asymptotically for r → ∞
one obtains G → 0 and E(r) → E∗, i.e., the K meson becomes bound to one
of the nucleons. The lifetime of KNN becomes equal to the lifetime of Λ(1405).
Hence, the separation energy is understood here as the energy needed to split
K-N-N → Λ(1405)-N.

Eigenvalues corresponding to unstable quasi-bound states are obtained in the
second quadrant of the complex p(r) = pR + ipI plane. The propagator

tG = f(p) [exp(−pIr) exp(ipRr)− exp(−κr) (1 + r
κ2 − p2

2κ
)]/r (7)

is exponentially damped at large distances as required by the asymptotic form of
the bound state wave function χK . This shape of G(r) describes the K-N corre-
lations. At small r, i.e., at high nuclear densities pI increases and the correlation
range becomes smaller.

The difference between the binding at a given separation r and its asymptotic
value generates a potential VK(r), which contracts the nucleons to a smaller
radius. It is defined as Re[VK(r)] = EB(r) − EB(∞) and generates the bound
states. On the other hand some part of the binding is hidden in EB(∞) that is
in the structure of Λ(1405).

2.1 Results

The outlined method was used to study the KNN, KNNN and KNNNN sys-
tems [8]. The input was based on the K̂ matrix from ref. [2] and eq.(5) was
generalized to include S + P wave interactions (the Σ(1385) excitations) and
the multiple scattering in KN and Σπ channels. Some results are given in the
tables. These show a dramatic dependence of the binding on the Λ(1405) param-
eters which reflect uncertainties of the KN amplitudes at 100-200 MeV below the
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threshold. The Σ(1385) makes a weak impact in the S wave states. However, it
may generate P wave branches of the spectra, in particular a bound K−nn state
[8].

Table 1. Binding energies and widths [MeV] of the KNN, Itot = 1/2, INN = 1 space-symmetric

states [8]. The results on the left are based on parameters of ref.[2] extended off-shell by a

separable model [MΛ = 1409 MeV]. The results on the right are obtained with MΛ shifted

to 1405 MeV and with equally good fit to the data. The first column specifies the channels

explicitly involved in the multiple scattering and meson-nucleon partial waves. Rrms is the

radius mean squared of the N-N separation [fm]. The numbers in the second line of the right

sector are very close to the Faddeev solution obtained with a similar input [7].

EB Γ Rrms EB Γ Rrms

KN; S 35.5 37 2.4 50 51 2.05
KN,Σπ; S 43 47 2.1 71 85 1.8
KN; S, P 50 36 3.3 65 43 2.1

KN,Σπ; S, P 56.5 39 2.3 78 60 1.9

Table 2. Binding energies and widths [MeV] of the KNNNN, space-symmetric, Stot = 0,

Itot = 1/2 states. The widths do not include non-mesonic decays. See caption to Table 1.

EB Γ EB Γ

S 121 25 170 10
S + P 136 20 172 10

Acknowledgement. This work is supported by the KBN grant 1P0 3B 04229 and the EU Contract
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Abstract. The physics of charm has become one of the best laboratories
exposing the limitations of the naive constituent quark model and also giving
hints into a more mature description of meson spectroscopy, beyond the simple
quark–antiquark configurations. In this talk we review some recent studies of
multiquark components in the charm sector and discuss in particular exotic
and non-exotic four-quark systems, both with pairwise and many-body forces.

More than thirty years after the so-called November revolution [1], heavy
hadron spectroscopy remains a challenge. The formerly comfortable world of
heavy mesons is shaken by new results [2]. This started in 2003 with the discovery
of the D∗s0(2317) and Ds1(2460) mesons in the open-charm sector. These positive-
parity states have masses lighter than expected from quark models, and also
smaller widths. Out of the many proposed explanations, the unquenching of the
naive quark model has been successful [3]. When a (qq̄) pair occurs in a P -wave
but can couple to hadron pairs in S-wave, the latter configuration distorts the
(qq̄) picture. Therefore, the 0+ and 1+ (cs̄) states predicted above the DK(D∗K)
thresholds couple to the continuum. This mixes meson–meson components in the
wave function, an idea advocated long ago to explain the spectrum and properties
of light-scalar mesons [4].

This possibility of (cs̄nn̄) (n stands for a light quark) components in D∗s has
open the discussion about the presence of compact (cc̄nn̄) four-quark states in
the charmonium spectroscopy. Some states recently found in the hidden-charm
sector may fit in the simple quark-model description as (cc̄) pairs (e.g., X(3940),
Y (3940), and Z(3940) as radially excited χc0, χc1, and χc2), but others appear to
be more elusive, in particular X(3872), Z(4430)+, and Y (4260). The debate on
the nature of these states is open, with special emphasis on the X(3872). Since it
∗Article based on the presentations by J. Vijande and J.-M. Richard at the Fifth Workshop on
Critical Stability, Erice, Sicily, Received February 2, 2009; Accepted February 9, 2009.27



2 Four–quark stability

was first reported by Belle in 2003 [5], it has gradually become the flagship of the
new armada of states whose properties make their identification as traditional
(cc̄) states unlikely. An average mass of 3871.2± 0.5 MeV and a narrow width of
less than 2.3 MeV have been reported for the X(3872). Note the vicinity of this
state to the D0D∗0 threshold, M(D0D∗0) = 3871.2 ± 1.2 MeV. With respect
to the X(3872) quantum numbers, although some caution is still required until
better statistic is obtained [6], an isoscalar JPC = 1++ state seems to be the
best candidate to describe the properties of the X(3872).

Another hot sector, at least for theorists, includes the (ccn̄n̄) states, which are
manifestly exotic with charm 2 and baryon number 0. Should they lie below the
threshold for dissociation into two ordinary hadrons, they would be narrow and
show up clearly in the experimental spectrum. There are already estimates of the
production rates indicating they could be produced and detected at present (and
future) experimental facilities [7]. The stability of such (QQq̄q̄) states has been
discussed since the early 80s [8], and there is a consensus that stability is reached
when the mass ratio M(Q)/m(q) becomes large enough. See, e.g., [9] for Refs.
This effect is also found in QCD sum rules [10]. This improved binding when
M/m increases is due to the same mechanism by which the hydrogen molecule
(p, p, e−, e−) is much more bound than the positronium molecule (e+, e+, e−, e−).
What matters is not the Coulomb character of the potential, but its property
to remain identical when the masses change. In quark physics, this property
is named flavour independence. It is reasonably well satisfied, with departures
mainly due to spin-dependent corrections.

The question is whether stability is already possible for (ccn̄n̄) or requires
heavier quarks. In Ref. [9], a marginal binding was found for a specific potential
for which earlier studies found no binding. This illustrates how difficult are such
four-body calculations.

In another recent investigation, the four-body Schrödinger equation has been
solved accurately using the hyperspherical harmonic (HH) formalism [11], with
two standard quark models containing a linear confinement supplemented by a
Fermi–Breit one-gluon exchange interaction (BCN), and also boson exchanges
between the light quarks (CQC). The model parameters were tuned in the meson
and baryon spectra. The results are given in Table 1, indicating the quantum
numbers of the state studied, the maximum value of the grand angular momen-
tum used in the HH expansion, Km, and the energy difference between the mass
of the four-quark state, E4q, and that of the lowest two-meson threshold calcu-
lated with the same potential model, ∆E . For the (ccn̄n̄) system we have also
calculated the radius of the four-quark state, R4q, and its ratio to the sum of the
radii of the lowest two-meson threshold, ∆R.

Besides trying to unravel the possible existence of bound (ccn̄n̄) and (cc̄nn̄)
states one should aspire to understand whether it is possible to differentiate
between compact and molecular states. A molecular state may be understood
as a four-quark state containing a single physical two-meson component, i.e., a
unique singlet-singlet component in the colour wave function with well-defined
spin and isospin quantum numbers. One could expect these states not being
deeply bound and therefore having a size of the order of the two-meson system,

28



J. Vijande 3

Table 1. (cc̄nn̄) (left) and (ccn̄n̄) (right) results.

(cc̄nn̄) CQC BCN
JPC(Km) E4q ∆E E4q ∆E

0++ (24) 3779 +34 3249 +75
0+− (22) 4224 +64 3778 +140
1++ (20) 3786 +41 3808 +153
1+− (22) 3728 +45 3319 +86
2++ (26) 3774 +29 3897 +23
2+− (28) 4214 +54 4328 +32
1−+ (19) 3829 +84 3331 +157
1−− (19) 3969 +97 3732 +94
0−+ (17) 3839 +94 3760 +105
0−− (17) 3791 +108 3405 +172
2−+ (21) 3820 +75 3929 +55
2−− (21) 4054 +52 4092 +52

(ccn̄n̄) CQC
IJP (Km) E4q ∆E R4q ∆R

0 0+ (28) 4441 +15 0.624 > 1
0 1+ (24) 3861 −76 0.367 0.808
0 2+ (30) 4526 +27 0.987 > 1
0 0− (21) 3996 +59 0.739 > 1
0 1− (21) 3938 +66 0.726 > 1
0 2− (21) 4052 +50 0.817 > 1
1 0+ (28) 3905 +50 0.817 > 1
1 1+ (24) 3972 +33 0.752 > 1
1 2+ (30) 4025 +22 0.879 > 1
1 0− (21) 4004 +67 0.814 > 1
1 1− (21) 4427 +1 0.516 0.876
1 2− (21) 4461 −38 0.465 0.766

i.e., ∆R ∼ 1. Opposite to that, a compact state may be characterized by its
involved structure on the colour space, its wave function containing different
singlet-singlet components with non negligible probabilities. One would expect
such states would be smaller than typical two-meson systems, i.e., ∆R < 1. Let
us notice that while ∆R > 1 but finite would correspond to a meson-meson
molecule ∆R

K→∞−→ ∞ would represent an unbound threshold.
As can be seen in Table 1 (left), in the case of the (cc̄nn̄) there appear no

bound states for any set of quantum numbers, including the suggested assignment
for the X(3872). Independently of the quark–quark interaction and the quantum
numbers considered, the system evolves to a well separated two-meson state.
This is clearly seen in the energy, approaching the threshold made of two free
mesons, and also in the probabilities of the different colour components of the
wave function and in the radius [11]. Thus, in any manner one can claim for the
existence of a bound state for the (cc̄nn̄) system.

A completely different behaviour is observed in Table 1 (right). Here, there
are some particular quantum numbers where the energy is quickly stabilized
below the theoretical threshold. Of particular interest is the 1+ ccn̄n̄ state, whose
existence was predicted more than twenty years ago [12]. There is a remarkable
agreement on the existence of an isoscalar JP = 1+ ccn̄n̄ bound state using both
BCN and CQC models, if not in its properties. For the CQC model the predicted
binding energy is large, − 76 MeV, ∆R < 1, and a very involved structure of
its wave function (the DD∗ component of its wave function only accounts for
the 50% of the total probability) what would fit into compact state. Opposite to
that, the BCN model predicts a rather small binding, −7 MeV, and ∆R is larger
than 1, although finite. This state would naturally correspond to a meson-meson
molecule.

Concerning the other two states that are below threshold in Table 1 a more
careful analysis is required. Two-meson thresholds must be determined assuming
quantum number conservation within exactly the same scheme used in the four–29



4 Four–quark stability

quark calculation. Dealing with strongly interacting particles, the two-meson
states should have well defined total angular momentum, parity, and a prop-
erly symmetrized wave function if two identical mesons are considered (coupled
scheme). When noncentral forces are not taken into account, orbital angular mo-
mentum and total spin are also good quantum numbers (uncoupled scheme). We
would like to emphasize that although we use central forces in our calculation
the coupled scheme is the relevant one for observations, since a small non-central
component in the potential is enough to produce a sizeable effect on the width
of a state. These state are below the thresholds given by the uncoupled scheme
but above the ones given within the coupled scheme what discard these quantum
numbers as promising candidates for being observed experimentally.

Binding increases for larger M/m, but in the (bbn̄n̄) sector, there is no pro-
liferation of bound states. We have studied all ground states of (bbn̄n̄) using the
same interacting potentials as in the double-charm case. Only four bound states
have been found, with quantum numbers JP (I) = 1+(0) , 0+(0), 3−(1), and
1−(0). The first three ones correspond to compact states.

Now, one could question the validity of the potential models used in these
estimates, or more precisely, of the extrapolation from mesons to baryons, and
then to multiquark states. For the short-range terms, in particular one-gluon
exchange, the additive rule

V = − 3
16

∑

i<j

λ̃
(c)
i .λ̃

(c)
j v(rij) , (1)

is justified. Here v(r) is the quark–antiquark potential governing mesons, and λ̃(c)
i

is the colour generator. This is the non-Abelian version of the 1/r →∑
qiqj/rij

rule in atomic physics.
The confining part, however, is hardly of pairwise character. Several authors

have proposed that the linearly rising potential σr of mesons (σ is the string
tension) is generalised as

V = σmin(d1 + d2 + d3) , (2)

where di is the distance from the ith quark to a junction whose location is opti-
mised, exactly as in the famous problem of Fermat and Torricelli. Unfortunately,
the potential (2) differs little from the empirical ansatz (1) which here reduces
to σ(r12 + r23 + r31)/2. Hence baryon spectroscopy cannot probe the three-body
character of confinement.

In the case of two quarks and two antiquarks, the confining potential reads

V4 = min(Vf , Vs) , (3)

given by the minimum of a flip-flop potential Vf and a Steiner-tree potential Vs,
sometimes named “butterfly” (see Fig. 1). In Vf , each gluon flux goes from a
quark to an antiquark. The second term corresponds to a minimal Steiner tree,
with four terminals and two Steiner points. It is remarkable that this poten-
tial, which is supported by lattice QCD [13] is more attractive than the additive
ansatz. This is illustrated in Ref. [14], where the four-body problem is solved30
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Figure 1. String model for four quarks: flip-flop (left) and Steiner-tree (right), an alternative

configuration that is favoured when the quarks (full disks) are well separated from the antiquarks

(open circles).

Table 2. Four–quark variational energy E4 of QQqq for the different confinement models (Vf

stands for the flip-flop interaction, Vs for the Steiner-tree potential, and V4 = min(Vf , Vs)),

compared to its threshold, and variational energy E′4 of QQqq with the flip-flop model Vf ,

compared to its threshold T ′4 as a function of the mass ratio.

M/m E4 T4 E′4 T ′4
Vf Vs V4 Vf

1 4.644 5.886 4.639 4.676 4.644 4.676
2 4.211 5.300 4.206 4.248 4.313 4.194
3 4.037 5.031 4.032 4.086 4.193 3.959
4 3.941 4.868 3.936 3.998 4.117 3.811
5 3.880 4.754 3.873 3.942 4.060 3.705

with this confining term alone without short-range corrections. The results are
displayed in Table 2. This four-body calculation is rather involved, as the po-
tential at each point is obtained by a minimisation over several parameters. See
Ref. [14] for technical details about the models and the numerical techniques
used.

The results for the configurations (QQq̄q̄) and (QQqq̄) are shown in Table 2
as function of the heavy-to-light mass ratio. Clearly, as M/m increases, a deeper
binding is obtained for the flavour-exotic (QQq̄q̄) system. For the hidden-flavour
(QQqq̄), however, the stability deteriorates, becoming unbound for M/m & 1.2.

More recently, the stability in this model has been demonstrated rigorously
in the limit of very large M/m. The first step is to show that

V4/σ ≤
√

3
2

(|x|+ |y|) + |z| , (4)

in terms of the Jacobi variables, x = r2 − r1, y = r4 − r3 and z = (r3 + r4 −
r1 + r2)/2, so that the Hamiltonian describing the relative motion is bounded
by

Hb =
p2

x

M
+ σ

√
3

2
|x|+

p2
y

m
+ σ

√
3

2
|y|+ p2

z

4µ
+ σ|z| , (5)

(µ is the quark–antiquark reduced mass), which is exactly solvable for its ground
state and gives binding for large M/m. Details will be published shortly [15].

To conclude, let us stress again the important difference between the two
physical systems which have been considered. While for the (cc̄nn̄), there are
two allowed physical decay channels, (cc̄) + (nn̄) and (cn̄) + (c̄n), for the (ccn̄n̄)
only one physical system contains the possible final states, (cn̄)+(cn̄). Therefore,31
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a (cc̄nn̄) four-quark state will hardly present bound states, because the system
will reorder itself to become the lightest two-meson state, either (cc̄) + (nn̄) or
(cn̄)+(c̄n). In other words, if the attraction is provided by the interaction between
particles i and j, it does also contribute to the asymptotic two-meson state. This
does not happen for the (ccn̄n̄) if the interaction between, for example, the two
quarks is strongly attractive. In this case there is no asymptotic two-meson state
including such attraction, and therefore the system might bind.

Once all possible (ccn̄n̄), (bbn̄n̄) and (cc̄nn̄) quantum numbers have been
exhausted very few alternatives remain. If additional bound four-quark states or
higher configuration are experimentally found, then other mechanisms should be
at work, for instance based on diquarks [4, 16, 17].
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Abstract.
It takes two nucleons to bind a Λ hyperon, and perhaps as many as three

nucleons to bind two Λ hyperons. Here I review few-body calculations which
consider the onset of binding in multi-strange hypernuclei, including Ξ hy-
perons once the free-space strong-interaction conversion ΞN → ΛΛ becomes
Pauli forbidden in a Λ-abundant matter. Quasibound states of K mesons in
few-nucleon systems are also briefly discussed.

1 Introduction

The experimental information on hyperon interactions, with few exceptions, is
limited to single-Λ hypernuclei. Little is known on strangeness S = −2 hyper-
nuclei. The missing information is vital for extrapolating into strange hadronic
matter, for both finite systems and in bulk, and into neutron stars [1, 2]. Studying
the onset of nuclear binding for hyperons, in particular, is one of the most sen-
sitive means of deducing the strength of hyperon–nucleon and hyperon–hyperon
interactions. The onset of binding for ΛΛ and ΛΞ hypernuclei was reviewed at the
XVIIIth European Conference on Few-Body Problems in Physics [3]. This review
provides the starting point for the present discussion that hinges on few-body
hypernuclear systems. In addition to Λ and Ξ hyperons, I will briefly discuss
also Σ hyperons and K mesons.

2 Λ hyperons

2.1 s-shell Λ and ΛΛ hypernuclei

Complete few-body calculations of the s-shell hypernuclei, for systems of nucleons
and Λ hyperons, with full account of coupled-channel effects due to the primary
ΛN − ΣN and ΛΛ − ΞN mixings, were reported by Nemura et al. [4] using

∗Article based on the presentation by A. Gal at the Fifth Workshop on Critical Stability, Erice,
Sicily, Received December 12, 2008; Accepted January 9, 2009.33



2 Few-Body Hypernuclei

stochastic variational methods and phenomenological potentials based partly on
meson exchange models. The calculated spectra are shown in Fig. 1. In addition
to the well established single-Λ hypernuclei 3

ΛH, 4
ΛH − 4

ΛHe and 5
ΛHe, bound

states are predicted for 4
ΛΛH and 5

ΛΛH - 5
ΛΛHe by fitting to 6

ΛΛHe, the only ΛΛ
hypernucleus established uniquely by experiment [5]. The calculated BΛΛ( 4

ΛΛH)
is minute; given the uncertainties in the input and in the calculations, this system
could still prove unbound [6]. Note that the experimental evidence [7] for 4

ΛΛH
has been challenged recently [8]. For 5

ΛΛH and 5
ΛΛHe it is found that the primary

ΛN−ΣN and the secondary ΞN−ΛΣ couplings enhance the primary ΛΛ−ΞN
mixing so that a fairly large Ξ probability is obtained, even for a relatively weak
ΛΛ−ΞN coupling potential.
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Figure 1. Λ and ΛΛ separation energies in s-shell hypernuclei, calculated by Nemura et al. [4]

using stochastic variational methods.

2.2 ΛΛ hypernuclei

Several few-body cluster calculations of ΛΛ hypernuclei in the neighborhood of
6

ΛΛHe have been reported. Two such calculations are depicted in Fig. 2. A nearly
linear correlation between ∆BΛΛ( 6

ΛΛHe) and ∆BΛΛ( 5
ΛΛH, 5

ΛΛHe) is shown on the
left-hand side, for Faddeev calculations using a variety of ΛΛ interactions [9].
Here,

∆BΛΛ( A
ΛΛZ) = BΛΛ( A

ΛΛZ)− 2B̄Λ((A−1)
Λ Z) , (1)

where BΛΛ( A
ΛΛZ) is the ΛΛ separation energy of the hypernucleus A

ΛΛZ and
B̄Λ((A−1)

Λ Z) is the (2J+1)-average of BΛ values for the (A−1)
Λ Z hypernuclear core

levels. The roughly linear increase of BΛΛ holds generally in three-body ΛΛC
models (C standing for a cluster) over a wide range of values for the strength
parameter V̄ΛΛ [9]. Given that ∆BΛΛ( 6

ΛΛHe) ≈ 1 MeV, the figure demonstrates
that the I = 1/2 5

ΛΛH - 5
ΛΛHe hypernuclei are particle stable. This conclusion is

confirmed by the calculation [4] shown in Fig. 1.34
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Figure 2. ∆BΛΛ values from Faddeev calculations [9] (left) and from three-body and four-body

cluster calculations [10] (right).

The right-hand side of Fig. 2 depicts∆BΛΛ values forA = 7−10 in three-body
and four-body cluster variational calculations [10], normalizing the ΛΛ interac-
tion by requiring it to reproduce the well determined ∆BΛΛ value of 6

ΛΛHe within
the same calculations. The deviations from the value ∆BΛΛ ≈ 1 MeV reflect
dynamical core polarization effects. Some information is available on 10

ΛΛBe and
few neighboring ΛΛ hypernuclei. Although the associated ∆BΛΛ values cannot
be uniquely assigned to specific ΛΛ hypernuclear states, acceptable assignments
do exist that make these values consistent with the scale of ∆BΛΛ shown here.

3 Σ hyperons

A vast body of reported (K−, π±) and (π−,K+) spectra indicate a repulsive
Σ nuclear potential, with a substantial isospin dependence which for very light
nuclei may conspire in selected configurations to produce Σ hypernuclear qua-
sibound states, as shown on the left-hand side of Fig. 3 for 4

ΣHe.1 These data
suggest that Σ hyperons do not bind in heavier nuclei.

A repulsive component of the Σ nuclear potential is also revealed in Σ−-atom
analyses of level shifts and widths, as shown on the right-hand side of Fig. 3. The
figure demonstrates that ReVΣ is attractive at low densities outside the nucleus,
changing into repulsion in the nuclear surface region, but well outside of the nu-
clear radius. Hence this transition is solidly substantiated by fitting to Σ−-atom
data. The precise magnitude and shape of the repulsive component within the
nucleus is model dependent [13]. The inner repulsion bears interesting conse-
quences for the balance of strangeness in the inner crust of neutron stars [14],
primarily by delaying the appearance of Σ− hyperons to higher densities, as
shown on the left-hand side of Fig. 4.

1The discovery of 4
ΣHe, in K− capture at rest, is due to R.S. Hayano et al.: Phys. Lett. B231,

355 (1989). 35
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Figure 3. Left: 4He(K−, π±) spectra, as measured [11] and as calculated by Harada [12],

providing evidence for a 4
ΣHe I = 1/2 quasibound state in the π− channel, with binding energy

BΣ+ = 4.4±0.3±1 MeV and width Γ = 7.0±0.7+1.2
−0.0 MeV. Right: ReVΣ− fitted to Σ− atomic

data, for two potential models [13]. The half-density nuclear charge radius Rc is indicated.

4 Ξ hyperons

Very little is established experimentally on the interaction of Ξ hyperons with
nuclei. Inclusive (K−,K+) spectra on 12C [15] yield a moderately attractive po-
tential depth ReVΞ ≈ −14 MeV when fitted near the Ξ−-hypernuclear threshold.
The most recent variant ESC04d of the Nijmegen YN potentials, adjusted to this
potential depth, gives rise to quasibound states in several light nuclear targets
that cope with the strong spin and isospin dependence in ESC04d, beginning
with 7Li [16]. For such a shallow potential, Ξ0 hyperons do not bind to 4He,
although Ξ− hyperons do bind owing to the Coulomb energy.

Ξ hyperons could become stabilized in multi-Λ hypernuclei once the decay
ΞN → ΛΛ, which releases ≈ 25 MeV in free space, gets Pauli blocked. The onset
of Ξ binding would occur for 6

Ξ0ΛHe if BΞ0( 5
Ξ0He) > 3 MeV [17], or for 7

Ξ0ΛΛHe if
BΞ0( 5

Ξ0He) > 1 MeV [18]. Particle stability for Ξ hyperons becomes robust with
few more Λs, even for as shallow Ξ-nucleus potentials as discussed above. Fig. 4,
right-hand side, demonstrates that Ξs can be added to a core of 56Ni plus Λs,
reaching as high strangeness fraction as fS ≡ −S/A ≈ 0.7 while retaining particle
stability. This leads to the concept of Strange Hadronic Matter (SHM) consisting
of equal fractions of protons, neutrons, Λ, Ξ0 and Ξ− hyperons, with fS = 1,
as for Strange Quark Matter (SQM). Both SHM and SQM provide macroscopic
realizations of strangeness, but SHM is more plausible phenomenologically.

In a way of interim conclusions, few-body ‘strange’ systems provide a valuable
handle and means of extrapolation into SHM. Several day-1 experiments on Ξ
hyperons and K mesons in nuclei are scheduled soon, at the high-intensity 50
GeV proton synchrotron in the J-PARC facility in Japan.36
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5 Addendum: K mesons

Table 1. K−pp binding energies & widths (MeV) calculated without K̄NN → Y N

K̄NN single channel K̄NN − πΣN coupled channels
ATMS [20] AMD [21] Faddeev [22] Faddeev [23] variational [24]

B 48 17–23 50–70 60–95 40–80
Γ 61 40–70 90–110 45–80 40–85

The K−p interaction near threshold is dominated by the Λ(1405), a πΣ res-
onance interpreted as a K̄N quasibound state. Some of the topical issues in K̄
nuclear physics, as reviewed in Ref. [19], are: (i) would K− mesons form suffi-
ciently narrow quasibound states in nuclei? and (ii) could strangeness materialize
macroscopically in a K− condensed phase rather than in SHM?

Next to Λ(1405), the lightest K̄ nuclear state maximizing the strongly at-
tractive I = 0 K̄N interaction is [K̄(NN)I=1]I=1/2,Jπ=0− , loosely denoted K−pp.
Results of few-body calculations for K−pp are displayed in Table 1. The single-
channel calculations are variational, and the difference between the resulting
binding energies reflects the difference between the pole positions affecting the
I = 0 K̄N amplitude, whether at 1405 MeV [20] or at 1420 MeV [21]. In coupled-
channel calculations, the explicit use of the πΣN channel adds 20 ± 5 MeV
with respect to single-channel calculations that use effective K̄N potentials. We
note that the K−pp calculated widths are substantial, before even considering
K̄NN → Y N decay widths which become substantial in denser systems [25].

37
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Abstract. This contribution reviews a number of applications of the ab initio
no-core shell model (NCSM) within nuclear physics and beyond. We will high-
light a nuclear-structure study of the A = 12 isobar using a chiral NN+3NF
interaction. In the spirit of this workshop we will also mention the new devel-
opment of the NCSM formalism to describe open channels and to approach
the problem of nuclear reactions. Finally, we will illustrate the universality
of the many-body problem by presenting the recent adaptation of the NCSM
effective-interaction approach to study the many-boson problem in an exter-
nal trapping potential with short-range interactions.

Introduction. A truly first-principles approach to the nuclear many-body
problem requires a nuclear Hamiltonian that is based on the underlying the-
ory of QCD. A candidate for providing the desired connection between QCD
and the low-energy nuclear physics sector is chiral perturbation theory (χPT),
see, e.g., the review by E. Epelbaum [1] and references therein. A very interest-
ing observation from χPT is that three-nucleon forces (3NF) appear naturally
already at the next-to-next-to-leading order of the expansion. This chiral 3NF
was recently implemented in nuclear many-body calculations as will be discussed
in the next section.

Regardless of its origin, high-precision nuclear Hamiltonians are very difficult
to implement when solving the nuclear many-body problem. At this workshop
we have heard about a number of methods that are available to solve the few-
body problem (A = 3 − 4) to basically numerical precision. For more than four
particles there are only a handful of methods available when using modern,
realistic interactions. Much effort has been spent in studying different unitary
transformations of the interaction to make it tractable for actual many-body
∗Article based on the presentation by C. Forssén at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received December 12, 2008; Accepted December 20, 2008

∗∗E-mail address: christian.forssen@chalmers.se39



2 The ab initio no-core shell model

calculations. In particular, the ab initio no-core shell model (NCSM) is usually
combined with the cluster-approximated, Lee-Suzuki transformation to generate
effective interactions, see e.g., Refs. [2]. In short, the NCSM is a general approach
for studying strongly interacting, quantum many-body systems. It’s a matrix
diagonalization technique to solve the translational invariant A-body problem in
a finite harmonic oscillator basis. A particularly nice feature of the method is
the flexibility of the harmonic-oscillator model space that implies basically no
restrictions regarding the choice of Hamiltonian. Specifically, the NCSM method
allows to test the modern χPT interactions in many-body calculations.

Recent NCSM Results. The A = 12 nuclear systems provide a challenge for
modern ab initio methods. The systems can potentially act as new benchmarks as
relevant observables allow for sensitive tests of the nuclear Hamiltonians and the
computed wave functions. The current level of our experimental understanding of
12C includes two bound states and the triple-alpha threshold at 7.3 MeV. Above
this the picture becomes very complicated due to overlapping broad resonances.
A central question concerns the possible existence of broad 0+ and 2+ resonances
in this region. An important concept that attracts much theoretical interest
is the interplay between triple-alpha and neutron-proton degrees of freedom.
Studies of ground- and excited states in A = 12 systems are possible within
the NCSM. These studies are particularly interesting since the chiral 3NF was
recently implemented by P. Navrátil et al. [3]. The inclusion of these terms in the
NCSM gives the correct ordering of T = 1 states with the isobaric analogue of the
12B and 12N ground states being the lowest. It also provides the correct ordering
of the 1+ and 4+ states although it over-corrects the spin-orbit strength [3]. Still,
regardless of the interaction being used, these results demonstrate a limitation
of the NCSM method. Whereas the spectrum and properties of shell-model like
states are reproduced very nicely, states that are known to exhibit a high degree
of clusterization are missing from the low-energy spectrum. They typically end
up at much higher excitation energy and are far from converged.

Open quantum systems. A long-term vision for nuclear theory is to achieve a
unified picture of the nuclear many-body system, including both bound and con-
tinuum states and the transitions between them. Preferably this picture should
be grounded in the fundamental interactions between the constituent nucleons.
In addition, the separation of scales known to occur in nuclear systems, should
be properly described. This requires the simultaneous modeling of small-scale
many-body degrees of freedom and large-scale few-body correlations. A possible
route towards achieving such a microscopic picture of open channels and nu-
clear reactions is explored at Livermore by combining the NCSM formalism with
resonating group methods (RGM) [4]. In the RGM approach the many-body
wave function is decomposed into contributions from various channels that are
distinguished by their different arrangement of the nucleons into clusters. By
defining a set of antisymmetrized cluster basis functions, and diagonalizing the
Hamiltonian in this space, one obtains a non-local, coupled-channels Schrödinger
Equation for the relative motion of the clusters in the different channels. In40
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Ref. [4] this approach was implemented and tested for certain A = 4 − 5 low-
energy, single-nucleon scattering problems. In particular, n+4He scattering at
low energies represents a convenient training ground for many-body scattering
calculations. There is no A = 5 bound state, and single-channel scattering is
valid up to rather high energies. There is a sharp, low-energy resonance in the
3/2− channel, and a broader, high-energy resonance in the 1/2− channel. Scat-
tering in the s-wave channel is non-resonant but obviously depends critically on
proper antisymmetrization. Phase shifts for both n+4He and p+4He scattering,
calculated in the NCSM/RGM approach, are presented in Fig. 1. The method
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Figure 1. Phase shifts for n-α (left panels) and p -α (right panels) scattering. Recent

NCSM/RGM results compared to an R-matrix analysis of experimental data. From Ref. [4].

shows very good convergence behavior, but it’s clear that the position and widths
of the p-wave resonances depend sensitively on the interaction model.

Effective Interaction Approach to the Many-Boson Problem. The
emerging field of cold-atom physics has proven to be a very rich arena of research
for few- and many-body physicists. Particle numbers can be varied, the inter-
action strength can in many cases be tuned through Feshbach resonances, and
many different properties can be studied very cleanly in the laboratory. Nuclear
physics techniques and tools have proven to be very useful to describe the physics
of these systems. With trapping potentials that are very close to harmonic, the
NCSM should be a perfect method. We recently adapted the NCSM formalism
to describe a two-dimensional system of strongly interacting bosons [5]. A purely
repulsive, short-ranged interaction was modeled with a Gaussian potential. Note
that the different statistics of the bosonic many-body system required a complete
rewrite of the NCSM suite of codes.

The success of the NCSM effective-interaction approach is demonstrated in
Fig. 2. Ground- and excited-state energies are presented for a system of nine
atoms. The NCSM results are compared to the much slower convergence of
the standard configuration interaction (CI) method. The figure illustrates that
stronger correlations within the system are obtained when increasing the in-
teraction strength (right panel). In this case, the computed energies still show41
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Figure 2. Energies for a system of nine bosons and total angular momentum L = 0, for different

many-body space cutoffs (Nmax). Repulsive Gaussian interactions with range σ = 0.1 and two

different strengths (g) are used (oscillator units). The blue-dashed (red-solid) curves correspond

to standard CI (effective interaction approach) calculations. From Ref. [5].

a slow decrease with increasing model space (Nmax). Still, in comparison, the
energies obtained from the standard CI calculations show a much slower con-
vergence. These results represent an important first step of our new approach.
Three-dimensional systems and higher particle numbers should also be within
reach for future studies.

Conclusion. Recent applications of the ab initio NCSM within nuclear physics
and beyond has been reviewed. In particular, we have demonstrated the study
of chiral 3NF Hamiltonians in the p-shell, the treatment of open channels using
the NCSM/RGM approach, and the effective-interaction approach to the many-
boson problem.
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Abstract. It is not possible to reproduce both the three- and four-nucleon
binding energies using the available two-nucleon potentials. This is one man-
ifestation of the need to include a three-nucleon force in the corresponding
Hamiltonian. In this paper we will analyze the capability of a three-nucleon
force model to describe not only the aforementioned binding energies but also
some N − d low energy scattering observables.

1 Introduction

The realistic presently available NN potentials reproduce the experimental NN
scattering data up to energies of 350 MeV with a χ2 per datum close to 1. How-
ever, the use of these potentials for a study of the three- and four-nucleon bound
and scattering states gives a χ2 per datum very much larger than 1 (see for ex-
ample Ref.[1]). In order to improve that situation, different three-nucleon force
(TNF) models have been derived: widely used in the literature are the Tucson-
Melbourne (TM) and the Urbana IX (URIX) models [2, 3]. More recently, TNF
models have been derived [4] based on chiral effective field theory at next-to-
next-to-leading order. The local version of this interaction (hereafter referred as
N2LO) can be found in Ref. [5]. All these models contain a certain number of
parameters that are fixed to reproduce the three- and four-nucleon binding en-
ergies. In this paper we will analyze the quality of this agreement, the prediction
for the doublet n − d scattering length 2and and some polarization observables
in p − d scattering. For this purpose we use the hyperspherical harmonic (HH)
method (for a recent review see Ref. [6]).

2 Binding energies and scattering lengths for A = 3, 4

From the results obtained in Ref. [6], we report in Table 1 the triton and 4He
binding energies, and the doublet n−d scattering length 2and. These results were
∗Article based on the presentation by A. Kievsky at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received January 14, 2009; Accepted January 29, 2009.43



2 Analysis of the three-nucleon force in A = 3, 4 systems

obtained using the AV18 or the N3LO-Idaho two-nucleon potentials together
with the AV18+URIX and N3LO-Idaho+N2LO TNF models. The results are
compared to the experimental values also reported in the table. Worthy of notice
is the recent very accurate datum for 2and [9].

Table 1. The triton and 4He binding energies B (MeV), and doublet scattering length 2and (fm)

calculated using the AV18 and the N3LO-Idaho two-nucleon potentials, and the AV18+URIX

and N3LO-Idaho+N2LO two- and three-nucleon interactions.

Potential B(3H) B(4He) 2and
AV18 7.624 24.22 1.258
N3LO-Idaho 7.854 25.38 1.100
AV18+URIX 8.479 28.48 0.578
N3LO-Idaho+N2LO 8.474 28.37 0.675
Exp. 8.482 28.30 0.645±0.003±0.007

From the table we may observe that only the results obtained using an inter-
action model that includes a TNF are close to the corresponding experimental
values. Moreover, the triton binding energy is well reproduced by choosing an
appropriate value for the strength of the TNF. However this is not true for the
4He binding energy and the scattering length 2and, especially in the case of the
AV18+URIX model.

The URIX potential has two free parameters which can be conveniently fixed.
The first one, called APW2π , is related to the strength of the term produced by a 2π-
exchange with an intermediate ∆ excitation. This term is constructed from the
sum of two contributions with a relative strength DPW

2π of 1/4 and proves to be
attractive. The second constant, called AR, fixes the strength of a purely central
repulsive term introduced to compensate the attraction of the previous term,
which by itself would produce a large overbinding in infinite nuclear matter. The
original values of these parameters, APW2π = −0.0293 MeV, AR = 0.0048 MeV
and DPW

2π = 0.25, has been fixed using the URIX with the AV18 two-nucleon
potential. The corresponding results for the quantities of interest are given in
Table 1. In order to improve these results we have varied the constants APW2π ,
AR and the relative strength DPW

2π . For a given value of APW2π , we have varied
AR and DPW

2π to reproduce B(3H) and 2and. Then we have calculated B(4He).
Surprisingly this last result turned out to be quite close to the experimental
value. The results of the analysis are given in Table 2 where five sets of values
which reproduce the mentioned quantities are reported.

From the table we observe that the values considered for DPW
2π and AR are

quite far from the original ones. In particular, the relative strength DPW
2π differs

from the original value of 1/4. To extend the analysis further, the obtained set
of values can be used to study p − d scattering at low energy. In Fig 1 the
p − d analyzing power Ay at Elab = 3 MeV is shown in correspondence to the
original AV18+URIX model (solid line) and the first three sets of values given
in Table 2 and indicated by (a), (b) and (c). As can be seen, the results for the
models (a), (b) and (c) are very close to each other. The same is true for the
last two choices of Table 2; however, corresponding results are not shown for44
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Table 2. Different choices for the parameters of the URIX potential and the corresponding

triton and 4He binding energies (in MeV) and scattering length 2and (in fm), calculated with

the AV18+URIX potential.

APW2π (MeV) DPW
2π AR(MeV) B(3H) B(4He) 2and

-0.0200 1.625 0.0176 8.474 28.33 0.644
-0.0250 1.25 0.0182 8.474 28.34 0.644
-0.0293 1.00 0.0181 8.474 28.33 0.643
-0.0350 0.8125 0.0191 8.474 28.33 0.645
-0.0400 0.6875 0.0198 8.474 28.38 0.645

the sake of clarity. Besides the usual underprediction of the observable given by
the AV18+URIX model, we observe a substantially worse description when the
new sets of constants are used. In Fig. 2 the tensor analyzing power T21 is shown
corresponding to the same choice of parameters. The original AV18+URIX model
overpredicts the minimum close to 90◦. Again the curves listed (a), (b) and (c)
nearly overlap and there is a substantially worse description of the observable
between 40◦ and 120◦
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Figure 1. The p − d analyzing power Ay for the models discussed in the text. Experimental

data are from Ref. [10].

3 Conclusions

Stimulated by the fact that the commonly used TNF models do not reproduce
simultaneously the triton and 4He binding energy and the n−d doublet scattering
length, we have analyzed possible modifications of the AV18+URIX potential.45
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Figure 2. The d−p analyzing power T21 for for the models discussed in the text. Experimental

data are from Ref. [10].

We have varied the original parameter values of this model so as to improve
the description of these quantities. Five choices of the parameters have been
considered. However, the new models worsen the description of the shown p− d
polarization observables at low energies. Further work on this problem is in
progress.

References

1. A. Kievsky, M. Viviani, and S. Rosati, Phys. Rev. C 64, 024002 (2001)
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Abstract. The Kohn variational principle and the hyperspherical harmonics
technique are applied to study the n−3H elastic scattering at low energies. In
this contribution the first results obtained using a non-local realistic interac-
tion derived from the chiral perturbation theory are reported. They are found
to be in good agreement with those obtained solving the Faddeev-Yakubovsky
equations. The calculated total and differential cross sections are compared
with the available experimental data. The effect of including a three-nucleon
interaction is also discussed.

1 Introduction

In the last few years the scattering of nucleons by deuterons has been the subject
of a large number of investigations. This scattering problem is in fact a very
useful tool for testing the accuracy of our present knowledge of the nucleon–
nucleon (NN) and three nucleon (3N) interactions. Noticeable progress has been
achieved, but a number of relevant disagreements between theoretical predictions
and experimental results still remains to be solved [1, 2].

It is therefore of interest to extend the above mentioned analysis to four
nucleon scattering processes. In this case, an important goal for both theoretical
and experimental analysis is to reach a precision comparable to that achieved in
the N−d case. This is particularly challenging from the theoretical point of view,
since the study of A = 4 systems is noticeably more complicated than the A = 3
one. Recently, accurate calculations of four-body scattering observables have
been achieved in the framework of the Faddeev-Yakubovsky (FY) equations [3],
solved in momentum space, and treating the long-range Coulomb interaction
using the screening-renormalization method [4, 5].

In this contribution, the four-body scattering problem is solved using the
Kohn variational method and expanding the internal part of the wave function
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∗∗E-mail address: michele.viviani@pi.infn.it47



2 Neutron-triton elastic scattering

in terms of the hyperspherical harmonic (HH) functions. Previous applications
of this method [6, 7, 8] were limited so far to consider only local potentials, as
the Argonne V18 [9] NN potential. Recently, for bound-states, the HH method
has been extended to treat also non-local potentials, given either in coordinate-
or momentum-space [10]. Here, we report the first application of the HH method
to the four-body scattering problem with non-local potentials.

The potential used in this paper is the N3LO-Idaho model by Entem &
Machleidt [11], with cutoff Λ = 500 MeV. This potential has been derived using
an effective field theory approach and the chiral perturbation theory up to next-
to-next-to-next-to-leading order. We have also performed calculations by adding
to the N3LO-Idaho potential a 3N interaction, derived at next-to-next-to leading
order (N2LO) in Ref. [12] (N3LO-Idaho/N2LO interaction model). The two free
parameters in this N2LO 3N potential have been chosen from the combination
that reproduces the A = 3, 4 binding energies [12]. The development of a 3N
interaction including N3LO contribution is still under progress [13].

This paper is organized as follows. In Section 2, a comparison between HH and
FY calculations is reported. We have performed this comparison for the N3LO-
Idaho potential for incident neutron energy En = 4 MeV. Finally, in Section 3,
the theoretical calculations are compared with the available experimental data.

2 Comparison between HH and FY results

The calculated phase-shift and mixing angle parameters for n− 3H elastic scat-
tering at En = 4 MeV using the N3LO-Idaho potential are reported in Table 1.
The values reported in the columns labeled HH have been obtained using the
HH expansion and the Kohn variational principle, whereas those reported in the
columns labeled FY by solving the FY equations [4]. As can be seen, there is a
good overall agreement between the results of the two calculations.

Table 1. Phase-shift and mixing angle parameters for n − 3H elastic scattering at incident

neutron energy En = 4 MeV calculated using the N3LO-Idaho potential. The values reported

in the columns labeled HH have been obtained using the HH expansion and the Kohn variational

principle, whereas those reported in the columns labeled FY by solving the FY equations [4].

Phase-shift HH FY Phase-shift HH FY
1S0 −69.3 −69.1 3P0 23.2 23.3
3S1 −61.4 −61.2 1P1 22.7 22.5
3D1 −1.14 −1.10 3P1 44.4 44.5
ε 0.77 0.80 ε 9.80 9.64
1D2 −1.72 −1.90 3P2 48.4 48.7
3D2 −0.94 −1.01 3F2 0.07 0.09
ε 2.74 2.81 ε 1.24 1.26
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3 Results

The preliminary results for the n − 3H total cross section calculated with the
considered potential models are reported in Figure 1. As already known, the
calculated cross section with the AV18 potential overpredicts the experimental
data at low energies, and is well under the data in the peak region [8, 4]. The
problem at low energies is cured when the Urbana-IX 3N force [14] is consid-
ered [8]. In the peak region the inclusion of this 3N force slightly decreases the
cross section, increasing the disagreement with the data. On the other hands,
using the N3LO-Idaho a better agreement with experimental data is found [4].
Including the N2LO 3N force, there is now a perfect agreement at low energy
(in particular, in the minimum around En = 1 MeV). Also in the peak region a
slight better agreement is observed. The origin of the remaining discrepancy is
unclear, but it could be related to parts of 3N interaction not yet considered.

The quality of the agreement can be also seen by comparing the theoretical
and experimental differential cross sections, avaliable at En = 1, 2, and 3.5 MeV.

0 1 10
En [MeV]

0

1

2

3

σ 
[b

]

N3LO-Idaho
N3LO-Idaho/N2LO
AV18

Expt.

Figure 1. n− 3H total cross sections calculated with the AV18 (thick solid line), N3LO-Idaho

(solid line), and the N3LO-Idaho/N2LO (dashed line) as function of the incident neutron energy

En. The experimental data are form Ref. [15].
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4 Neutron-triton elastic scattering
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Figure 2. n − 3H differential cross sections calculated with the N3LO-Idaho (solid line) and

the N3LO-Idaho/N2LO (dashed line) interaction models for three different incident neutron

energies. The experimental data are from Ref. [16].
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Abstract. In this paper we investigate the feasibility of employing the Hy-
perspherical Adiabatic (HA) basis set to describe continuum states of the
Helium trimer molecule.

1 Introduction

The Helium trimer molecule (4He3) has recently attracted considerable scien-
tific interest. The peculiar features of the He-He potential, that is, its extremely
shallow well associated to a very strong hard core, make the Helium dimer the
largest and weakliest bound homonuclear diatomic molecule known in Nature.
For the same reasons theoretical investigations of the trimer are computationally
challenging, and the Helium trimer has been used in recent years also as a bench-
mark system for testing different numerical approaches. Most studies addressed
the discrete part of the spectrum (see Ref. [1] and references therein), with a
particular attention to investigating the Efimov nature of the excited state, but
some have also investigated the low-energy part of the continuum [1, 2, 3].

This study represents the continuation of our previous work [4] on the ap-
plication of the Hyperspherical Adiabatic (HA) method to study the continuum
part of the energy spectrum for a three-body system. The HA expansion has
found many applications in different fields of few-body physics, from atomic to
molecular and nuclear physics. Its main advantage is the possibility to build
an optimum basis set by solving a parametric Schrödinger like equation, and
allowing for the original Hamiltonian problem to be solved with a two-step
procedure. However, most applications were restricted to study bound states,
and very few groups have applied to the continuum. Recently, Suno and Esry
[1] have investigated the low energy continuum of the Helium trimer using the
HA method. The main problem associated with this study is that, contrary to
∗Article based on the presentation by P. Barletta at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received December 12, 2008; Accepted January 16, 2009.51



2 Scattering states of three-body systems with the Hypersherical Adiabatic method

the bound state case, for the continuum a large number of adiabatic channels is
necessary to reach convergence, and the associated system of one-dimensional
coupled differential equations becomes numerically more difficult to solve.

2 Method, Results and Conclusions

The set of hyperspherical coordinates {ρ,Ω} is defined in a standard fashion (see
for instance Ref. [4] for details) for a system of three identical particles of mass
m (~2/m = 43.281307 K a2

0). The system wavefunction is expanded in terms of
the HA basis {Φν}:

Ψ =
∑

ν

uν(ρ)Φν(ρ,Ω). (1)

The HA basis is constructed by means of an expansion on Hyperspherical Har-
monics (HH). The notorious difficulty in obtaining the HA basis at large ρ is
overcome by solving numerically the asymptotic equation [5] in the asymptotic
region (ρ > 150 a0 ). The HA basis elements were then represented by using up
to 900 HH in the core region and 5000 HH in the asymptotic region, including
the symmetrized (over particle permutation) angular channels (0, 0), (2, 2) and
(4, 4) (where the pair (lx, ly) indicate the partial angular momentum on the x
and y Jacobi coordinate, see Ref. [6] for more details). The HA functions and
related adiabatic potentials were then calculated on a non-uniform hyperradial
grid of 927 points spanning the range 0− 10000 a0.

The He3 potential energy surface can be effectively modelled as a sum of
three pairwise interactions, as three-body effects are minimal. However, due to
the weakness of the He-He interaction, the determination of He-He potential has
proved challenging to quantum chemists, and there are many different potentials
available in the literature. In this work we have used the LM2M2 potential, and
the SAPT potential.

The next step is the determination of the set of functions {uν(ρ)}, and of
the scattering observable of interest. As a check of the goodness of HA basis
constructed, we have first performed a bound state calculation. The results are
presented in Table 1. The pattern of convergence as a function of number of
adiabatic channels NA is relatively slow, possibly due to the very strong repulsive
core in the He-He interaction. The results obtained are in general agreement with
the literature, as it can be seen from the last rows of the table. For simplicity,
not all literature results are cited in the table.

In Ref. [4] two different approaches were investigated to determine the scat-
tering observables. In the first, indicated as “method HA1”, the system wave-
function for continuum energy was supplemented by a term containing explicitly
the scattering function. The second, “method HA2”, is a direct solution of the hy-
perradial system of equations with the appropriate boundary conditions. Both
approaches showed, when tested on the three nucleon system, a poor conver-
gence pattern.Method HA2 was thus preferred in this work, as method HA1
would probably require an intractably large basis, consequence of its unitary
correspondence to a HH expansion. Furthermore, we have restricted the wave-52
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function’s expansion to the lowest adiabatic channels. The boundary conditions
to be imposed to the hyperradial functions uν(ρ) are the following. As ρ→∞ the
lowest adiabatic function Φ1(ρ,Ω)→ ρ3/2φd(r), with φd the dimer wave function
[4]. Therefore, in a zero energy process, the wave function Ψ → φd(1− a1+2/y),
and, accordingly, the function u1 at large ρ is

ρ5/2u1(ρ) ∼ ρ− as (2)

and all the other hyperradial functions uν(ρ) → 0, for ν > 1. Due to the finite
range of the dimer wave function, at very large values of the hyperradius we
have ρ →

√
2/3y, with y the relative distance between the dimer and the third

particle. Therefore, as is related to the 1+2 scattering length as a1+2 =
√

3/2as.
The approximation of retaining the lowest adiabatic curves in the wave function
expansion yields results very close to the converged values, as shown in Table
2. For the sake of comparison, in the table the results using different techniques
are also reported. However, a full convergence for the scattering length requires
a large number of HA channels, and it is difficult to achieve. Also the set of
hyperradial equations becomes more difficult to be solved than for the bound
state case [4]. How to obtain a satisfactory and converged solution to the set of
hyperradial differential equation is still an open problem .

Table 1. Convergence of the energies of the two 4He3 bound states, in mK, in terms of NA,

for two different He-He potentials. The results of the CHH method of Ref. [6] and the HA

expansion of Refs. [7, 8], are reported

LM2M2 SAPT2
NA E0 E1 E0 E1

1 -112.45 -2.114 -112.45 -2.663
4 -131.37 -2.258 -131.37 -2.825
8 -125.35 -2.269 -132.77 -2.837
12 -125.83 -2.272 -133.27 -2.841
16 -126.04 -2.274 -133.49 -2.842
20 -126.15 -2.274 -133.61 -2.843

Ref. [6] -126.4 -2.265 -135.1 -2.885
Ref. [7] -125.2 -2.269
Ref. [8] -125.2 -2.26

Table 2. Convergence of the atom-diatom scattering length, in Å, in terms of NA for two

different He-He potentials. The results of Refs. [2, 3], using the Faddeev method, are reported.

NA 1 4 5 20 Ref. [3] Ref. [2]
LM2M2 149.22 122.10 121.39 120.91 118.7 115.4
SAPT2 140.18 115.54 114.88 113.07 - 123.1
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4 Scattering states of three-body systems with the Hypersherical Adiabatic method

For example, one possibility is to employ a DVR representation for the wave-
function [9]. In Fig. 1 the lowest hyperradial functions u1(ρ) are given for the
excited trimer state and for the zero energy state, showing strong similarities
between the two states.

In conclusion, the feasibility of the HA approach to calculate low-energy
scattering observables was tested on the 4He3 system, which is challenging due
to the large basis set required. We have not achieved a full convergence for
the He+He2 scattering length, and further work is required in order to find a
satisfactory way of solving the large system of coupled hyperradial equations, in
the continuum, derived from the implementation of the HA approach.
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Figure 1. Hyperradial function u1

for the excited trimer state (dashed

line) and zero energy state (dots

and continuum line). The excited

state function has been rescaled

to coincide with the the zero en-

ergy function at ρ = 23 a0. The

dots represent the DVR ampli-

tudes, whereas the continuum line

is the back-transformed function

(see Ref. [9]).
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Abstract. We propose to use the hyperspherical harmonics (HH) basis to
solve the A-body system problem without explicit symmetrization or anti-
symmetrization of the basis functions as required by the statistic of the sys-
tem. Therefore, the HH basis set is expressed with respect to a given ordering
of the A particles. However, after diagonalization, the eigenvectors reflect the
symmetries of the Hamiltonian, and it is possible to identify the physical
states having the expected symmetry under particle permutation. As an ex-
ample we study the case of four particles interacting through a short-range
spin-dependent interaction and the Coulomb potential.

1 Introduction

A common method for solving the Schrödinger equation for few interacting parti-
cles is the variational method, and a widespread choice of basis set is represented
by the HH basis. This basis allows for a simple treatment of the kinetic energy,
and provides a systematic way of constructing the basis for a general number of
particles (see Ref. [?] and references therein). The major problem, when using
the HH basis, is the rapidly growing dimension of the basis as the number of
particles is increased. In the case of a system formed by identical particles, it is
common to use combinations of HH functions having the corresponding permu-
tational symmetry. They represent a subset of the basis which in general has a
much lower dimension than the complete basis [?, ?]. The problem, however, is
the increasing difficulty to carry out the symmetrization procedure as the number
of particle increases [?].

∗Article based on the presentation by M. Gattobigio at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received January 15, 2009; Accepted January 31, 2009.

∗∗E-mail address: mario.gattobigio@inln.cnrs.fr
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2 Non symmetrized basis function for identical particles

The HH functions do not have well defined properties under particle permu-
tation. They depend of the particular choice of Jacobi coordinates and of the
hyperangular coordinates used to define the HH functions. Changing the order-
ing of the particles also defines a new set of Jacobi coordinates and, thus, new
HH functions.

In the present paper, we propose to use the HH basis without prior sym-
metrization procedure. We loose the advantage of a reduced Hilbert space; how-
ever, we gain in simplicity in the calculation of the matrix elements. By including
all HH basis elements up to a certain grand angular momentum K, the diag-
onalization of the Hamiltonian matrix will produce eigenvectors reflecting its
symmetries. Therefore, it is possible to identify the eigenvectors with the desired
symmetry, and the corresponding eigenvalues are variational estimates of the
energies of the physical states. The disadvantage of this method lies in the large
dimension of the matrices to be diagonalized. However, different techniques are
available to treat (at least partially) this problem.

Following a previous study of the A = 3, 4 systems interacting through a
short-range potential supplemented by the Coulomb interaction [?], we analyze
the case of a spin-dependent potential. Note that the method allows for a simple
treatment of symmetry-breaking terms, such as different particle masses, or the
Coulomb interaction between a particle pair.

The paper is organized as follows: in Section ?? we fix the notation introduc-
ing the Jacobi coordinates, the HH basis set, and the potential basis (PB). In
Section ?? we show how to use the PB to calculate the potential energy. In Sec-
tion ?? we apply our method to Volkov potential, for A = 4 particles, with and
without the Coulomb interaction, and to a spin-dependent Volkov-like potential.
In Section ?? we draw some conclusions.

2 The HH functions and the potential basis

We briefly review the main properties of the HH functions and we refer to Refs. [?,
?] for the full details. From a particular ordering of the particles, we can define
a set of Jacobi coordinates x1, . . . ,xN , and the corresponding hyperspherical
coordinates, ρ,ΩN = (x̂1, . . . , x̂N , φ2, . . . , φN ). The HH functions, coupled to a
given angular momentum LM , are defined as

YLM[K] (ΩN ) =
[
Yl1(x̂1)⊗ . . .⊗ YlN (x̂N )

]

LM



N∏

j=2

(j)P lj ,Kj−1

Kj
(φj)


 , (1)

with [K] the set of quantum numbers L,M, l1, . . . , lN−1, n2, . . . , nN plus N − 2
intermediate l-values, and the Kj defined as Kj =

∑j
i=1(li + 2ni) , lN = L , n1 =

0 ,K ≡ KN . (j)P lj ,Kj−1

Kj
(φj) is an hyperspherical polynomial. With the above defi-

nition, the HH functions are eigenvectors of the grand angular operator Λ2
N (ΩN ),

[Λ2
N (ΩN )+K(K+3N−2)]Y[K](ΩN ) = 0 , with K the grand angular momentum

quantum number.
The PB elements P l,m2n+l(Ω12) form a subset of the HH basis, namely the

one which satisfies Λ2
N−1(ΩN−1)P l,m2n+l(Ω12) = 0, where the Jacobi variables are
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x1, . . . , xN = r2 − r1, and the hyperspherical variables are split into ΩN =
(ΩN−1, x̂N , φN ), with Ω12 ≡ (x̂N , φN ), and (n, l,m) ≡ (nN , L,M). One can
similarly define the PB depending on a generic pair (i, j) as P l,m2n+l(Ωij), and a
very useful property is that we can express it as a combination of HH functions
defined in the reference set with the same grand angular momentum

P l,m2n+l(Ωij) =
∑

[K′=2n+l]

(N)Cn,l[K′](ϕ
ij)Y lm[K′](ΩN ) , (2)

where the coefficients (N)Cn,l[K′](ϕ
ij) are known for each value of K and A. The

PB can be used to expand a generic function depending on the pair (i, j). In
particular the two-particle potential, can be expanded in the PB as

V (ri − rj) =
∑

nlm

Vnlm(ρ)P l,m2n+l(Ωij) , (3)

where the Vnlm(ρ) are the hyperradial multipoles.

3 The potential energy in term of HH functions

Once we have introduced the PB and its properties, we can use it to express the
full potential on HH functions. Let us consider, for concreteness, a spin-dependent
potential of the form

V (i, j) = V W (rij) + V σ(rij)σi · σj . (4)

Using Eq. (??) to expand the central parts of the potential on PB basis, and
Eq. (??) to rotate the PB on the reference permutation, we obtain (n = K/2)

V (i, j) =
∑

[K]

(
V W
n (ρ) + V σ

n (ρ)σi · σj
)

(N)Cn[K](ϕ
ij)
[
Y[K](ΩN )

]

L=0

, (5)

where, due to the central nature of the potential, l = 0, m = 0, and they have
been omitted in the notation. The spherical harmonics of the HH’s have been
coupled to give total zero angular momentum. The total potential is the sum
over the pairs, and we obtain

V =
∑

i<j

V (i, j) =
∑

n

(
V W
n (ρ)⊗Gn(Ω)⊗Iσ+V σ

n (ρ)⊗
∑

i<j

Gijn (Ω)⊗(σi·σj)
)
, (6)

where we have defined the matrices

Gn(Ω) =
∑

[K=2n]

∑

i<j

(N)Cn[K](ϕ
ij)
[
Y[K](ΩN )

]

L=0

, (7)

and

Gijn (Ω) =
∑

[K=2n]

(N)Cn[K](ϕ
ij)
[
Y[K](ΩN )

]

L=0

. (8)

We have written the expressions as an explicit tensor-product form. This sim-
plifies the matrix-vector product used to diagonalize the matrix by iterative
methods.
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4 Non symmetrized basis function for identical particles

4 Application to A = 4

To solve the four-body problem we introduce the following basis set

〈ρΩ|m [K]σ〉 =
(
β(α+1)/2

√
m!

(α+m)!
L(α)
m (βρ) e−βρ/2

)
YLM[K] (Ω) |σ〉 , (9)

where L(α)
m (βρ) is a Laguerre polynomial with α = 8 and β a variational non-

linear parameter, and |σ〉 = |s1s2(s12)s3s4(s34); stotstot
z 〉 is the total spin state,

obtained by coupling the four spins si = 1/2. The kinetic-energy matrix is easily
calculated within this basis set

〈m′ [K ′]σ′|T |m [K]σ〉 = −~2β2

m
(T (1)
m′m−K(K+3N−2)T (2)

m′m)δ[K′][K]δσ′σ , (10)

with

T
(1)
m′m =

1
4
δm,m′ +

√
m′!

(α+m′)!

√
m!

(α+m)!

∫ ∞

0
xα e−xdxL(α)

m′ (x)

×
[(
− α+ 2m

2x
− m

x2

)
L(α)
m (x) +

m+ α

x2
L

(α)
m−1(x)(1− δm,0)

]
, (11)

and

T
(2)
m′m =

√
m′!

(α+m′)!

√
m!

(α+m)!

∫ ∞

0
xα e−xdxL(α)

m′ (x)
(

1
x2

)
L(α)
m (x) , (12)

and the kinetic energy matrix displays a tensor-product form too.
In the following we fix the value of the nucleon mass such that ~2/m =

41.47 Mev fm−2 and we introduce two different potentials: (i) the spin-
independent Volkov potential (V σ(r) = 0); (ii) a modified version of the Volkov
potential including a spin-dependent term.

In the first case we have

V W (r) = E1 e−r
2/R2

1 + E2 e−r
2/R2

2 , (13)

with E1 = 144.86 MeV, R1 = 0.82 fm, E2 = −83.34 MeV, and R2 = 1.6 fm.
The results are given in Table ??. The convergence of the ground-state energy
E0 is shown as a function of the grand angular momentum K. The non-linear
parameter has been fixed β = 2, and the quantum number m = 25 is such that
the convergence has been reached with respect to this quantum number for each
value of K. For the sake of comparison, we also report the ground state energy
obtained using the stochastic variational method (SVM) [?], the shell model with
HH basis (SMHH) [?], and the symmetrized HH basis [?]. On the same table, we
calculate the ground state energy EC0 in presence of a Coulomb potential between
two nucleons, with e2 = 1.44 MeV fm. As the basis set is not symmetrized, it
can be used when adding a potential term between particles (1, 2)

V C(r12) =
e2

r12
=

e2

ρ cosφ3
. (14)
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Table 1. The ground-state energy E0, with Volkov potential, as a function of Kmax, using 25

Laguerre polynomials, and β = 2 fm−1. We also give the dimension NH of the HH basis, and

the ground-state energy EC
0 in the presence of an additional Coulomb interaction.

Kmax NHH E0 (MeV) EC0 (MeV)
0 1 28.580 27.748
2 6 28.580 27.750
4 21 29.283 28.455
6 56 29.812 28.986
8 126 30.162 29.338
10 252 30.278 29.456
12 462 30.365 29.544
14 792 30.392 29.572
16 1287 30.407 29.587
18 2002 30.413 29.593
20 3003 30.416 29.596
22 4368 30.417 29.597

SVM[?] 30.42
SM[?] 29.532
HH[?] 30.406

Note that, with this kind of potential, a symmetric basis set should involve
states with isospin T = 0, 1, 2; hence a symmetrized basis would be enlarged by
the presence of a symmetry-breaking term.

As a second example, we consider a spin-dependent potential. We use a
Volkov-like potential defined for singlet and triplet spin channels, S = 0, 1,
namely

V(S) = E(S),1 e−r
2/R2

(S),1 + E(S),2 e−r
2/R2

(S),2 , (15)

with E(0),1 = 144.86 MeV, R(0),1 = 0.82 fm, E(0),2 = −66.7 MeV, and R(0),2 =
1.6 fm, and E(1),1 = 144.86 MeV, R(1),1 = 0.82 fm, E(1),2 = −97.0 MeV, and
R(1),2 = 1.6 fm. In terms of the potential defined in Eq. (??) we have VW =
V(0)/4 + 3V(1)/4, and Vσ = −V(0)/4 + V(1)/4.

Using this potential, a bound state appears for total spin stot = 0; in
this case the spin-space has dimension two, and the two states |σ〉 are |0〉 ≡
|12 1

2(0)1
2

1
2(0); 00〉 and |1〉 ≡ |12 1

2(1)1
2

1
2(1); 00〉. The values of the Pauli matrix-

scalar product are the following

〈σ′|σ1 · σ2|σ〉 = 〈σ′|σ3 · σ4|σ〉 =
(
−3 0
0 1

)

〈σ′|σ1 · σ3|σ〉 = 〈σ′|σ2 · σ4|σ〉 =
(

0 −
√

3
−
√

3 −2

)

〈σ′|σ1 · σ4|σ〉 = 〈σ′|σ2 · σ3|σ〉 =
(

0
√

3√
3 −2

)
.

(16)

In Table ?? we showt the results obtained with this potential for the ground-state
energy, E0, and for the first excition, E1.
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Table 2. The ground-state energy E0, with spin-dependent Volkov potential, as a function of

Kmax, using 25 Laguerre polynomials, and β = 2 fm−1. We also give the energy of the first

excited state E1.

Kmax E0 (MeV) E1 (MeV)
0 26.319 2.566
2 26.964 2.881
4 27.793 5.115
6 28.302 6.330
8 28.650 6.982
10 28.768 7.363
12 28.858 7.617
14 28.888 7.782
16 28.904 7.910
18 28.911 8.008
20 28.915 8.088

5 Conclusions

In this paper we propose to solve the A-body system using the hyperspherical
harmonics functions without a preliminary symmetry-adaptation of the basis
set. We have shown the feasibility of this procedure in the case of four particle
interacting through a spin dependent short-range potential. We have also con-
sidered a purely central interaction including the Coulomb potential between a
pair. Skiping the explicit symmetrization of the basis, we have gained in simplic-
ity when the matrix elements of the potential are to be calculated, and without
increasing the dimension of the basis, we have considered potential terms which
break the permutational symmetry. This is of fundamental importance if we want
to consider a system of protons and neutrons in which the Coulomb interaction
between protons has to be included as well as their mass difference. The main
difficulty in the present method is the treatment of very large matrices. We have
shown that the Hamiltonian matrix can be written as a tensor product and this
particular form can be diagonalized very efficiently [?].
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Abstract. Nuclear reactions involving light nuclei require few-body models
to describe the nuclear structure and the reaction mechanism. The production
rates for the α+n+n→ 6He + γ and α+n+n+n→ 6He +n processes are
discussed. Typically only very low relative energies are relevant. For environ-
ments with a high density, processes involving more particles could dominate.
The use of the adiabatic approach as a method to compute cross sections at
very low energies is proposed.

1 Introduction

When talking about reactions of astrophysical interest we refer to all those nu-
clear processes playing a role in the nucleosynthesis of the elements in the stars.
In particular, in this work we shall concentrate on those reactions involving light
nuclei, for which few-body models are needed at two different levels, to describe
the structure of the nuclei and also to describe the reaction mechanism.

The basic goal when investigating these reactions is to estimate their produc-
tion rate, which gives the velocity (number of reactions per unit time and unit
volume) at which the products of the reaction are created.

2 Production Rates

The production rate for a reaction involving N particles in the initial state is
obtained as P T =

∫
dEB(E, T )P (E), where P (E) is the production rate at a

given kinetic energy E in the N -body center of mass, and B(E, T ) is the Maxwell-
Boltzmann distribution giving the probability for finding the N particles with

∗Article based on the presentation by I. Mazumdar at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received November 17, 2009; Accepted January 19, 2009.

∗∗E-mail address: e.garrido@iem.cfmac.csic.es61
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that precise relative kinetic energy [1]. This distribution takes the form:

B(E, T ) =
1

Γ (3N−3
2 )

1
KBT

(
E

KBT

) 3N−5
2

e
− E

KBT , (1)

where KB is the Boltzmann constant and T is the temperature of the star.
The exponential in the previous expression implies that for a given tempera-

ture T , the only relevant energies correspond to E . KBT . Typical temperatures
in the stars (i.e., in the core of the sun) are of the order of 107 K, which leads
to KBT ≈ 0.001 MeV. Therefore, in the stellar medium only very low relative
kinetic energies are relevant.

The total production rate at a given energy (P (E)) is the product of the so
called reaction rate and the densities ni of the N nuclei (i = 1, · · · , N) involved
in the initial state. These densities are usually written as ni = ρNA

Xi
Ai

, where NA

is the Avogrado number, Ai and Xi are the mass number and mass abundance
of the nucleus i, and ρ is the density of the star [1]. The density is, together with
the temperature, the crucial property of the star determining the production
rate. In fact, P (E) is proportional to ρN , meaning that, for a sufficiently large
ρ, processes involving more particles could play a role.

Finally, the reaction rate (R(E)) is given by the Fermi’s golden rule integrated
over all the possible momenta for the final products of the reaction. Assuming
M particles in the final state, R(E) is written as:

R(E) =
∫

2π
~
|〈Ψi(E)|W |Ψf (Ef )〉|2 δ(E − Ef )

d3p1

(2π)3
· · · d

3pM
(2π)3

, (2)

where Ψi and Ψf are the initial and final wave functions, p1, · · · ,pM are the
momenta of the final nuclei, and W represents the interaction. When only two
particles are involved in the initial state, the reaction rate is the cross section of
the process times the relative velocity between the two particles.

Obviously, the matrix element contained in the integrand of Eq. (2) is the
same for a given reaction and for the inverse process. It is then possible to relate
the reaction rates (and therefore the production rates) corresponding to both
processes. This means that the production rate for a reaction leading to two
particles in the final state can be written in terms of the cross section of the
inverse process. This is what happens in the two reactions briefly discussed in
the following subsections.

2.1 Two-Neutron Radiative Capture: The α+ n+ n→ 6He + γ Process

This a pure electromagnetic process where only the bound 6He nucleus and a
photon are found in the final state. Following the discussion above, the corre-
sponding production rate can be written in terms of the photo-dissociation cross
section (σγ) of 6He. To be precise, this production rate takes the form:

Pα,2n(ρ, T ) = nαn
2
n

~3

c2

(
mα + 2mn

mαm2
n

) 3
2 2π

(KBT )3
e
− Q

KBT

∫ ∞

|Q|
E2σγ(E)e−

E
KBT dE

(3)62
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where Q = m6He−mα−2mn, and m6He, mα, and mn are the masses of 6He, the
α particle, and the neutron, respectively.

The cross section σγ(E) is usually expanded in terms of electric and magnetic
multipoles, each of them given by a well known expression in terms of the strength
function of the reaction [2].
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Figure 1. Dipole and quadrupole reaction

rates for the α + n + n →6 He + γ process.

(ARAA: Ann. Rev. Astron. Astrophys.)

In the figure, the thick solid lines
are the computed electric dipole and
quadrupole reaction rates when the cor-
responding strength functions are ob-
tained as described in [3]. This pro-
cedure includes all the possible cap-
ture mechanisms: Resonant, sequential,
and direct. As seen in the figure, the
quadrupole result agrees with previous
estimates by Görres (dot-dashed) and
Fowler (dotted). For the dipole contri-
bution our reaction rate is about one
order of magnitude higher than Görres,
Efros and Barlett. The reason is that
in these calculations a fully sequential

capture process is assumed. In fact, in the work by Barlett et al. they also esti-
mated the dipole reaction rate including the contribution from dineutron capture.
This estimate (dotted line) is above our calculation.

2.2 Four-Body Recombination: The α+ n+ n+ n→ 6He + n Process

In this process one neutron takes the excess of energy released when the remain-
ing particles combine into a bound state. Again, only two particles are found in
the final state, and the production rate takes the following form in terms of the
cross section σn(E) for the inverse process (neutron breakup of 6He):

Pα,3n(ρ, T )=nαn
3
nµn6He

(
mα + 3mn

mαm3
n

) 3
2 ~6(2π)

5
2

(KBT )
9
2

e
− Q

KBT

∫ ∞

|Q|
Eσn(E)e−

E
KBT dE.

(4)
Calculation of σn(E) requires the proper description of the four-body inital

and final states. The initial state is described as a bound three-body system
(6He) plus a free neutron, and σn(E) is estimated assuming that the transition
amplitude can be written as the sum of the three amplitudes corresponding to
the interaction between the incident neutron and each of the three constituents
in 6He. Each of them factorizes into a term depending on the initial (bound)
and final (continuum) three-body structure of 6He, and a second term giving the
two-body transition amplitude for the scattering of the incident neutron and the
corresponding constituent [4].

For a mass density of ρ =150 g/cm3 (like in the core of the sun) and a
temperature of 15 GK the four-body recombination production rate is about four
orders of magnitude smaller than for the electromagnetic two-neutron capture.
However, since this production rate goes like ρ4, while for the electromagnetic63
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capture it goes like ρ3, the four-body recombination mechanism could dominate
in an environment with a sufficiently large density (ρ > 1.5 · 106 g/cm3).

However, for very low temperatures the approximation described above is
very likely failing, and a proper calculation of σn(E) is required.

3 The Adiabatic Approach and Nuclear Reactions at Low Energies

Given a particle hitting an N -body system, the adiabatic approach appears as an
efficient method to compute the corresponding cross section at very low energies.
The adiabatic expansion of the (N + 1)-body wave function permits to solve the
angular part of the equations for individual (frozen) values of the radial coordi-
nate. As a second step, one has to deal with a coupled set of radial equations
where a series of effective adiabatic potentials enters [5].

It can be proved that at large distances the eigenfunctions associated to each
of the adiabatic potentials correspond to very specific structures. A reduced
number of potentials are associated to the different possible asymptotics corre-
sponding to one (or more) bound subsystems and the remaining particle(s) in the
continuum. They are all the possible outgoing channels corresponding to elas-
tic, inelastic or rearrangement scattering. The incoming channel (N -body bound
target plus one particle in the continuum) is typically described by a single adi-
abatic potential. Therefore, in this approximation a limited and small number
of S-matrix elements are enough to describe the scattering process.

However, for a breakup process leading to N + 1 particles in the continuum,
the asymptotics is described by infinitely many adiabatic potentials. One of the
open questions is to establish how many of these potentials are needed to obtain
a converged breakup cross section.

4 Summary and Conclusions

Temperature and density are two crucial star properties which determine the
production rate of a given reaction. Typical temperatures are such that only very
low relative energies are relevant. A proper description of the radiative capture
processes requires inclusion of all the possible capture mechanisms. Usually those
processes involving less particles dominate over the competing reactions with
more particles involved. However, if the star density is large enough the latter
could be relevant. Finally, we propose the adiabatic approximation as a very
useful method in order to compute cross sections at very low energies.
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Abstract. The development of light, neutron-rich beams has opened in the
last decade new perspectives for the study of many-neutron systems. Breakup
experiments at GANIL are described, using beams of 6,8He, 11Li, 14Be and
15B at several tens of MeV/N. Our approach is based on the detection in
coincidence of the breakup fragment and the neutrons in order to investigate
the different correlations in the final state of these very neutron-rich systems.
Several particular cases are discussed: fragment-n correlations in unbound
7He, 10Li and 9He; 2n correlations in 6He, 11Li and 14Be; and three-body and
4n correlations in 8He and 14Be.

1 Introduction

The very neutron-rich, light nuclei provide a fertile testing ground for our un-
derstanding of nuclear structure. From an experimental point of view this region
is the only one for which nuclei lying at and beyond the neutron dripline may
be accessed. Theoretically a wide range of models, including various shell model
approaches (e.g., the shell model in the continuum, the no-core shell model) and
more ab initio type models are capable of providing predictions. In addition,
the structure of some unbound systems, such as 10Li, is key to constructing
three-body descriptions of two-neutron halo nuclei, such as 11Li.

One of the best adapted tools to the study of nuclei far from stability is
that of “knockout” or breakup of a high-energy radioactive beam. The high
cross-section of these reactions make up for the low intensity of these very ex-
otic beams. Our group has been studying these systems at GANIL for the last
decade, with very neutron-rich beams accelerated at several tens of MeV/N. The
fragments following breakup are detected in coincidence with the multidetector
arrays CHARISSA (charged fragments) and DEMON (neutrons). Some examples
are described in the following.

∗Article based on the presentation by F.M. Marqués at the Fifth Workshop on Critical Stability,
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Figure 1. Zoom on the lighter part of the nuclear chart. The crosses correspond to unbound

nuclei studied at GANIL by our group.

2 Two-body, unbound systems

The unbound nuclei 7,9He and 10Li have been investigated via the high-energy
breakup of 8He, 11Be and 14B. The decay-energy spectra were reconstructed
from coincident measurements of the charged fragments (6,8He and 9Li) with
Si-CsI telescopes from CHARISSA and the neutrons with the DEMON array.
A theoretical approach based on the sudden approximation was used to model
the reactions populating the unbound final states. The calculated decay-energy
spectra were convoluted with the response function of the experimental setup
using a simulation developed specifically for the present study and compared
with the experimental results [1].

The 7He system was investigated with the three different beams. No evidence
for the existence of the proposed low-lying (Er > 1 MeV) spin-orbit partner
(1/2−) of the ground state (3/2−) could be found.

The 10Li system was produced using an 11Be beam and the results confirm
the continuation of the inversion of the 1/2+ and 1/2− levels in the N = 7
isotopic chain (Fig. 2). The virtual s state is found to be the ground state with
a scattering length of as = −14 ± 2 fm. The production of 10Li using the 14B
beam exhibits, in addition, a low-lying p excited state at about 500 keV.

The 9He system was similarly produced using both 11Be and 14B beams,
and was the most exotic system studied. A structure was observed at very low
decay energy which very probably corresponds to a virtual s state (as > −3
fm). This result suggests that the level inversion also occurs in 9He, but with a
much weaker core-neutron interaction than for 10Li. For the data acquired from
the breakup of the 14B beam, the decay energy spectrum exhibits a resonance66
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Figure 2. Decay energy of the 10Li system from the breakup of 11Be (left) and 14B (right)

[1]. The red line is the non-resonant background obtained by event mixing (dotted line) plus a

virtual s state at an energy corresponding to a scattering length of −14 fm (solid line) plus, on

the right, a p wave at 500 keV (dashed line).

around Er = 1.2 MeV, which most probably corresponds to an excited 1/2−

state in 9He.

3 Three- and Four-body systems

The unbound systems described above were formed by knocking out some nu-
cleons from a heavier, exotic beam. More complex systems, like the two-neutron
haloes 6He, 11Li and 14Be (core+2n), or the four valence neutrons inside 8He and
14Be (α+4n and 10Be+4n), can be studied with the same techniques through the
excitation of these systems leading to breakup.

Concerning the former, the breakup of 6He, 11Li and 14Be into their core plus
the two valence neutrons was studied using the technique of intensity interferom-
etry, and the rms distances between the two neutrons at breakup were measured
[2]. These distances were about 5-7 fm, relatively large. A more sophisticated
analysis on the breakup of 8He into 6He+2n [3] lead to the measurement of both
the relative distance and the relative time between the neutrons in the sequential
channel (formation of an unbound 7He resonance). The delay was found to be
consistent with the lifetime of 7He.

The 4n system was studied in the breakup of 14Be [4] and 8He [5]. Few events
were found to be consistent with the correlated decay of the four neutrons, either
as a bound or a low-lying resonant state [6]. The breakup of a higher intensity
beam of 15B was studied in 2006 at GANIL using the same techniques. The
idea is to knock out one proton from the beam and form an excited 14Be that
will decay in flight, either to 12Be+2n or 10Be+4n. Many events with a 10Be
in coincidence with the neutron detectors were recorded, and the analysis is in
progress [7]. 67
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4 Conclusion and perspectives

The recent study of very exotic unbound systems has lead to new results: ab-
sence of low-lying excited state in 7He independently of the entrance channel,
precission measurement of the 9Li+n scattering length, and s/p level inversion
in the N = 7 isotopic chain up to 9He. The breakup of two-neutron halo systems
has been “mapped” in both space and time using the technique of intensity in-
terferometry. And the most neutron rich isotopes of He and Be have been excited
in order to liberate their four valence neutrons, leading to events consistent with
the formation of a correlated tetraneutron. All these axes are being studied in
depth following the breakup of a high intensity 15B beam, which lead to many
fragment+n, core+2n and core+4n exit channels [7].

References

1. H. Al Falou, PhD Thesis, Université de Caen (2007).
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68



Few-Body Systems 0, 1–4 (2009) Few-
Body

Systems
c© by Springer-Verlag 2009

Printed in Austria

Efimov Effect in 2-Neutron Halo Nuclei∗

Indranil Mazumdar

Department of Nuclear & Atomic Physics, Tata Institute of Fundamental Research, Mumbai
400 005, India

Abstract. We provide a brief overview of our theoretical investigations, car-
ried out in recent years, to study Efimov effect in 2-n halo nuclei. The calcu-
lations provide the evidence for the occurrence of at least two Efimov states
in 20C. These states disappear one by one as the two-body binding energy
is increased and show up as asymmetric resonances in the elastic scattering
cross section of n-19C system. The asymmetric nature of the resonances is
explained by invoking the mechanism of Fano resonance.

1 Introduction

The remarkable advancements in the production of Radioactive Ion Beams and
detection facilities have opened up new vistas in contemporary nuclear physics.
It is now possible to produce exotic light nuclei close to the neutron drip line
and study their structural properties. The discovery of the halo structure formed
by the valence one or two neutrons outside a compact core has been one of the
most important findings of these studies. The very small one or two-neutron
separation energy and abnormally large root mean square radius, as confirmed
by measurements of interaction cross section and by momentum distribution
studies are some of the novel structural features of the halo nuclei. Some of the
2-neutron halo nuclei are also characterized by what is now known as the Bor-
romean property, which implies that while the binary subsystems, such as n-core
and n-n are unbound the three-body system comprising the n-n core gives rise
to a bound state. A typical example is that of 11Li, the most studied 2-n halo
nucleus. In addition to the studies of the structural properties of the halo nuclei
from a purely nuclear physics standpoint, the three-body structure of the 2-n
halo nuclei comprising a compact core and two neutrons with very low separa-
tion energy makes them ideally suited for studying the Efimov effect. Efimov
showed, over three decades ago, that a three-body quantum mechanical system
with resonating binary interactions gives rise to an effective attractive inverse

∗Article based on the presentation by I. Mazumdar at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received January 1st, 2009; Accepted January 8, 2009.69



2 Efimov Effect in 2-Neutron Halo Nuclei

quadratic potential as function of the three-body radial variable supporting an
infinite number of weakly bound states [1]. There have been extensive searches
for Efimov states in many areas of physics by both experimentalists and the-
orists. Indeed, the Efimov effect is now being recognised to play a central role
in Bose-Einstein condensation in dilute atomic gases. Very recently, the first ex-
perimental observation of Efimov states has been reported in ultracold cesium
trimers [2]. The material that follows will present our attempts to search for
Efimov states in 2-n halo nuclei.

2 Efimov Effect in 14Be, 19B, and 20C

Our formalism is based upon a three-body model of the 2-n halo nucleus com-
prising a compact core and two valence neutrons. We assume s-wave separable
potentials for the binary sub-systems [3]. Solving the three-body Schrodinger
equation in momentum space we obtain two coupled integral equations for the
spectator functions F(p) and G(p). These equations are recast involving only
dimensionless quantities for studying the sensitive computational details of the
Efimov effect. In this process the two-body strength and range parameters for
the n-n and n-core systems are made dimensionless. The details are provided in
[4] and will not be presented here. The first 2-n halo nucleus studied using this
formalism was 14Be considered to be a three-body system of a 12Be core and two
loosely bound valence neutrons [4]. Keeping the n-core range parameter fixed
the strength parameter was varied corresponding to n-12Be virtual states from
50 keV to 0.01 keV. At 50 keV virtual state, the three-body system is found
to have binding energy close to the experimental value, but no excited state is
predicted. As the virtual state energy of n-12Be is decreased, we not only get
the ground state energy, but also the excited state energy for the 14Be system.
In fact the first excited state appears for n-12Be virtual state of about 4 keV
followed by the emergence of the second excited state at n-core virtual state of 2
keV. This methodology was followed to search for Efimov states in 19B, 22C and
20C [5]. It was shown by numerical analysis and also from analytical considera-
tions that Borromean-type halo nuclei like 19B and 22C, where n-n and n-core
are both unbound, are much less vulnerable to respond to the existence of the
Efimov effect. On the contrary, those nuclei, like 20C in which the halo neutron
is supposed to be in the intruder low lying bound state with the core, appear to
be promising candidates to search for the occurrence of Efimov states at energies
below the n-(n-core) breakup threshold.

3 Movement of Efimov states in 20C to resonances in n-19C Scattering

In light of the uncertainties in the experimental data we have studied the effect
on the behaviour of Efimov states in 20C by scanning a wide region of the n-
core binding energy from 60 to 500 keV. It has been noticed that as the two-
body binding energy reaches around 140 keV, the second Efimov state has its
energy less than that of the two-body leading to an unstable state. Similarly,
the first Efimov state also becomes unstable for the two-body binding energy70
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around 240 keV. This is in conformity with what was originally predicted by
Amado and Noble about the movement of Efimov states into the unphysical
sheet associated with the two-body unitarity cut on increasing the strength of the
binary interaction [6]. This particular behaviour was investigated by extending
the study in the scattering sector. We studied the elastic scattering amplitude
for n-19C system as a function of incident neutron energy by computing the
integral equations for the amplitude at energies below the three-body break up
threshold [7]. It was found that for binding energies greater than or equal to
250 keV for the n-18C system the disappearance of the first Efimov state gives
rise to a resonance at the neutron energy of 1.6 keV with a full width of around
0.25 keV. The same trend was also observed for binding energies of 200 and 350
keV with the resonances appearing at the same position with similar widths of
around 0.25 keV. The second excited state was also found to disappear above the
n+18C threshold of about 140 keV with the appearance of a resonance showing
the generality of this behaviour.

4 Fano Resonances of Efimov States in 20C

A very intriguing feature of the resonances described in the previous section
are their asymmetric profiles. This is unlike the symmetric Breit-Wigner or
Lorentzian shapes encountered more often in nuclear physics. We have inter-
preted the asymmetric shapes of the resonances as Fano resonances widely ob-
served and studied in atomic and molecular systems. The Fano resonances origi-
nate from the presence of two alternative pathways to the final state. One directly
into the continuum and the other through the embedded discrete state, interfere
both constructively and destructively to give the asymmetric resonance. In 20C,
the very weak binding and large spatial spread of the Efimov states lead to a
strong overlap with the continuum states leading to comparable amplitudes of
the two pathways and the very asymmetric profile. We have fitted the resonances
by Fano profiles and have extracted the best fit Fano indices for the resonances
[8]. The fits to the resonances at 250 and 150 keV n-18C binding energies yield
the same fano index (q), displaying their origin as members of the same family
of Efimov states. In very recent calculations we have revisited the problem of
the movement of Efimov states into resonances with increasing strength of the
n-core binary system. For a system of very heavy core (∼100) with two valence
neutrons we reproduce the same behaviour as seen in 20C. The results further
establish the finding of the movement of Efimov states into resonances beyond a
certain strength of the n-core bound system. The right panel of the Fig. 1. shows
the asymmetric resonance structures in the elastic scattering cross sections (for a
very heavy core) for three different n-core binding energies. We have also checked
the scattering length of the n-(n+core) system for the incident energy tending
to zero to be positive and large, thereby, supporting a bound state. This result
for a hypothetical nucleus with a very heavy core (mass ∼ 100) with two valence
halo neutrons show the same behaviour as that of a realistic 2-n halo nuclei, the
20C. This helps establishing the results obtained on a firmer foundation and over
a large mass range. The left panel shows the peak position of the elastic cross71
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Figure 1. The peak structures in

the scattering cross sections for 1)

one very heavy core and two va-

lence neutrons and 2) three equal

masses.

sections for a system of three equal masses for three different n-core binding
energies. In this case the peak position has shifted towards the origin with very
large cross sections hinting at virtual states. The case for equal masses are being
studied and will be reported elsewhere. It would be really interesting to search
for the same effect of movement of Efimov states to resonances in lighter 2-n halo
nuclei with the halo neutron and the core forming a bound system. While 20C
is by far the most promising case for an experimental campaign we may suggest
a few more nuclei, like, 38Mg and 32Ne. For both these nuclei the 2-n separation
energies are comparable to that of 20C (2570 and 1970 keV respectively) with
the n-core systems of 37Mg and 31Ne are nominally bound by 250 and 330 kev.
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Abstract. Fermionic Molecular Dynamics (FMD) is a microscopic approach
for the description of light nuclei in the p- and sd-shell. Many-body basis
states are Slater determinants of Gaussian wave-packets localized in phase
space. Brink-type cluster states and harmonic oscillator shell model states
are contained as special limiting cases in FMD. The FMD approach is used to
study the spectrum of 12C with special emphasis on states with pronounced
α-clustering including the Hoyle state. The FMD approach is also used to
study 17Ne which is a candidate for a two-proton halo nucleus.

1 Introduction

The nuclear-many problem is notoriously difficult to solve. Few-body approaches
provide exact solutions for the three- and four-body problem. For heavier nuclei
we can try to solve the many-body problem for example with the no-core shell
model. But there are problems for loosely bound systems with halo or cluster
structures. Cluster models – microscopic or non-microscopic – are often used to
study such systems. With the Fermionic Molecular Dynamics model we have a
microscopic approach that allows to treat well bound states with shell model
structure and loosely bound states with clustering or halos on the same footing.

2 Fermionic Molecular Dynamics

In the Fermionic Molecular Dynamics model [1, 2] Slater determinants are used
as many-body basis states

∣∣Q
〉

= A
{∣∣q1

〉
⊗ · · · ⊗

∣∣qA
〉}

(1)
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2 Few-Body Systems in the Fermionic Molecular Dynamics Approach

where the single-particle states
∣∣q
〉

are given by a single or a superposition of
two Gaussian wave packets localized in phase space

〈
x
∣∣q
〉

=
∑

i

ci exp
{
−(x− bi)2

2ai

} ∣∣χ↑i , χ
↓
i

〉
⊗
∣∣ξ
〉
. (2)

The complex parameter b encodes mean position and mean momentum of the
wave packet. The width a can be different for each wave packet. The spin can as-
sume any orientation, whereas the isospin is ±1

2 describing either protons or neu-
trons. The wave packet basis is very flexible. Harmonic oscillator single-particle
states are obtained as linear combinations of slightly shifted Gaussians. Bloch-
Brink type cluster states can be obtained by localizing groups of wave packets.

The FMD solution on the Hartree-Fock level is obtained by minimizing the
intrinsic Hamiltonian with respect to all the parameters of the single-particle
states.

min
{qi}

〈
Q
∣∣H − Tcm

∣∣Q
〉

〈
Q
∣∣Q
〉 (3)

To restore the symmetries of the Hamiltonian the intrinsic state
∣∣Q
〉

is projected
on parity, angular momentum and total linear momentum

∣∣Q; JπMK,P = 0
〉

= P πP JMKP
P=0

∣∣Q
〉

(4)

As the correlation energies can be very large a variation after projection (VAP)
should be performed. This is numerically very expensive and only done for light
nuclei. For heavier nuclei we perform a variation after projection in a generator-
coordinate sense. The intrinsic state

∣∣Q
〉

is minimized under certain constraints
like radius, quadrupole or octupole deformation and we search for the minimum
in the projected energy surface as a function of the generator coordinates. With
either approach we generate a set of intrinsic states

∣∣Q(a)
〉
. In the end we solve

the generalized eigenvalue problem
∑

K′b

〈
Q(a)

∣∣(H − Tcm)P πP JKK′P
P=0

∣∣Q(b)
〉
cJ

πα
K′b =

EJ
πα
∑

K′b

〈
Q(a)

∣∣P πP JKK′PP=0
∣∣Q(b)

〉
cJ

πα
K′b (5)

to obtain the multi-configuration mixing result.
We use an effective interaction that is based on the VUCOM interaction. In

the Unitary Correlation Operator Method [3, 4] short-range central and tensor
correlations are included explicitly by means of a unitary correlation operator.
To account for missing three-body correlations and three-body interactions a
momentum-dependent two-body term is added to the interaction and fitted to
binding energies and radii of closed-shell nuclei [1].

3 Hoyle State in 12C

The second 0+ state in 12C, the famous Hoyle state, has been studied intensively
for many years. It is located slightly above the three-α threshold and is supposed74
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Figure 1. Decomposition of the 12C FMD Hoyle state wave function into N -~Ω shell model

components.

to feature a pronounced α-cluster nature. Microscopic cluster model calculations
within the RGM approach [5] were quite successful in describing its properties
but use simple effective interactions. Based on the cluster model wave function
an interpretation of this state as a Bose condensate of α-particles was proposed
recently [6].

In the FMD approach [7] α-cluster configurations are a subset of the Hilbert
space. Further configurations are obtained by VAP calculations with constraints
on radius and quadrupole deformation. These additional configurations are neces-
sary to describe properties of the ground state band where α-clusters are broken
due to the spin-orbit force. In a Hilbert space that consists only of α-cluster
configurations the FMD ground state is underbound by more than 10 MeV. In-
cluding all configurations we can reproduce the properties of the ground state
band as well as that of the Hoyle state. The Hoyle state has an overlap of 85%
with three-α configurations and has a very large radius of 3.38 fm. The spatially
extended nature of the Hoyle state is also tested by electron scattering data, mea-
suring the transition from the ground state to the Hoyle state. In Fig. 1 the FMD
Hoyle state is decomposed into N~Ω shell model configurations. The admixture
of shell model components manifests itself in the 0~Ω contribution. The three-α
configurations appear as coherent state extending beyond 50~Ω excitations.

4 Two-proton Halo in 17Ne

17Ne is considered as two-proton halo candidate because of its small two-proton
separation energy of 930 keV. Large interaction radii and narrow momentum dis-
tributions support the idea of a halo. Theoretical attempts to describe 17Ne in
the shell model and in cluster models came to different conclusions regarding the
valence protons. Shell model calculations [8] focused on the Coulomb displace-
ment energies between 17Ne and 17N and predicted an s2-component of only
20%, while cluster model calculations [9, 10] found rather large s2-components
of about 45%.

Recent measurements of the charge radii by the COLLAPS group at ISOLDE75
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Contours are in units of half nuclear matter density.

now allow for a direct test of the wave function. In a joint paper the experimental
results for the charge radii of 17−22Ne are compared with FMD calculations [11].
Minimizing the energy of the parity projected Slater determinant we find for
17Ne two minima which correspond to s2- and d2-dominated configurations for
the valence protons around an 15O core. Additional configurations are created by
cranking the strength of the spin-orbit force. The intrinsic state with the greatest
weight in the multiconfiguration mixing calculation is shown in Fig. 2. The FMD
calculations reproduce the large experimental charge radius of 3.042(21) fm with
an s2-contribution of about 42%. A further test for the wave function is provided
by the B(E2) values [12] that are reproduced within the experimental error bars.
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Abstract. We discuss the three-body decay mechanisms of many-body reso-
nances. R-matrix sequential description is compared with full Faddeev com-
putation. The role of the angular momentum and boson symmetries is also
studied. As an illustration we show the computed α-particle energy distribu-
tion after the decay of 12C(1+) resonance at 12.7 MeV.

1 Introduction

The three-body decay of many-body resonances can be accurately measured in
complete kinematics. Information about the decaying state and the decay mech-
anism is usually extracted from the measurement of the three fragments after
the decay. Although this is a common practice, the situation is ambiguous. The
experimental analyses of these processes are based on the R-matrix formalism
which inherently assumes two successive two-body decays. The input are the
properties of the intermediate two-body states and the population of the nuclear
many-body initial state approximated as a three-body system.

Occasionally, in principle contrary descriptions are able to explain the ob-
served distributions making the understanding of the underlying physics diffi-
cult. An example demonstrating the difficulties is the 3α decay of 1+ state in
12C which was successfully described by two opposite mechanisms: a sequential
decay via the 2+ state in 8Be [1], and a direct decay into the three-body con-
tinuum [2]. This requires an explanation. What information is contained in a
full-kinematics measurement of three-body decay? Apparently unique informa-
tion can only be extracted under favorable conditions. The crux of the matter is
that the decay mechanism is related to a “decay path”, an intermediate structure,

∗Article based on the presentation by R. Álvarez-Rod́ıguez at the Fifth Workshop on Critical
Stability, Erice, Sicily, Received November 28, 2008; Accepted January 19, 2009.
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2 Three-body decays: structure, decay mechanism and fragment properties

which in contrast to the final state signal in the detector is not an observable.
We shall in this contribution compare the results from three-body calculations
and experimental R-matrix analyses.

2 Energy distributions

The large-distance observable structure of the many-body initial state is a three-
body continuum state, therefore we compute the resonance structure in a three-
body cluster model [3]. We use the complex scaled hyperspherical adiabatic ex-
pansion method to solve the Faddeev equations which describe the 3-body sys-
tem. The appropriate coordinates are the so-called hyperspherical coordinates
and consist of the hyperradius ρ2 = 4

∑3
i=1(ri −R)2 , and five hyperangles. In

the adiabatic hyperspherical expansion method the angular part of the Faddeev
equations is solved first and the angular eigenfunctions ΦnJM are then used as a
basis to expand the total wave function ΨJM .

We include short-range [4] and Coulomb potentials. The many-body effects
that are present at short distances are assumed to be unimportant except for
the resonance energy. This is taken into account by using a structureless 3-body
interaction that fits the position of the resonance.

The resonance wave-function contains information about the decay mecha-
nism, and the large-distance properties reflect directly the measurable fragment
momentum distributions. The single particle probability distributions are ob-
tained after integration of the absolute square of the wave function over the four
hyperangles describing the directions of the momenta.

Figure 1. (Color online) Regions of the 3α

Dalitz plot where the density must vanish (in

black) for a 1+ state (left). Dalitz plot for

the 1+ state of 12C. x-axis corresponds to

(Eα1/2Eα2)/
p

(3) and y-axis to Eα1 in MeV.

The many-body initial state resonance evolves into three clusters at large dis-
tances. The total angular momentum and parity Jπ is conserved in the process.
This symmetry combined with Bose-statistics imposes constraints on the result-
ing momentum distributions. An early example of these effects applied to three
pion decays can be found in ref. [5]. Fig. 1 shows the regions of the Dalitz plot
where the density must vanish for the decay of a 1+ state into three α-particles.
This gives rise to the minima in the single α-particle energy distribution. The
Dalitz plot computed within the Faddeev framework is also shown and is in
agreement with these symmetry constraints.

Fig. 2 shows the single-α energy distributions, i.e. the probability for emer-
gence of one α particle with a given energy divided by its maximum allowed, for
the 1+ state of 12C computed with R-matrix analysis [1,6]. This corresponds to
the projection of the Dalitz plot in fig. 1 on the y-axis. The decay is assumed to be
sequential via 8Be(2+) since angular momentum forbids the decay via 8Be(0+).
We have varied the two-body energy and width. When both the two-body energy78
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Figure 2. (Color online) Single α energy distributions from R-matrix analysis for the decay

into three α-particles of the 12C(1+) resonance at 12.7 MeV of excitation energy. The energies

and widths of the intermediate 8Be(2+) state are varied as specified in the panels. The green

dashed curve corresponds to the case where the symmetrization of the wave function is omitted.

The middle panel corresponds to the measured resonance energy.

and width are small (left) a narrow peak corresponding to the emission of the first
α arises. The other two α’s are related to the broad peaks. By increasing the two-
body energy and width the three-peak distribution becomes rather pronounced
and insensitive to the two-body parameters when either E2r/E3r is larger than
about 0.5 or the two-body width is large. The same figure contains the curves
corresponding to the case where the boson symmetry is omitted. For a low and
narrow two-body state the effect of this symmetry seems to be unimportant, but
an increase on the width leads to a two-peak (not three-peak) distribution.

Fig. 3 shows the results from the full three-body computation and the compu-
tation from the lowest continuum three-body wave function (K=8) from ref. [7]
(democratic decay). This is the simplest assumption with the correct symme-
tries. We have varied the three-body energy and consequently the three-body
width. Two rotation angles have been considered: one of them is large enough
to accumulate the contribution of sequential decay through the 8Be resonance in
a single adiabatic potential, while the other is not. The calculations include the
boson symmetry of the α-particles. The results from the large rotation angle do
not include the contribution from the decay via 8Be(2+) and are very close to
the democratic decay. In the result from the full Faddeev computation the three
peaks are closer to each other and this approaches better the experiment. The
fractions of population at large distance are given in table 2 for the different val-
ues of E3r shown in fig. 3. We can observe that the sequential decay probability
increases as we increase the three-body energy.

3 Conclusions

We have computed the observable momentum distributions from decay of three-
body resonances by use of R-matrix simulations and from full Faddeev calcula-
tions. We have considered the example of the 1+ resonance of 12C. The angular
momentum and boson symmetries constrain the resulting momentum distribu-
tions. The same measured momentum distributions can be described in differ-79
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Figure 3. (Color online) Single α energy distributions from Faddeev computation for direct

decay of the 12C(1+) resonance. The three-body energy is varied by changing the strength

of the three-body potential. The relative energies and widths of the intermediate 8Be(2+)

resonance are specified in the panels. The solid (black) and dashed (green) curves correspond

to complex rotation angles of θ = 0.25 and 0.1 respectively. The dotted (blue) curve corresponds

to democratic decay [7]. For θ = 0.25 only direct decay is shown.

Table 1. The probability Pseq for populating the component related to the decay via 8Be(2+)

at large distances in the computation of the 1+ resonance of 12C for a complex rotation angle

θ = 0.25. The three-body energy (E3r) is varied by adjusting the strength of the three-body

potential. The 8Be(2+) two-body energy is maintained E2r = 2.7 MeV. The energies are referred

to the 3α or 2α separation threshold.

12C(Jπ) E2r/E3r Γ2r/E3r E3r (MeV) Γ3r (MeV) ly Pseq
0.86 0.43 3.5 0.005 2 0.001

1+ 0.56 0.28 5.4 0.09 2 0.12
0.39 0.19 7.8 1.15 2 0.89

ent complete basis sets, e.g. either direct products of two-body states and their
center-of-mass motion relative to the third particle (R-matrix) or three-body
continuum wave functions (Faddeev). The fact that different descriptions seem
to work indicates that the same wave function could be described in different
ways. Extracting information of both structure and decay mechanism can then
be misleading and requires model interpretations. Full Faddeev computations
successfully reproduce the measured distributions.
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2. Álvarez-Rodŕıguez, R., et al.: Phys. Rev. Lett. 99, 072503 (2007).

3. Nielsen, E., Fedorov, D.V., Jensen, A.S., Garrido, E.: Phys. Rep. 347, 373 (2001).

4. Ali, S., Bodmer, A.R.: Nucl. Phys. 80, 99 (1966).

5. Zemach, Z.: Phys. Rev. 133, B1201 (1964).

6. Fynbo, H.O.U., et al.: in preparation.

7. Korsheninnikov, A.A.: Yad. Fiz. 52, 1034 (1990) [Sov. J. Nucl. Phys. 52, 827 (1990)].
80



Few-Body Systems 0, 1–4 (2009) Few-
Body

Systems
c© by Springer-Verlag 2009

Printed in Austria

Consistent description of the 12C(0+
2 ) state∗

S. I. Fedotov, O. I. Kartavtsev∗∗ and A. V. Malykh

Joint Institute for Nuclear Research, Dubna, 141980, Russia

Abstract.
The excited 0+

2 state of 12C is of key importance for description of the
triple-α reaction, which is the only way for helium burning in stars. Authors’
efforts to calculate the lowest 0+ states within the framework of the α-cluster
model are summarized and discussed. In particular, the recently calculated
0+
2 state’s width and 0+

2 → 0+
1 transition density are in good agreement with

the experimental data.

The 12C(0+
2 ) state was predicted by Hoyle [1] and experimentally observed [2,

3] more than 50 years ago. This amazing prediction is based merely on observable
abundance of elements in the universe by assuming that sufficiently fast helium
burning in stars proceed via the resonance reaction 3α→ 8Be +α→ 12C(0+

2 )→
12C+γ. During the recent years, there is a continuous interest to the experimental
and theoretical study of the 12C nucleus [5, 6, 7, 8]. While the Hoyle state is fairly
well studied experimentally, e.g., its extremely small width Γ and 0+

2 → 0+
1

transition density (in particular, the monopole transition matrix element M12

and the transition radius Rtr) have been accurately measured, the theoretical
description of a comparable accuracy is still lacking. One of the tough problems
in the theory is connected with the necessity to describe the continuum wave
function of few charged particles.

In a set of calculations [9, 10, 11, 12] the α-cluster model is used to obtain the
lowest 12C(0+)-states properties with particular attention to reliable description
of the 0+

2 state. These results are summarized and discussed in order to determine
the ability of the α-cluster model to describe the experimentally observed 0+

2

state’s width Γ , 0+
2 → 0+

1 monopole transition matrix element M12, and 0+
2 → 0+

1

transition radius Rtr.
The effective two-body potential of the α-cluster model is taken in the Ali-

Bodmer form [13] as a sum of two Gaussians, which parameters in the s-wave
channel are chosen to fix the 8Be energy E2α and its width γ at the experimental
values 92.04±0.05 keV and 5.57±0.25 eV [14]. Generally, the parameters of the
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∗∗E-mail address: oik@nusun.jinr.ru 81



2 Consistent description of

two-body potential in s-, d-, g-channels are determined to adjust the experimen-
tal α-α elastic-scattering phase shifts.

The effective three-body potential V3 is introduced to take into account those
effects, which are not described by a sum of the effective two-body potentials.
A simple dependence of V3 on the hyperradius ρ is assumed [6, 9, 10, 11, 12];
the parameters of V3 are chosen to fix the ground-state Egs and excited-state
Er energies of 12C, as well as the ground-state root-mean-square (rms) radius
R(1) at their experimental values Egs = −7.2747 MeV, Er = 0.3795 MeV [15],
R(1) = 2.48±0.022 fm [16, 17]. Although the ground state is not of the α-cluster
structure, the calculation of the ground state within the α-cluster model is nec-
essary to provide the overall description of the non-α-cluster component, which
contribute substantially also in the excited state. Furthermore, both the excited
and ground state wave functions have to be calculated within the framework of
the same approach to obtain the experimentally available M12 and Rtr.

The method of calculation is based on the expansion of the total wave func-
tion in a set of eigenfunctions on a hypersphere (at the fixed ρ); the detailed
description is given in [9, 10]. It is of most importance that the properties of the
0+
2 state are obtained by solving the scattering problem of two clusters (α and

8Be), which greatly simplifies the calculations by avoiding a tremendous prob-
lem of determination of the wave function of three outgoing charged particles.
The reliability of this approximation is closely related to the sequential decay
mechanism via intermediate emission of 8Be (12C(0+

2 ) → α + 8Be → 3α). The
sequential mechanism was approved in the experiment [4] where the branching
ratio for the non-sequential decay 12C→ 3α is estimated to be less than 1%.

In calculations [9, 10, 11], the local two-body potential was used to under-
stand how sensitive are the characteristics of the 0+

2 state to variations of the
potential parameters. In addition, dependences of M12, Γ , and the excited-state
rms radius R(2) on one of the parameters of V3 are studied provided other pa-
rameters of V3 (taken as a sum of two Gaussians) are chosen to fix Egs, Er, and
R(1). It is found that for any reliable three-body potential the values of Γ , M12,
and R(2) are located within the narrow intervals, which are marked by triangles
in Fig. 1. The calculations performed for two families of the two-body potentials
show that Γ , M12, and R(2) are comparatively stable under variations of the
two-body potential (Fig. 1). Thus, the results are robust to the variations of the
effective potentials and the calculated Γ and M12 overestimate the experimen-
tal values by a factor 2. This surprising agreement gives a clear evidence that
the dominant contribution to the final result comes from the s-wave part of the
interaction.

To provide better agreement of the calculated and experimental values, the
recent caculations have been performed by using the effective two-body potential
properly describing the α− α interaction also in higher partial waves. The pre-
liminary results will be presented below while the details of calculations will be
published elsewhere [12]. The three-parameter’s Woods-Saxon form is found to
be suitable for the three-body potential V3, which turns out to be flexible enough
to fix at the experimental values Egs, Er, and mostly R(1). As a result, a set of
two-body potentials and corresponding V3 is found, for which both Γ and M12
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Figure 1. Dependences of the monopole 0+
2 → 0+

1 transition matrix element M12 vs the

width Γ of the 0+
2 state for two families of local two-body potentials (shown by solid and

dashed lines). The point with errorbars shows the experimental data Γ = 8.5± 1.0 eV [19] and

M12 = 5.48± 0.22 fm2 [19]. The corresponding dependences R(2) vs Γ are shown in the inset.

are in excellent agreement with the experimental data (Fig. 2). Correspondingly,
the transition radius Rtr varies within the interval 4.84 fm < Rtr < 4.90 fm being
slightly above the experimental value 4.396± 0.27 fm [19]. The Rtr is defined as
in [19] by R2

tr =
∑

k〈Ψ (1)
∣∣r4
k

∣∣Ψ (2)〉/M12, where rk is a center-of-mass position
vector of the k-th proton and a sum is taken over all protons.

Figure 2. Monopole 0+
2 → 0+

1 transition matrix element M12 and width Γ of the 0+
2 state for

a set of seven two-body potentials. The point with errorbars shows the experimental data. The

ground-state rms radius R(1) is fixed either at the experimental value 2.48 fm or at slightly

different values specified in the inset.
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4 Consistent description of

In conclusion, it is found that the α-cluster model, in spite of its simplicity,
is amazingly effective in description of 12C (0+) states. One should note that the
three-body calculations leave enough room for further improvement of the model.
In particular, the investigation of the electromagnetic (α-α bremsstrahlung) and
(α, α) reactions could be used for construction of the exact effective potentials.
Furthermore, the calculation of the 12C (0+

2 ) state is a necessary step towards
study of helium burning at ultra-low temperatures and high densities, which
takes place, e.g., in accretion on white dwarfs and neutron stars [20]. The present
approach is promising for calculation of the triple-α reaction below the three-
body resonance thus providing the unified treatment of the crossover from the
resonant to the non-resonant mechanism of the reaction.
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Abstract. Relativistic Faddeev equations for three-body scattering are solved
at arbitrary energies in terms of momentum vectors without employing a
partial wave decomposition. Relativistic invariance is incorporated withing
the framework of Poincaré invariant quantum mechanics. Based on a Malfliet-
Tjon interaction, observables for elastic and breakup scattering are calculated
and compared to non-relativistic ones.

A consistent treatment of intermediate energy reactions requires a Poincaré
symmetric quantum theory [1]. In addition, the standard partial wave decompo-
sition, successfully applied below the pion-production threshold [2], is no longer
an adequate numerical scheme due to the proliferation of the number of par-
tial waves. Thus, the intermediate energy regime is a new territory for few-body
calculations, which waits to be explored.

This work addresses two aspects in this list of challenges: exact Poincaré
invariance and calculations using vector variables instead of partial waves. In
Ref. [3] the non-relativistic Faddeev equations were solved directly as function
of vector variables for scattering at intermediate energies. A key advantage of
this formulation lies in its applicability at higher energies, where the number of
partial waves proliferates. The Faddeev equation, based on a Poincaré invariant
mass operator, has been formulated in detail in [4] and has both kinematical and
dynamical differences with respect to the corresponding non-relativistic equation.

The formulation of the theory is given in a representation of Poincaré in-
variant quantum mechanics where the interactions are invariant with respect to
kinematic translations and rotations [5]. The model Hilbert space is a three-
nucleon Hilbert space (thus not allowing for absorptive processes). The method
introduces the NN interactions in the unitary representation of the Poincaré
group and allows to input e.g. high-precision NN interactions in a way that re-
produces the measured two-body observables. However in this study we use a
∗Article based on the presentation by Charlotte Elster at the Fifth Workshop on Critical Sta-
bility, Erice, Sicily, Received November 29, 2008; Accepted January 8, 2009.
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Figure 1. The total elastic c.m. cross section for elastic (top left) and for breakup scattering

(bottom left) calculated from a Malfliet-Tjon type potential as function of the projectile kinetic

laboratory energy. The labels ‘R’ (‘NR’) stand for relativistic (non-relativistic) calculations. The

Faddeev calculations in the first order in t are marked with ‘1st’, the converged full Faddeev

calculations with ‘full’. To show the difference, the percentage difference between the relativistic

and corresponding non-relativistic calculations are displayed on the right.

simpler interaction consisting of a superposition of an attractive and a repulsive
Yukawa interaction with parameters chosen such that a bound state at Ed = -
2.23 MeV is supported [4]. Poincaré invariance and S-matrix cluster properties
dictate how the two-body interactions must be embedded in the three-body dy-
namical generators. Scattering observables are calculated using Faddeev equa-
tions formulated with the mass Casimir operator (rest Hamiltonian) constructed
from these generators.

To obtain a valid estimate of the size of relativistic effects, it is important that
the interactions employed in the relativistic and non-relativistic calculations are
phase-shift equivalent. We follow the suggestion by Coester, Piper, and Serduke
(CPS) and construct a phase equivalent interaction from a non-relativistic 2N
interaction [6] by adding the interaction to the square of the mass operator. In
this CPS method the relativistic interaction can not be analytically calculated
from the non-relativistic one. However, there is a simple analytic connection
between the relativistic and non-relativistic two-body t-matrices

tre(p,p′; 2Erel
p ) =

2m√
m2 + p2 +

√
m2 + p′2

tnr(p,p′; 2Enr
p ),

where 2Erel
p = 2

√
m2 + p2 and 2Enr

p = p2

m + 2m. This relativistic two-body t-86
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Figure 2. The exclusive differential cross section for the reaction 2H(p,2p)n at 508 MeV labo-

ratory projectile energy for different proton angle pairs θ1−θ2 symmetric around the beam axis

as function of the laboratory kinetic energy of one of the outgoing protons. The meaning of the

curves are the same as in Fig. 1, except that here ‘1’ denotes the 1st order Faddeev calculation,

‘F’ the fully converged one. In the curves labeled Rkin only relativistic kinematics is taken into

account. The data are taken from Ref. [10].

matrix tre(p,p′; 2Erel
p ) is scattering equivalent to the non-relativistic one at the

same relative momentum p [7]. This t-matrix is the input for the Poincaré in-
variant transition amplitude of the 2N subsystem embedded in the three-particle
Hilbert space obtained via a first resolvent method as layed out in Ref. [4].

By construction, differences in the relativistic and non-relativistic calcula-
tions first appear in the three-body calculations. Those differences are in the
choice of kinematic variables (Jacobi momenta are constructed using Lorentz
boosts rather then Galilean boosts) and in the embedding of the two-body in-
teractions in the three-body problem, which is a consequence of the non-linear
relation between the two and three-body mass operators. These differences mod-
ify the permutation operators and the off-shell properties of the kernel of the
Faddeev equations [9].

In Fig. 1 the total cross sections for elastic and breakup cross sections are
displayed as function of the projectile kinetic energy up to 1.5 GeV obtained from
our fully converged relativistic Faddeev calculation as well as the one obtained
from the first-order term, T 1st = tP , with P being the permutation operator for
three identical particles. It is obvious that, especially for energies below 300 MeV,
the contribution of rescattering terms is huge. However, for extracting the size of87
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relativistic effect, it is more useful to consider the relative difference between the
relativistic and non-relativistic calculations. In first order, there is essentially no
effect in the total elastic cross section, which is consistent with the observation
that the relativistic two-body t-matrix is constructed to be phase-shift equivalent
to the non-relativistic one. The same comparison with fully converged Faddeev
calculations indicates that relativistic effects in the three-body problem increase
the total cross section for elastic scattering with increasing energy, whereas it is
slightly reduced in the total breakup cross section.

Considering exclusive breakup reactions, differences between a relativistic
and non-relativistic calculation are more pronounced and strongly depend on the
configuration. Though our two-body force is simple, we compare to a 2H(p,2p)n
experiment at 508 MeV [10] to see if our calculation captures essential features
of the measurement. Differences in the predictions of our relativistic and non-
relativistic calculations are very pronounced at this energy as can be seen in
Fig. 2, which shows selected angle pairs θ1 − θ2 from Ref. [10], which are sym-
metric around the beam axis. The cross section is plotted against the laboratory
kinetic energy of one of the outgoing protons. It is interesting to observe that
for smaller angle pairs the relativistic cross sections (RF) are considerably larger
than the non-relativistic ones (NRF). For larger angle pairs the situation reverses.
It is further noteworthy, that in the configurations of Fig. 2, which are close to
quasi-free, rescattering effects (or equivalently higher order contributions of the
Faddeev multiple scattering series) are very small (curves ‘1’ and ‘F’ are almost
identical). To show that peak-positions are given by kinematics, we added curves
labeled ‘Rkin’, which stands for a non-relativistic calculation in which only kine-
matics and phase space factors are replaced by the relativistic ones. We want to
note that the above comparisons do not involve a non-relativistic limit, instead
relativistic and non-relativistic three-body calculations with interactions that are
fit to the same two-body data are compared. All of the differences are due to the
different ways two-body dynamics is incorporated in the three-body problem.
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Abstract. The method of screening and renormalization for including the
Coulomb interaction in the framework of momentum-space integral equations
is applied to the three- and four-body nuclear reactions. The Coulomb effect
on the observables and the ability of the present nuclear potential models to
describe the experimental data is discussed.

The Coulomb interaction, due to its long range, does not satisfy the mathe-
matical properties required for the formulation of the standard scattering theory.
However, since in nature the Coulomb potential is always screened, one could
expect that the physical observables become insensitive to the screening pro-
vided it takes place at sufficiently large distances R and, therefore, the R →∞
limit should correspond to the proper Coulomb. This was proved by Taylor [1]
in the context of the two-particle system: though the on-shell screened Coulomb
transition matrix diverges in the R → ∞ limit, after renormalization by (an
equally) diverging phase factor it converges as a distribution to the well known
proper Coulomb amplitude and therefore yields identical results for the physi-
cal observables. A similar renormalization relates screened and proper Coulomb
wave functions [2].

The method of screening and renormalization can be used for the systems
with more particles [3], albeit with some limitations. Here we briefly recall the
procedure which is described in detail in ref. [4]. In the transition operators de-
rived from nuclear plus screened Coulomb potentials one has to isolate the diverg-
ing screened Coulomb contributions in the form of a two-body on-shell transition
matrix and two-body wave function with known renormalization properties. This
can be achieved using the two-potential formalism as long as in the initial/final
states there are no more than two charged bodies (clusters). At the same time
this procedure separates long-range and Coulomb-distorted short-range parts of
the transition amplitude, the former being the two-body on-shell transition ma-
trix derived from the screened Coulomb potential between the centers of mass
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2 Three- and Four-Body Scattering Calculations including the Coulomb Force

(c.m.) of the two charged bodies that is present in the elastic scattering only.
After renormalization this contribution converges towards its R→∞ limit very
slowly but the result, the pure Coulomb amplitude of two-body nature, is known
analytically. The remaining part of the elastic scattering amplitude as well as the
amplitudes for transfer and breakup are complicated short-range operators that
are externally distorted by Coulomb. However, due to their short-range nature,
convergence with R after the renormalization by the corresponding phase fac-
tors is fast and, therefore, they are calculated numerically at finite R using the
standard scattering theory and making sure that R is large enough for the conver-
gence of the results. We solve Faddeev-like Alt, Grassberger, and Sandhas (AGS)
equations for three- and four-particle scattering [5, 6] using the momentum-space
partial-wave basis as described in detail in refs. [7, 8, 9] for three- and four-
nucleon scattering without the Coulomb force. However, the screened Coulomb
interaction, due to its longer range, compared to the nuclear interaction, brings
additional difficulties: quasisingular nature of the potential and slow convergence
of the partial-wave expansion. The right choice of the screening is essential in
resolving those difficulties. The convergence of the partial-wave expansion with
our new screening function [4] is fast enough and thereby allows us to avoid the
approximations used in the previous implementations [10, 11] of the screening
and renormalization approach and obtain reliable results.

The most important criterion for the reliability of the screening and renormal-
ization method is the convergence of the observables with the screening radius
R used to calculate the Coulomb-distorted short-range part of the amplitudes.
Numerous examples can be found in refs. [4, 12, 13]. In most cases the conver-
gence is impressively fast and only becomes slower for the observables at very
low energies. Furthermore, as demonstrated in ref. [14], our results for p-d elastic
scattering agree well over a wide energy range with those of ref. [15] obtained from
the variational solution of the three-nucleon Schrödinger equation in configura-
tion space with the inclusion of an unscreened Coulomb potential and imposing
the proper Coulomb boundary conditions explicitly.

The present method was used to study three-nucleon hadronic and electro-
magnetic (e.m.) reactions in refs. [4, 16, 17, 18]. Furthermore, it was applied to
the nuclear reactions dominated by three-body degrees of freedom like α+d [12],
d+ 12C, and p+ 11Be [19, 20]. Finally, in refs. [9, 13, 21] all elastic and transfer
four-nucleon reactions below three-body breakup threshold have been studied.
The importance of the Coulomb at low energies is demonstrated in Fig. 1 for
elastic d-α scattering. It may be very strong at all energies in p-d breakup and
three-body e.m. disintegration of 3He in kinematical regimes with low relative
pp energy where the Coulomb repulsion converts the cross section peak obtained
in the absence of Coulomb into a minimum as can be seen in the the experi-
mental data as well [16, 18]. However, even after the inclusion of the Coulomb
interaction and the three-nucleon force some discrepancies between experiment
and theory like the space star anomaly in p-d breakup [4, 18] and the Ay-puzzle
in p-d [4, 15] and p-3He [13, 24] elastic scattering still persist. Furthermore, Ay

is described quite well in the n-3He and p-3H elastic scattering but not in the
p+3H→ n+3He transfer reaction. A very strong Coulomb effect manifests itself
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in the α-d breakup where the shift of αp P -wave resonance position leads to the
corresponding shifts of the differential cross section peaks as shown in Fig. 2.
In addition, Figs. 1 and 2 as well as the results of ref. [12] demonstrate the su-
periority of the attractive N -α S-wave potentials supporting a Pauli-forbidden
bound state that is projected out over the local repulsive S-wave potentials which,
because of their simplicity, are very often used in the configuration space calcu-
lations of resonances and e.m. reactions.

In conclusion, the Coulomb interaction between the charged particles was
included in few-body scattering calculations using the old idea of screening and
renormalization [1] but with novel practical realization that avoids all the ap-
proximations of the previous works [10, 11] and yields fully converged results.
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Abstract. An overview is given on experiments under progress at the An-
tiproton Decelerator of CERN which aim at precision spectroscopy of an-
tiprotonic helium, an exotic three-body system containing an antiproton, a
helium nucleus, and an electron. An outlook towards the next generation Fa-
cility for Low-energy Antiproton and Ion Research (FLAIR) at Darmstadt is
presented.

1 Introduction

The only currently available source of low-energy antiprotons is the Antiproton
Decelerator (AD) which is in operation at CERN since 2000. Two collaborations,
ATRAP and ALPHA, are devoted to the formation of cold antihydrogen (pe+)
with the goal of measuring the 1s-2s two-photon transition for a comparison to
hydrogen as a test of CPT symmetry. The ASACUSA collaboration, of which
the author is a member, studies exotic atomic systems containing an antipro-
ton as well as collision processes with low-energy antiprotons. Most relevant for
this conference is the precision spectroscopy of antiprotonic helium (pHe+) as
well as the plan to measure the ground-state hyperfine structure of antihydro-
gen as a complementary measurement to the 1s-2s spectroscopy pursued by the
other two collaborations. Just recently a fourth collaboration AEGIS has been
approved which aims at a study of the gravitation of antimatter using ultra-cold
antihydrogen.

A broader physics program will be available at the FLAIR facility (Facility
for Low-energy Antiproton and Ion Research) planned at the FAIR facility in
Darmstadt. The availability of cooled antiprotons in pulsed and continuous ex-
traction at a factor 100 lower energy than at the AD will greatly improve the
progress of current experiments and make many new experiments in nuclear and
particle physics possible as described in [1].
∗Article based on the presentation by E. Widmann at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received December 22, 2008; Accepted January 9, 2009.

∗∗E-mail address: eberhard.widmann@oeaw.ac.at93



2 Experimental Low-Energy Antiproton Physics

2 Antiprotonic helium: a unique three-body system

Antiprotonic helium is an exotic three-body system consisting of a helium nu-
cleus, an antiproton and an electron (He2+–p–e− = pHe+) which has a series of
long-lived metastable states with principal and angular quantum numbers of the
antiproton of (n, l) = 31 . . . 39 (cf. Fig. 1). It has been studied in great detail by
the PS205 collaboration at LEAR [2] and by ASACUSA at the AD [3].
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Figure 1. Level diagram of antiprotonic helium. Straight lines correspond to metastable states

(life time ∼ µs), wavy lines denote Auger-dominated short-lived states (life time < 10 ns).

The lines shown in the left-side diagram actually consist of quadruplets due to the magnetic

interaction of its constituents, leading to the hyperfine structure shown at the right-hand side.

In a series of laser spectroscopy experiments, the energy levels of the an-
tiproton have been measured with increasing precision, while the theoretical
description has similarily improved. Fig. 2 left shows a comparison of the most
recent laser spectroscopy results with two calculations by Korobov and Kino. The
agreement of our experimental values to the caclulations of Korobov is in general
within the experimental error bars which are of the order of 20 ppb. Since theory
uses the numerical value of the proton mass for thr antiproton, a comparison of
theory and experiment can be used to extract a CPT test of the proton and
antiproton mass. Averaging over all transitions measured in p4He+and p3He+,
a precision of 2 ppb was reached for the relative difference of p mass and charge.

A second quantity of interest for testing CTP with pHe+is the magnetic
moment µp of the antiproton, which is known experimentally only to 0.3 % [7].
It manifests itself in a unique hyperfine splitting (cf. Fig. 1) where the dominant
splitting arises from the interaction of the antiproton magnetic moment and the
electron spin magnetic moment (hyperfine HF structure), while µp leads to a
finer splitting (super hyperfine SHF structure). Using a laser-microwave-laser
method, the two M1 transitions labelled ν+

HF and ν−HF in Fig. 1 were measured
first in 2001 to a precision of 30 ppm [8], slightly better than the estimated error
of theory of ∼ 10−4 [9]. Since the M1 transitions are dominated by a spin flip of
the electron, they are only indirectly sensitive to µp. The combination ∆νHF =
ν−HF – ν+

HF = ν+
SHF – ν−SHF on the other hand is directly proportional to µp, but

since it is determined by subtracting two large frequencies, its accuracy is much94
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Figure 2. Left: comparison of the most recent laser spectroscopy results (filled circles with

error bars [4]) with two calculations by Korobov (squares [5]) and Kino (triangles [6]). Plotted

is the relative deviation of theory and experiment in ppb (10−9). Right: Achieved precision of

the laser spectroscopy of antiprotonic helium as a function of time.

smaller. The 2001 result corresponds to an error of 1.6 % .
With the aim of improving the experimental accuracy by a factor of 10, a new

experiment was performed using a newly developed seeded pulsed laser system
similar to the one employed for the precision laser spectroscopy experiments
[4]. In a first step, an statistical uncertainty for ν±HF of 2.3 ppm was already
achieved [13] (cf. Fig. 3 left). Likewise, the statistical error on ∆νHF was reduced
to 0.2 %. Fig. 3 (right) shows a comparison of our experimental results for ∆νHF

compared to several theoretical calculations. As can be seen, the experimental
value moved closer to theory, although there is still a difference of ∼ 2σ to the
most precise calculation BK [9]. This might be explained by a density shift of
the resonance lines as predicted by Korenman [14], so further measurements
at different densities as well as checks of other possible systematic errors are
needed before a final comparison to theory to extract a value of the antiproton
spin magnetic moment can be made.
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4 Experimental Low-Energy Antiproton Physics

3 Outlook

Antiprotonic helium is a unique example of how the common efforts by theory
and experiment can advance the understanding of the structure of a three-body
system, which can generate a means to make precision comparison of the prop-
erties of its constituents. The laser spectroscopy measurements have lead to one
of the most sensitive tests of CPT in the baryon sector, and the microwave spec-
troscopy will provide a value of the spin magnetic moment of the antiproton with
higher precision than currently known.
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work was supported by Monbukagakusho (Grant No. 15002005), by the Hungarian National
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Abstract. It is well known that the system made up of a fixed proton and
antiproton and an electron (or a positron) has no bound states if the inter-
nuclear distance R < 0.639a0. In this paper, I consider the more complicated
system in which the electron and the positron are both present and investi-
gate the possibility of obtaining a lower bound on the value of R for which
the system has no bound states. I also investigate the implications of the
existence of bound states of the simpler, one light particle system regarding
bound states of the more complicated system.

1 Introduction

The system made up of a fixed proton and antiproton and an electron or a
positron is a particular case of a charged particle in a dipole field. Many calcu-
lations have been carried out on this system.

The first determination of the critical internuclear distance, Rc, below which
the dipole cannot bind an electron (or a positron) was carried out by Fermi and
Teller. They stated that Rc = 0.639a0. No details were given of the calculation.

Turner [1] gives a good overall review of the calculations on this system, start-
ing with Fermi and Teller. Crawford [2] was able to show that if the internuclear
distance R > Rc, a countable infinity of bound states exists.

It is of interest to consider the more complicated system in which both the
electron and the positron are present. In this case the threshold for binding moves
down from zero to −1

4 a.u., the ground state energy of positronium (Ps). Clearly,
there is no binding if R = 0. It is reasonable to assume that there exists a critical
value of R, Rcp, below which the nuclei are unable to bind the electron and the
positron.

∗Article based on the presentation by E. A. G. Armour at the Fifth Workshop on Critical
Stability, Erice, Sicily, Received November 28, 2008; Accepted January 9, 2009.

∗∗E-mail address: edward.armour@nottingham.ac.uk
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2 Binding in some few-body systems containing antimatter

Armour et al. [3] showed using a variational calculation with trial function
with 32 basis functions in terms of prolate spheroidal coordinates, some of them
Hylleraas-type functions and one basis function representing very weakly bound
positronium, that Rcp ≤ 0.8a0. More recently, Strasburger [4] showed using a
variational calculation with a trial function containing 64 to 256 explicitly cor-
related Gaussian functions that Rcp ≤ 0.744a0.

In this paper, I will investigate the possibility of obtaining a lower bound on
Rcp and other conditions on the existence of bound states.

2 Towards a lower bound on Rcp

One way to obtain a lower bound on Rcp would be to show that Rcp ≥ Rc =
0.639a0, the critical value for pp̄e− and pp̄e+, when only the electron or the
positron is present. This could be proved if it were possible to show that:

A bound state of HH at R < Rc =⇒ A bound state of

pp̄e− and pp̄e+ at R < Rc. (1)

For we know that no such bound state of pp̄e− and pp̄e+ exists. Thus taking the
contrapositive of (1) ⇒ no bound state of HH at R < Rc.

Can we prove proposition (1)?
The Hamiltonian, Ĥf , for the system is of the form

Ĥf = −1
2∇2

1 − 1
2∇2

2 + V − 1
r12

= Ĥdip −
1
r12

, (2)

where V is the dipole potential. Ĥf can also be expressed in the form

Ĥf = −1
4∇2

ρ −∇2
r12

+ V − 1
r12

, (3)

where ρ is the position vector of the centre of mass of the positronium w.r.t. the
centre of mass of the nuclei. r12 is the position vector of the positron (particle 2)
w.r.t. the electron (particle 1).

Suppose that a bound state of the full system does exist for some value of R,
i.e., there exists some square-integrable function φ(r1, r2), within the domain of
Ĥf , for which

Ĥfφ = Eφ (4)

where
E = −1

4 − ε (ε > 0). (5)

If more than one exists, we shall assume that φ is the lowest in energy.
It follows from (4) that

Ĥfcφc = Eφc, (6)

where
Ĥfc = CĤfC

−1 , φc = Cφ. (7)

Take

C = exp
[

ar12

1 + δr12

]
, (8)
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where a and δ are positive constants. Note that C is non-singular as r12 ≥ 0 and
δ > 0. Since

lim
r12→∞

C = exp
[a
δ

]
, (9)

as φ is square-integrable, so is φc.
As δ → 0+, φc becomes more and more diffuse, and the effect of the Coulom-

bic interaction becomes less and less. The aim is to use this to uncover the role
in binding of the dipole potential V in Ĥf .

It follows from equation (5) and (6) that

〈φc | Ĥfc | φc〉
〈φc | φc〉

= E = −1
4 − ε (ε > 0). (10)

It is shown in ref. [5] that it follows from this that

〈φc | Ĥdip | φc〉
〈φc | φc〉

≤
〈φc | 1

r12
| φc〉

〈φc | φc〉
− ε (ε > 0). (11)

A tentative proof is given in ref. [5] that it follows from (11) that

〈φc | Ĥdip | φc〉
〈φc | φc〉

≤ ωδ 1
2 +O(δ)− ε (ε > 0; 0 < ω < 3

2). (12)

This result would imply that, for sufficiently small δ, there exists a square-
integrable function, φc, such that

〈φc | Ĥdip | φc〉
〈φc | φc〉

< 0. (13)

It follows from the variational theorem that a bound state of the system exists
when the interaction between the electron and the positron is set to zero. This
would imply that a bound state of the dipole system made up of the proton and
the antiproton and the electron or the positron exists.

3 Qualification

We know from Strasburger’s variational calculation [4] that for R = 0.8a0,

ε ≥ 0.0013148 a.u. (14)

Also we know from Wallis et al.’s exact solution [6] for the system made up of
a proton, an antiproton and an electron or a positron, that in the case of the
binding energy, εni, for the two non-interacting particles, if R = 0.8a0,

εni < 0.0000464 a.u. (15)

Take
ε ≥ 0.0013148.

The inequality (13) implies that it should be possible to find a δ such that

〈φc | Ĥdip | φc〉
〈φc | φc〉

< −εni = −0.0000464.

This is a contradiction. Further investigation is necessary to determine its cause.
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4 Binding in some few-body systems containing antimatter

4 Implications from the existence of a bound state of the non-
interacting system regarding the existence of bound states of the
interacting system

Suppose that the electron and the positron interact through a potential, −γ/r12,
where γ > 0. Suppose Ĥdip has a bound state, φd, of energy −η, where η > 0.

Recall that there are a countable infinity of bound states of the non-
interacting system if R > Rc. Thus, for sufficiently small γ, it can be shown
that

〈φd | Ĥf (γ) | φd〉
〈φd | φd〉

< −1
4γ

2 (16)

for as many of these states as we please [5]. It is straightforward to show using
the Hylleraas–Undheim theorem that it follows from (17) that if γ is such that
N such states exist, there must exist M bound states where 1 ≤M ≤ N . M can
be expected to increase as N increases.

Strasburger [4] has shown that a bound state of Ĥf (γ) exists for γ = 1 if
R ≥ 0.744a0. It would thus seem likely that γc > 1 if R ≥ 0.744a0.

5 Conclusion

I have set out a tentative proof that Rcp ≥ Rc, where Rc = 0.639a0 is the critical
value below which the proton and the antiproton cannot bind an electron (or a
positron), on its own. The proof is not satisfactory at present as it gives rise to
a contradiction. I hope to be able to resolve this problem.

I have shown that it is comparatively straightforward to make predictions
about the existence of bound states of the system containing both light particles
from known results for the one particle system, provided the interaction between
them is of the form −γ/r12, where γ is a sufficiently small, positive number.
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Abstract. Of course not for an ideal H−− atom. But with the help of an in-
tense homogeneous magnetic field B, the question deserves to be reconsidered.
It is known (see e.g. [BSY, BD]) that as B →∞ and in the clamped nucleus
approximation, this ion is described by a one dimensional Hamiltonian

N∑

i=1

−∆i

2
− Zδ(xi) +

∑

1≤i<j≤N

δ(xi − xj) acting in L2(R3) (1)

where N = 3, Z = 1 is the charge of the nucleus, and δ stands for the well
known “delta” point interaction. We present an extension of the “skeleton
method”, see [CDR1, CDR2], to the case of three degree of freedom . This is
a tool, that we learn from [R] for the case N = 2, which reduces the spectral
analysis of (1) to determining the kernel a system of linear integral operators
acting on the supports of the delta interactions. As an application of this
method we present numerical results which indicates that (1) has a bound
state for Z = 1 and N = 3.
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2 Can one bind three electrons with a single proton?

1 Introduction

It is known by Lieb’s inequality [L] that an atom with a nucleus charge Z and
an infinite nuclear mass can bind at most N electrons with N < 2Z + 1, so that
the answer to the question posed in the title is no for such an atom. Even it
is strongly believed and numerically and experimentally verified that the bound
should be N ≤ Z + 1. However if one puts the atom in an intense homogeneous
magnetic field the number of electrons that can be bound by a nuclear charge Z
may increase drastically. The Hamiltonian in such conditions reads

HB(N,Z) :=
N∑

j=1

(−i∇j − 1
2B ∧ rj)2

2m
− Z

|rj|
+

∑

1≤j<k≤N

1
|rj − rk|

, (2)

where rj is the position of the jth electron with respect to the fixed nucleus and
B is a constant magnetic field of strength B. If one introduces the critical number
of electrons as (spect dX stands for discrete spectrum of X)

Nc(B,Z) := max{N, spect dH
B(N,Z) 6= ∅}

it was shown in [LSY, Th. 1.5] that

lim inf
Z& B

Z3→∞

Nc(B,Z)
Z

≥ 2

and they conjectured that the above limit should be indeed 2. The main moti-
vation of the present work is to start the study of the ratio N/Zc(B,N) with

Zc(B,N) := inf{Z, spect dH
B(N,Z) 6= ∅}

for finite Z and N and large B in order to explore how many electrons a charge
Z can bind thanks to this strong magnetic field.

The mechanism by which this binding enhancement occurs is well understood:
high intensity magnetic fields make the atom one dimensional. It has even been
shown, see [BD, Th.1.5], that HB(N,Z), restricted to any fixed total angular
momentum along the magnetic field axis, is asymptotic in the norm resolvent
sense to a rescaled version of (1) as B → ∞, at least for spectral parameters
in a suitable neighbourhood of the bottom of the spectrum of HB(N,Z). Thus
if we prove that (1) has a discrete eigenvalue for a given charge Z, we can
guarantee that this remains true forHB(N,Z), for a large enough intensity of the
magnetic field B. To appreciate the importance of this binding enhancement we
shall compare the ratio N/Zc(B = ∞, N) with the same ones for zero magnetic
field with bosonic statistics, see Table 1.

As often in these atomic problems it is convenient to work with the following
rescaled version of (1)

h(N,λ) :=
N∑

i=1

−∆i

2
− δ(xi) + λ

∑

1≤i<j≤N

δ(xi − xj), λ :=
1
Z
. (3)
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We also remark that to prove the existence of a bound state for N = 3 we
need only consider h := h(3, Z) in the bosonic sector, see [BD, Th. 1.8 and the
discussion in §IX], providing we take the part of HB(N,Z) with total angular
momentum with respect to the magnetic field axis M ≥ 1

2N(N − 1) with N = 3,
i.e. M ≥ 3.

2 Simple variational approaches

We define a critical value of Z attached to (1) as follows

Ẑ(N) := inf{Z, spect dh(N,λ =
1
Z

) 6= ∅}

which may be considered according to the discussion in §1 as Zc(B = ∞, N). It
is natural to try to find a wave function Ψ so that (hΨ, Ψ) is below Σ(Z = 1/λ),
the infimum of the essential spectrum of h; Σ(Z), which, by the HVZ theorem, is
equal to inf h(2, λ), is known only numerically but thanks to the skeleton methods
of Rosenthal, [R, Table I], the curve Z → Σ(Z) is known with a fairly good
accuracy, sufficient for our purposes, see the solid curve in Figure 1 below. The
trial function we take is Ψ(x) := Pbose

∏3
i=1 aie

−|ai|xi, ai > 0 where Pbose denotes
the projector on the functions which are invariant under the exchange of particles.
With a1 = a2 = a3 = a one gets: (hΨ, Ψ) = 3

2a
2 − 3a+ 3λ

2 a and optimizing over
a leads to (hΨ, Ψ) = −3

8(λ − 2)2. Requiring that this value is below Σ gives
Ẑc(3) ≤ 1.75. Then with a two parameter function with a1 = a2 = a and a3 = b
we get

(hΨ, Ψ) =
2a3b+ 4a2b2

(a+ b)2
− 4a2b

(a+ b)2
− 4ab
a+ b

+ λ

(
8a2b

(3a+ b)(a+ b)
+

ab

a+ b

)
.

Looking for the highest possible value of λ so that (hΨ, Ψ) is below Σ by a
“contour plot”, gives Ẑc(3) ≤ 1.45. We have also done the computation with
three parameters and obtained Ẑc(3) ≤ 1.32. One could of course try more
elaborate trial functions; we prefer instead to switch to:

3 The skeleton method

Let τi, resp. τi,j denote the trace (restriction) operators to the plane xi = 0, resp.
xi = xj. To identify these planes with R2, we choose an oriented basis in each of
them as follows: let {A1, A2, A3} denote the canonical basis of R3

equ. basis normal trace op.
x1 = 0 b(1) := {A2, A3} A1 τ1
x2 = 0 b(2) := {A3, A1} A2 τ2
x3 = 0 b(3) := {A1, A2} A3 τ3
x1 = x2 b(4) := {A1+A2√

2
, A3} −A2+A1√

2
=: A4 τ4 := τ1,2

x2 = x3 b(5) := {A2+A3√
2
, A1} −A3+A2√

2
=: A5 τ5 := τ2,3

x3 = x1 b(6) := {A3+A1√
2
, A2} −A1+A3√

2
=: A6 τ6 := τ3,1

.
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4 Can one bind three electrons with a single proton?

and define: (τiΨ)(s) = ψ(s1b
(i)
1 + s2b

(i)
2 ). Let H1(R3) denote the usual

Sobolev space and τ : H1(R3) → ⊕6
i=1L

2(R2) be defined by τΨ :=
(τ1Ψ, τ2Ψ, τ3Ψ, τ1,2Ψ, τ2,3Ψ, τ3,1Ψ). Let h0 := −∆/2 acting on L2(R3) and r0(E) :=
(h0 − E)−1 its resolvent. One can rewrite h := h(3, λ) in the sense of quadratic
forms as h = h0+τ⋆gτ where g stands for the 6×6 diagonal matrix with diagonal
(−1,−1,−1, λ/

√
2, λ/

√
2, λ/

√
2). If we let r(E) := (h−E)−1 then one has using

the second resolvent equation that r(E) = r0(E) − r0(E)τ⋆S(E)−1τr0(E) with
S(E) := g−1 +K(E) and K(E) := τr0(E)τ⋆. We shall use a theorem (see e.g.
[CDR2, Th. 2.3] for a proof) which asserts that

Σ(Z) > −k2 ∈ spect dh ⇐⇒ kerS(−k2) 6= {0}. (4)

It will be easier to work in the Fourier image and to perform a scaling so that
S(−k2) appears to be unitarily equivalent to k(g−1k+ K̂(−1)). In view of (4) we
have to find k >

√
−Σ so that ker g−1k+ K̂(−1) 6= {0} where the hat stands for

the Fourier transform. Such a spectral problem in k is sometimes call an operator
pencil. We shall call g−1k + K̂(−1) the skeleton of h. K̂(−1) is a 6×6 matrix of
integral operators on L2(R2). To give a flavour we explicitly write down two of
them; with the notations: T0 := K̂i,i(−1), Ti,j := ̂τir0(−1)τ⋆

j

T0(p, q) = τir̂0(−1)τ⋆
i =

δ(p − q)√
p2 + 2

, T1,2(p, q) =
δ(q1 − p2)

π
(
(p2

1 + p2
2 + q22) + 2

) .

It turns out that these integral operators Ti,j depend mostly on the angle between
the planes on which τi and τj operate their restriction. That is why we adopt
the following notations: Tπ

2
= T1,2, Tπ

4
= T1,4, T̃π

2
:= T1,5, Tπ

3
= T4,5. Thanks

to the fact that we are working in the bosonic sector, the skeleton reduces by
symmetry to 

−k + T0 + 2T ♯
π
2

3T ♯
π
4

3(T ♯
π
4
)⋆

√
2

λ k + T0 + 2Tπ
3


 (5)

with (εψ(p, q) := ψ(q, p)) T ♯
π
2

:= 1
2

(
Tπ

2
+ T ⋆

π
2

)
, T ♯

π
4

:= 1
3

(
(1 + ε)Tπ

4
+ T̃π

2

)
. Mul-

tiplying (5) on the left by the diagonal matrix with diagonal (1, λ/
√

2) we arrive
at a classical but non selfadjoint eigenvalue problem. We analyse its spectrum
numerically using the set of 9 trial functions Φβ(p) := ϕβ1(p1)ϕβ2(p2), with
β ∈ {0.27, 1.7, 6}2 and ϕβi

(u) := exp(−βiu
2), u ∈ R. We get the highest (gen-

eralized) eigenvalue k of (5) as a function of λ see Figure 1. This shows that

Ẑc(3) ≤ 0.86.

Although we do believe that this value 0.86 is very likely to be an upper bound
on Ẑc(3) we warn the reader that beside the uncertainty due to numerics there
is also a gap in our reasoning since we are not yet able to justify our use of
variational technics for a non selfadjoint operator.
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Figure 1. On the letf: the dotted line gives the highest eigenvalue of (5) and the solid line

the essential spectrum of (3). On the right: the square dots stand for the energy of the three

electrons atoms in R3 with bosonic statistics obtained by the Diffusion Monte Carlo method

[BMBM] and the circle dots for the corresponding two electrons system.

Table 1. Critical ratio

N 2 3
N/Zc(0, N) 2.19 1.71
N/Ẑc(N) 5.31 ≥ 3.48

4 Conclusions

As announced in the introduction, we display in Table 1 the numbers of electron
per unit of nucleus charge at the critical values of these charges. We have used
Zc(0, 2) ≃ 0.9112 from [StSt, (2.12) and references therein] and Ẑc(2) ≃ 0.377
from [R]. Ẑc(3) has been studied in §3. In order to estimate the critical charge
Zc(0, 3) for binding three bosonic electrons we used the Diffusion Monte Carlo
method [BMBM], which is known to give exact results, within the statistical
uncertainty of the method, for bosonic systems. This method employs a guided
random walk that sample the exact, unknown ground state function. To guide
the random walk and reduce the statistical uncertainty of the results we used a
properly symmetrized guiding function of the kind

Ψ = Pbose

3∏

i=1

exp(−|ai|ri)
∏

i<j

exp(bi,jri,j/(1 + ci,jri,j)).

The parameters have been optimized for each value of λ = 1/Z. We performed
simulations for λ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. Comparing the energies with the
corresponding ones of the 2-body system we located the critical λ between 0.5
and 0.6. In order to locate it more precisely we performed additional simulations
in that interval, at steps of 0.025, fitted the results, for both two and three body
systems, with quartic polynomials and computed the intersection. We estimate
λc = 0.570, see Figure 1 on the right.
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Abstract. We study the bound states of relativistic hydrogen-like atoms
coupled to strong homogeneous magnetic fields, assuming a fixed, infinitely
heavy nucleus. Working in the adiabatic approximation in which the electron
is confined to the lowest Landau level, we show that the corresponding Dirac
Hamiltonian always has an infinite discrete spectrum accumulating at mc2,
m being the electron mass, and that, as the field strength increases, its eigen-
values successively descend into the lower part of the continuous spectrum,
(−∞,−mc2]. This phenomenon is for large B roughly periodical in log B.

1 Introduction

The Dirac Hamiltonian for a hydrogen-like atom with nuclear charge Z in a
constant magnetic field B of size B in the z-direction is given by

DB = DB
0 −

γ

|r| , DB
0 = −→α · (p+ A) + β, (1.1)

where we use coordinates r = (x, y, z) ∈ R3 and where p = i−1∇r. Furthermore,
γ := αZ with α the fine structure constant, β and −→α = (αx, αy, αz) are the
Dirac matrices:

αj =
(

0 σj
σj 0

)
(j = x, y, z), β =

(
0 I
I 0

)
,
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Stability, Erice, Sicily, Received December 16, 2008; Accepted January 27, 2009.

∗∗E-mail address: raymond.brummelhuis@univ-reims.fr
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2 Relativistic hydrogen is strong magnetic fields

with σj the well-known Pauli matrices, I is the 2 × 2-identity matrix, and A is
the vector potential, which we choose as A := 1

2B ∧ r = 1
2B (−y, x, 0).

1.1 Spectral decomposition of DB
0

Since A has a component 0 in the z-direction, we can decompose DB
0 into a

transversal and a parallel operator with respect to the magnetic field: DB
0 =

DB
0,tr +D0,//, where D0,// := αzpz +βm is independent of B, and where DB

0,tr :=
αx(px − 1

2By) + αy(py + 1
2Bx). One has (DB

0,tr)
2 = HB ⊗ I, where HB = (px −

Ax)2 + (py − A2
y + Bσz = −∆x,y + 1

4B(x2 + y2) + BLz + Bσz is the Pauli-
Hamiltonian in a constant magnetic field, which has an explicitly known pure
point-spectrum, consisting of non-negative integer multiples of 2B, each of which
is has infinite multiplicity (cf. e.g. [2]). Let ΠB

L be the orthogonal projection onto
the (infinite dimensional) kernel of (DB

0,tr)
2. Since for a self-adjoint operator A,

Ker(A2) = Ker(A), this is also the orthogonal projection onto the kernel of
DB

0,tr, which we will call the relativistic lowest Landau-level, LB, of DB
0,tr; here

“lowest” has to be interpreted in the sense of absolute value: the spectrum of DB
0,tr

can be shown to be
√

2BZ, and consequently |DB
0,tr| ≥

√
2B on the orthogonal

complement of LB.
To remove the infinite degeneracy, we take advantage of the fact that DB,

DB
0 and DB

0,tr all commute with Jz = Lz + Sz, the total angular momentum in
the z-direction, and that we can therefore fix an angular momentum channel
Jz = j, j ∈ 1

2 + Z. If we indicate restrictions to this angular momentum channel
by the superscript “Jz = j”, then we have that the image of ΠB,Jz=j

L is non-zero
iff j = ` − 1/2 with ` ≤ 0. Moreover, for such j, Im ΠB,Jz=j

L is one-dimensional
and spanned by the spinor

χ`(x+ iy)




0
1
0
1


 , χ`

(
ρeiϕ

)
:= (2π2``!)−1/2B1/2 ρ`e−i`ϕe−Bρ

2/4.

We still have that |DB,Jz=j
0 | ≥

√
2B on the orthogonal complement of Im ΠB,Jz=`

L .
For simplicity we will limit ourselves to the case of j = −1/2. This is not an
essential restriction, though, and our calculations will carry through, with mod-
ifications, for general j ∈ −1

2 − N.

2 Adiabatic approximation

We will work in the adiabatic approximation, in which, for large B, the electron is
assumed to be “frozen” in its lowest Landau orbits in directions perpendicular to
the field B. This means replacing the exact Hamiltonian DB by the “lowest Lan-
dau” Hamiltonian dBL := ΠB,Jz=−1/2

L DBΠB,Jz=−1/2
L (where we henceforth leave

off the superscript indicating the angular momentum channel). The Hamiltonian
dBL is one-dimensional, and effectively acts on two-component wave-functions as

dBL = d0,z + V B
L (z), d0,z =

(
m pz
pz −m

)
; (2.1)
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with V B
L (z) := −γ〈χB0 ||r|−1|χB0 〉 =

√
BV 1
L (
√
Bz); explicitly,

V 1
L (z) = −γ

∫ ∞

0

e−u√
2u+ z2

du. (2.2)

Note that dB0 is the free Dirac operator in dimension 1.

This of course begs the question of whether we can relate the spectra of DB

and dBL . For large B, a large amount of (positive or negative) energy is needed
to go from the lowest Landau level into one of the others, and the question
is whether the attractive Coulomb potential can provide that energy. In the
non-relativistic case the answer was “no”, at least asymptotically for very large
B; mathematically, this translated into the norm-resolvent convergence of the
full Hamiltonian to its projection onto the lowest Landau level in [2]. In the
relativistic case, the situation is not that clear, basically because both Coulomb
potential and the Dirac operator have the same order of homogeneity −1, a well-
known problem in rigorous relativistic quantum mechanics. A further analysis,
using the techniques of [2], shows that one can prove norm-resolvent convergence
of DB to dBL if we allow γ to be B-dependent and require that γ

√
B → 0, cf. [1].

More generally, we can do perturbation theory around dBL of γ
√
B � 1, that is

B � α2 ' 18769 for hydrogen. Since in our units B = 1 already corresponds to
4.4 109 Tesla, this may not be an unreasonable assumption for the lighter atoms.

3 Large-B approximation of dBL

The eigenvalue-problem for dBL does not seem to be directly solvable in closed
form, but we can further simplify the operator for large values of B. If Uπ/2
denotes the rotation of C2 by π/4, it is convenient to introduce

d̃BL := U−1
π/4 d

B
L Uπ/4 =

(
pz + V B

L −m
−m −pz + V B

L

)
.

We note that for z 6= 0, V B
L (z) → −γ|z|−1. One can now show that as B → ∞,

d̃∞,BL is asymptotic, in norm-resolvent sense, to a suitably defined regularization
of the one-dimensional Dirac + Coulomb Hamiltonian (rotated by π/4):

Proposition 3.1 Define the operator d∞,BL on L2(R,C2) by

d̃∞,BL :=
(
pz − γ/|z| m

m −pz − γ/|z|

)
,

with domain those u = (u1, u2) ∈ L2(R,C2) such that uj ∈ H1(|z| ≥ ε) for all
ε > 0 (j = 1, 2) and satisfying the following boundary condition in 0:

ei(−1)jγ(logB+c)εi(−1)jγuj(ε) ' ε−i(−1)jγuj(−ε), ε ↓ 0, j = 1, 2,

where c = log 2−Γ′(1), and ' means that the difference tends to 0 with ε. Then
d∞,BL is self-adjoint and we have that for all complex ξ /∈ R,

lim
B→∞

|| (d̃BL − ξ)−1 − (d̃∞,BL − ξ)−1 || = 0.
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4 Relativistic hydrogen is strong magnetic fields

Observe that d̃∞,BL still depends on B, through the boundary conditions,
which in fact are periodic in logB. The eigenvalue problem for d̃∞,BL can be
explicitly solved with the help of Whittaker functions. Before stating the result,
we note the following symmetry of the operator: let P : u(z) → u(−z) be the
parity operator, and let E : (u1, u2) → (u2, u1) exchange the components of the
spinor u. Then d̃∞,BL commutes with PE , which has eigenvalues ±1, and we can
reduce the operator accordingly.

Theorem 3.2 Let F± : (−m,m)→ {ζ ∈ C : |ζ| = 1} be given by

F±(E) := (∓)
E + iτ/2
|E + iτ/2| ·

Γ(1− 2iγ)
Γ(1 + 2iγ)

· Γ(1 + iγ − κ)
Γ(1− iγ − κ)

· τ2iγe−icγ (3.1)

where τ = τ(E) := 2
√
m2 − E2 and κ := κ(E) := γE/

√
m2 − E2. Then E ∈

(−m,m) is an eigenvalue of d̃∞,BL in the ±-sector of the Parity & Exchange
operator PE iff F±(E) = eiγ logB = Biγ .

An equivalent way of stating the eigenvalue condition is that A±(E) :=
Arg (F±(E)) = iγ logBmod2π, where Arg(ζ) ∈ (−π, π] denotes the principal
value of the argument of ζ ∈ C\0. Graphical analysis shows that for small γ and
given B > 0, d̃∞,BL will have infinitely many eigenvalues E±0 (B) < E±1 (B) < · · ·
in (−m,m) accumulating at m, see figure 1 below, for an illustration for γ = 0.5.
The eigenvalues in either sector are monotonically decreasing in B, and the low-
est eigenvalue E+

0 (B) will, for a certain critical value Bc of the field, be absorbed
into lower continuous spectrum (−∞,−m], at which point E−0 (B) will become
the new lowest eigenvalue, and the whole process will repeat itself, periodically
in logB with period 2π/γ. As a consequence of norm-resolvent convergence, the
same phenomenon will occur for dBL if B is sufficiently large, the periodicity be-
coming approximate. We note that in reference [3] it was recently shown, by a
variational argument involving a min-max characterisation of the ground state
of Dirac operators in the spectral gap (−m,m) and comparison with dBL , that
the ground state of DB enters the negative continuous spectrum for a certain
Bc = Bc(γ). This left open the question of whether there remained other eigen-
values. Our result answers this for dBL when B is sufficiently large, and also for
DB in the limit of γ

√
B → 0.

Concerning the critical values of B, one can use Stirling’s formula to show
that

lim
E→−m

F±(E) = ∓Γ(1− 2iγ)
Γ(1 + 2iγ)

(
2γm
ec/2

)2iγ

, (3.2)

The critical values Bc of the magnetic field for which E±0 (Bc) = −m will have to
satisfy Biγ

c = Right Hand Side of (3.2). We note that if Bc(γ) is the first critical
B > 1, then limγ→0 γ logBc = π, confirming a result of [3]; (3.2) allows us to
derive an asymptotic expansion of γBc(γ) for small γ.
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Figure 1. Graphs of A+(E) (dots), A−(E) (dashes) and γ log B = 2.5mod 2π (solid), γ = 0.5
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Abstract. We describe recent work in which we propose an alternative to the
usual time independent Born-Oppenheimer approximation that is specifically
designed to describe molecules with Hydrogen bonds. In our approach, the
masses of the Hydrogen nuclei are scaled differently from those of the heavier
nuclei, and we employ a specialized form for the electron energy level surface.
Consequently, anharmonic effects play a role in the leading order calculations
of vibrational levels for symmetric molecules. For non-symmetrical molecules,
the different vibrational modes appear at different orders of approximation.

1 Introduction

The standard time-independent Born-Oppenheimer (BO for short) approxima-
tion [1] takes advantage of the large masses of the nuclei relative to the mass of
the electrons. With mass unit given by the mass of the electrons, the masses of
the nuclei are of order ε−4, with ε small. It allows one to compute the low-lying
vibrational states of the nuclear motion from knowledge of the ground state elec-
tron energy surface near its minimum, under the following two assumptions: the
ground state is isolated from the other energy surfaces near its minimum and the
minimum is non-degenerate. To leading order, as is well known, the vibrational
energy levels are those of a harmonic oscillator (HO for short) associated with
the non-degenerate minimum, see [3] for a recent review and references.

Despite its many successes, this approximation may fail to give accurate
results when applied to molecules that contain hydrogen bonds. The binding
energy of such bonds is typically very small, and the mass of the Hydrogen
nucleus is an order of magnitude smaller than that of other nuclei such as Carbon.

∗Article based on the presentation by A. Joye at the Fifth Workshop on Critical Stability, Erice,
Sicily, Received December 22, 2008; Accepted January 25, 2009.112



2 Vibrational Levels Associated with Hydrogen Bonds

Moreover, the experimental vibrational spectra of some tri-atomic molecules with
hydrogen bonds, such as F -H-F− and F -H-Cl−, display significant deviations
from the approximate harmonic spectrum, see [2].

In [4, 6], we revisit the BO approximation in order to propose an alternative
taking into account the specificities of simple molecules that contain hydrogen
bonds. Our approach differs from the standard BO approximation in the follow-
ing way. First, we scale the masses of the Hydrogen nuclei as ε−3 while keeping
the heavier nuclei scale as ε−4. Note that for ε ' 0.082 corresponding to the mass
of the Carbon nucleus, the mass of the Hydrogen nucleus is approximately equal
to 1.015ε−3 times that of the electrons. Second, we model the electron energy
surface in a special way that depends on ε. This takes into account the smallness
of some coefficients of the harmonic potential associated with the hydrogen bond.
The case of symmetric linear tri-atomic molecules in which bending is ignored
is dealt with in [4], whereas [6] is devoted to asymmetric tri-atomic molecules in
which rotations are included. Note that the local behaviour of the ground state
energy surface around a minimum is enough to describe the low energy vibra-
tional levels because the corresponding wave packets are strongly localized close
to this minimum, as ε → 0. We describe these two model cases in an informal
way below.

In order to keep things simple, we only discuss here the scalar Hamiltonians
obtained by reducing the molecular Hamiltonian to kinetic energy plus smooth
potential given by the ground state energy surface, EGS . Extensions of these
results to the full molecular Hamiltonians are provided in [4, 6].

2 The symmetric case

We consider here a tri-atomic molecule of the form A-H-A, where the A’s are
nuclei of masses ε−4 and H is a Hydrogen nucleus of mass ε−3. The nuclei are
constrained to move on a fixed axis. The reduced scalar Hamiltonian reads

HS(ε) = −ε
4

2
∆W −

ε3

2
∆Z + EGS(ε,W,Z) (1)

where the Jacobi coordinates (W,Z) ∈ R2 give the distance between the two
nuclei A and the location of the H nucleus w.r.t. the center of mass of the
two A’s, see Fig. 1. Some inessential factors coming from reduced masses are

A H

WZ

A

Figure 1. Coordinate system for A-H-A

simplified by a trivial rescaling of the variable Z. At equilibrium, we assume the
molecule is symmetrical so that the minimum of the ground state energy surface
lies at (W0, 0), with W0 > 0. Numerics on the ion F -H-F− suggest the expansion

EGS(ε,W,Z) = E0 + a1(W −W0)2 + (a2ε− a3(W −W0))Z2 + a4Z
4 + · · ·

≡ E1(ε, W, Z) +O((W −W0)αZ2β), α, β ∈ N, α+ β ≥ 3, (2)
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where the ε dependence only enters in the coefficient of Z2, which is much smaller
than the other coefficients. Note that symmetry implies an expansion in Z2 and
E1(ε, W, Z) is bounded below in case the following condition holds:

a1, a3, a4 > 0, and either a2
3 < 4a1a4, or a2

3 = 4a1a4 and a2 ≥ 0. (3)

Keeping only the leading term E1 in the expansion defines the approximation
H1(ε) = − ε4

2 ∆W − ε3

2 ∆Z + E1(ε,W,Z). By rescaling the variables according to
w = (W −W0)/ε, z = Z/ε1/2, H1(ε) is equivalent to E0 + ε2HNF , where the
ε-independent, anharmonic, normal form Hamiltonian reads

HNF = −1
2
∆w −

1
2
∆z + a1w

2 + (a2 − a3w)z2 + a4z
4. (4)

It is proven in [4] that under condition (3) the spectrum of HNF is discrete and
that it is related to the spectrum of HS(ε), σ(HS(ε)), in the following sense:
For any eigenvalue E(j)

NF of HNF , there exists ES(ε) in σ(HS(ε)) such that

ES(ε) = E0 + ε2E(j)
NF +O(ε3), as ε→ 0. (5)

Such results hold for more mass scales and other ε-dependent potentials, see [5].

3 The non-symmetric case

Here a tri-atomic molecule of the form A-H-B is considered, in a full three
dimensional setting. Again, we start from the reduced scalar Hamiltonian in
Jacobi coordinates. They are defined as in Fig. 2: X is the vector from the heavy
nucleus A to the Hydrogen nucleus H whereas Y links the center of mass of AH
to the other heavy nucleus B. We express Y by means of spherical coordinates
with respect to the center of mass frame of reference as Y = (Y, θ, φ). For X,
we use a moving frame with third axis z′ parallel to Y and first axis parallel to
Y ∧ z, z being the third axis of the fixed frame. Using cylindical coordinates in
the moving frame, we get X = (R, γ,X). In these variables, the ground state

B

CM of AH

A

H

Z

x

y

Y

X

Z

x’

z’

y’

y

x

Y

θ

φ

γ

X

X

R

Figure 2. Coordinate

system for A-H-B

energy surface does not depend on the angles, but the kinetic energy becomes
messy. Taking mass scales as above, the scalar Hamiltonian reads

HS(ε) = − ε3

2µ1(ε)
∆X −

ε4

2µ2(ε)
∆Y + EGS(ε,X,R, Y ), (6)
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4 Vibrational Levels Associated with Hydrogen Bonds

where µj(ε) are reduced masses that are regular in ε. The molecule is assumed
to be linear, i.e. at equilibrium, X and Y are colinear, so that Req = 0.

The behaviour of the ground state close to the equilibrium point (X0, 0, Y0)
is modelled after comparisons with numerics on a typical case, here F -H-Cl−,
and taking into account the symmetries. We consider

EGS(ε,X,R, Y ) = V1(X) + εV2(X,R, Y ), (7)
with V1(X) = a0 + a2(X −X0)2 + · · ·

V2(X,R, Y ) = b0,2,0R
2 + b1,0,1(X −X0)(Y − Y0) + b0,0,2(Y − Y0)2 + · · ·

The decomposition (7) reflects the fact that the molecule behaves like a com-
pound AH interacting weakly with B, depending on the “proton affinities” of A
and B. Also, the quadratic term in (X −X0) in V2 is incorporated in V1.

Making explicit the kinetic energy, expanding HS(ε) in powers of ε1/4 and
taking into account the scales of the quantum fluctuations leads to

HS(ε) = a0 −
ε3

2µ1

(
∂2

∂R2
+

1
R

∂

∂R
+

1
R2

∂2

∂γ2

)
+ ε b0,2,0R

2

− ε3

2µ1

∂2

∂X2
+ a2(X −X0)2 − ε4

2µ2

∂2

∂Y 2
+ ε b0,0,2(Y − Y0)2 + · · · (8)

where the remaining terms can be safely neglected. This leading term is the sum
of a one dimension HO describing the A-H streching modes, a two dimensional
HO corresponding to degenerate bending modes and a one dimensional HO as-
sociated with the AH-B streching modes. The corresponding eigenvalues appear
at different orders in ε and are given by

E(n1)
X (ε) = ε3/2

√
2a2/µ1(n1 + 1/2), E(n2)

R,γ (ε) = ε4/2
√

2b0,2,0/µ1(n2 + 1),

E(n3)
Y (ε) = ε5/2

√
2b0,0,2/µ2(n3 + 1/2). (9)

It is shown in [6] that these HO approximate HS(ε) in the sense that:
For any choice of eigenvalue (9), there exists ES(ε) in σ(HS(ε)) such that

ES(ε) = a0 + E(n1)
X (ε) + E(n2)

R,γ (ε) + E(n3)
Y (ε) +O(ε3), as ε→ 0. (10)

Acknowledgement. A.J. wishes to thank the organizers of “Critical Stability V” for a very
interesting and enjoyable meeting.
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Abstract. A new type of point interactions for the Laplacian in R3 is con-
structed generalizing classical Fermi pseudopotential. This model leads to a
new resolvent formula and a non-trivial scattering matrix in p-channel.

1 Introduction

It is well-known that the celebrated Fermi delta potential [2, 3] leads to non-
trivial scattering in the s-channel only. We propose a new family of point interac-
tion models which may be used to describe particles with non-trivial interaction
also in the p-channel while preserving exact solvability and point character of
the interaction [4]. These models are given by self-adjoint operators and their
spectral and scattering properties are discussed. Similar physical models have
been discussed during the conference (see contributions by J. Macek, S. Wycech
and others). The developed method can be also applied to model the system
of three quantum particles. One may expect that the corresponding operator is
semibounded (in contrast to the Landau Hamiltonian studied by Skorniakov-
Ter-Martirosyan and Minlos-Faddeev in the sixties [5]).

2 Fermi-Berezin-Faddeev point interaction

The stationary Schrödinger operator with delta potential is formally defined by

−∆+ αδ ≡ −∆+ αδ〈δ, ·〉. (1)

F.A. Berezin and L.D. Faddeev [2] interpreted this operator as the Laplace oper-
ator Lθ defined on the domain of functions from the Sobolev space W 2

2 (R3\{0})1
∗Article based on the presentation by P. Kurasov at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received November 27, 2008; Accepted January 27, 2009.

∗∗Supported in part by Swedish Research Council Grant number 500092501
∗∗∗E-mail address: pak@math.su.se

1The Sobolev space W s
2 is best characterized using Fourier transform as (1 + |p|)sf̂(p) ∈

L2(R3).

116



2 p-type point interactions and related problems

possessing the asymptotic representation U(x) = u−
4π|x|+u0 +o(1), as R3 3 x→ 0

and the boundary conditions u0 = cot θ u−, θ ∈ [0, π). In general there is no
relation between the parameters α and θ, but it may be established using homo-
geneity requirements [1].

The operator Lθ can also be seen as the differential Laplace operator defined
on the set of functions satisfying the representation U = Ur+u1

e−β|x|
4π|x| , where Ur ∈

W 2
2 (R3), u1 ∈ C, β > 0, and the boundary condition Ur(0) = (cot θ+ β

4π )u1. The
parameters β and θ determining Lθ in this representation are not independent.

The operator Lθ is self-adjoint in L2(R3), its absolutely continuous spectrum
is [0,∞) and it has a unique eigenvalue E0 = −(4π cot θ)2, provided cot θ < 0.
The corresponding bound state eigenfunction is spherically symmetric and the
scattering amplitude does not depend on the angle between the incoming and
outgoing waves.

3 Why p-type point interactions are impossible in L2(R3)?

Several attempts to define higher order point interactions lead to operators in
Pontryagin spaces (with indefinite metrics), making these models not very at-
tractive for physical applications.2 The impossibility to define such interactions
in the original Hilbert space follows from the fact that all self-adjoint extensions
of the operator −∆|C∞0 (R3\{0}) coincide with the family Lθ. It is expected that the
operator with a high order interaction at the origin is defined on the functions
possessing the representation Ur(x) + u1g1, where g1 is a certain solution of the
Helmholtz equation having singularity at the origin. Every such solution differ-
ent from e−β|x|/4π|x| has a non square integrable singularity. The corresponding
boundary condition should contain derivatives of Ur at the origin, which are
properly defined only if Ur belongs to the Sobolev space W s

2 with s > 2. For
example the first derivatives are defined if Ur belongs to W 3

2 , which is precisely
the domain of the Laplacian considered as an operator in W 1

2 instead of L2.
3

4 Cascade model for p-scattering

A mathematically rigorous interpretation for the formal operator

−∆+
3∑

i=1

α∂xiδ〈∂xiδ, ·〉, α ∈ R (2)

can be given in the following way.4 Consider the following three singular solutions

2See in particular papers by Yu. Shondin, A. Tip, J.F. van Diejen, A. Dijksma, H. Langer and
C.G. Zeinstra.

3This fact is usually known as Sobolev embedding theorem.
4The first model of this type was developed using abstract mathematical language by
K. Watanabe and the author when they tried to analyse an article by I. Andronov. It was
realized later that this model leads to a natural generalization of von Neumann extension
theory [4].
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to the Helmholtz equation (−∆+ β2
1)gj = 0, x 6= 0, where β1 > 0

gj =
∂

∂xj

e−β1|x|

4π|x| = −β1|x|+ 1
4π|x|3 e−β1|x|xj /∈ L2(R3), gj = (−∆+ β2

1)−1∂xjδ

and the Hilbert space

H = W 1
2 (R3)+̇L{g1, g2, g3} 3 U = U +

3∑

i=1

ui1gi = U − β1|x|+ 1
4π|x|3 e−β1|x|xt · u1,

with the norm ||U||2H = ||
√
−∆+ β2

1U ||2L2
+ γ||u1||2, where γ > 0. The operator

associated with (2) in H is defined as a restriction of the operator A acting as
the differential Laplace operator outside the origin AU = −(Ux1x1 + Ux2x2 +
Ux3x3), x 6= 0. Consider another positive parameter β 6= β1 and introduce

Gi =
1

β2
1 − β2

(gi(−β2)− gi(−β2
1)), Gi = (−∆+ β2)−1gi.

Then the family of self-adjoint in H operator Aθ, θ ∈ [0, π) is defined on the
functions possessing the representation

U = Ur +
3∑

i=1

uiGi +
3∑

i=1

ui1gi, Ur ∈W 3
2 (R3),u,u1 ∈ C3,

and the boundary conditions sin θ (∇Ur(0) + γu1) = cos θ u, by the formula

Aθ

(
Ur +

3∑

i=1

uiGi +
3∑

i=1

ui1gi

)
= −∆Ur − β2

3∑

i=1

uiGi +
3∑

i=1

(ui − β2
1u

i
1)gi.

The self-adjoint operator Aθ - rigorous interpretation for the formal operator (2),
- is defined on the functions forming cascade of less and less singular elements.
It is described by four real parameters β, β1, γ, θ (not all independent).

5 Properties of the cascade model

The operator Aθ is self-adjoint in the Hilbert space H, and describes a certain
point interaction, which is not of s-type as Berezin-Faddeev one. The operator
commutes with the rotations around the origin and reflections in planes passing
through the origin, i.e. this constructed point interaction is spherically sym-
metric. The spectrum has an absolutely continuous branch [0,∞) and negative
eigenvalues having multiplicity three. The spectral properties of the operator are
encoded in the following rational Nevanlinna function

Q(λ) =
1

12π

{
ik +

β2
1

ik − β1
+ β +

β2
1

β + β1

}
+

γ

−β2
1 − k2

, k
√
λ.

Continuous spectrum (generalized) eigenfunctions are

V(λ,k/k,x) = eik·x +
i

(k2 + β2
1)(Q(k2) + cot θ)

ik|x| − 1
4π|x|3 eik|x|xt · k,
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4 p-type point interactions and related problems

and we see that the scattering amplitude −λ cos(dx,k)
4π(λ+β2

1)(Q(λ)+cot θ)
depends on the

angle between the incoming and outgoing waves. Hence the scattering matrix is
non-trivial in the p-channel.

The bound state eigenfunctions are

Vλ0 = −χ|x|+ 1
4π|x|3 e−χ|x|x · a, λ0 = −χ2,

where χ > 0 is a solution to the equation Q(−χ2) + cot θ = 0.
The function Q appears also in the denominator of the resolvent (A−λ)−1 in

H. The restriction of the resolvent to the infinite dimensional subspace W 1
2 (R3) ⊂

H has the form which reminds of classical Krein’s resolvent formula5

(Aθ − λ)−1U =
1

−∆− λU −
1

(λ+ β2
1)(Q(λ) + cot θ)

×
(∫

R3

(ik|y| − 1)eik|y|

4π|y|3 ytU(y)d3y

)
(ik|x| − 1)eik|x|

4π|x|3 x. (3)

Note that the function appearing in the denominator is not any longer a
Nevanlinna function as it is growing like λ3/2, λ→∞.

6 Perspectives

The suggested model can be generalized to include even higher order point inter-
actions. Analytic properties of these operators and new families of eigenfunction
expansions based on the resolvent formula (3) were discussed by A. Luger and
the author.

Acknowledgement. The author would like to thank the organizers for putting together an ex-
tremely stimulating conference, which allowed to develop new ideas and find listeners to the
old ones.
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Abstract. We investigate the possibility of calculating the parameters of few-
body resonances using the oscillator trap boundary conditions. We place the
few-body system in an oscillator trap and calculate the energy spectrum and
the strength function of a suitably chosen transition. Broader resonances are
identified as Lorentzian peaks in the strength function. Narrower resonances
are identified through the pattern of avoided crossings in the spectrum of the
system as function of the trap size. As an example we calculate 0+

2 and 0+
3

resonances in 12C within the 3α model.

1 Introduction

Few-body resonances are often calculated using the complex scaling method
where the resonances are identified as generalized complex eigenvalues of the
Hamiltonian with the corresponding generalized eigenfunctions (see e.g. [1, 2]
and references therein). The method has the advantage of having a simple bound-
ary condition: the few-body wave-function vanishes at large distances. However,
it also has certain disadvantages. Complex arithmetics and algorithms are gen-
erally slower and complex matrices need more computer memory. Calculating
extremely narrow resonances is difficult as it demands calculations of the eigen-
values with exceedingly high accuracy. Interpretation of the generalized eigen-
functions is also not trivial [1], especially for heavy complex scaling needed for
broader resonances.

In this contribution we investigate the possibility of calculating the param-
eters of few-body resonances using the same simple boundary condition as in
complex scaling method but working with real energies and real wave-functions.

We place the few-body system in an artificial oscillator trap of length b which
is significantly larger than the characteristic length of the few-body system. We
∗Article based on the presentation by D. Fedorov at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received December 10, 2008; Accepted January 23, 2009

∗∗E-mail address:fedorov@phys.au.dk
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2 Calculating few-body resonances...

then calculate the (discrete) spectrum of the system in the trap and estimate
the strength function of a certain transition from a suitable chosen initial state
to the positive-energy states of the system in the trap.

The broader resonances with width Γ & ~2/(2mb2), where m is the char-
acteristic mass of the few-body system, can be identified as Lorentzian peaks
in the strength function. A similar idea of identifying resonances through a
strength function has been suggested in [3] in connection with the Lorentz-
integral-transform method.

The narrow resonances with Γ < ~2/(2mb2) need an investigation of the
spectrum of the system in the trap as function of the trap length. When an
energy level in the trap, following its general behavior as b−2, approaches the
system’s resonance level to within its width, the two levels interfere and avoid
crossing. The pattern of avoided crossings in the spectrum of the system in the
trap reveals the position of the narrow resonance. The width of the resonance can
be estimated from the size of the region of avoided crossing, or, more precisely,
from the variation of the energy levels with respect to the trap length.

The approach is similar to the box method (also called the stabilization
method) [4, 5]. However, the difference is that we use an oscillator trap instead
of a box and that we resort to strength function method for broader resonances
where the avoided crossings method is less reliable. The box boundary condi-
tion is more complicated as the wave-function has to vanish identically at the
box boundary which for few-body systems is a multi-dimensional surface. The
oscillator trap can be potentially used in stochastic variational calculations with
correlated Gaussians [6].

As an example we apply the approach to the 3α system in the Jπ=0+ channel
where there exist a narrow, 0+

2 , and a broader, 0+
3 , resonance. We show that the

approach allows to reliably calculate the two resonances in this system.

2 The few-body system and the trap

We consider the 3α system with the total angular momentum and parity Jπ=0+.
The Ali-Bodmer type α-α potential is taken from [7],

Vαα(r) =
(
125P̂l=0 + 20P̂l=2

)
e−(

r
1.53)

2

− 30.18 e−(
r

2.85 )
2

+
4 · 1.44
r

erf
( r

2.32

)
, (1)

where all energies are in MeV, all lengths in fm, P̂l is the projection operator
onto a state with relative orbital momentum l, and r is the distance between
α-particles. In addition a three-body force

V3(ρ) = −76MeV exp(−ρ2/(4fm)2) , (2)

is employed to simulate the contribution of “compound nucleus” degrees of free-
dom at shorter distances where all three α-particles overlap. The three-body
force is defined in terms of the hyper-radius

ρ2 =
mα

m

3∑

i=1

r2i , (3)

121



D.V.Fedorov 3

where ri are the c.m. coordinates of the α-particles, m=939 MeV is the chosen
mass scale and mα=3.97m.

The system is placed in an oscillator trap

Vtrap =
~2

2m
ρ2

b4
, (4)

where the trap length b is varied around 30-40 fm.
The three-body problem in the trap is solved using the adiabatic hyper-

spherical method (see e.g. [2] and references therein). First for every fixed hyper-
radius ρ the eigenvalue problem for all remaining variables (denoted collectively
as hyper-angles Ω) is solved and the spectrum of hyper-angular eigenvalues ǫi(ρ)
together with the angular eigenfunctions Φi(ρ,Ω) are obtained. The functions
Φi(ρ,Ω) are then used as a full basis in the Ω space and the total wave-function
ψ is represented as a series

ψ(ρ,Ω) =
∞∑

i=1

fi(ρ)Φi(ρ,Ω) , (5)

where the expansion coefficients fi(ρ) are obtained by solving the hyper-radial
equations where the eigenvalues ǫi(ρ) serve as effective potentials.

3 Strength function

A resonance can be identified as a peak in a reaction cross-section with approxi-
mately Lorentzian shape. The amplitude of a quantum transition, caused by an
operator F , from some initial state ψa into one of the discrete state ψn (with the
energy En) of the system in the trap, is given in the Born approximation as

Mn←a = 〈ψn|F |ψa〉 . (6)

Since a resonance per definition must be seen in any reaction channel, the par-
ticular choice of the excitation operator F and the initial state ψa should be
irrelevant as soon as the matrix element does not vanish identically. We thus
choose the initial state in the form of the large ρ asymptotics of a bound three-
body state [8, 9],

fi(ρ) = ρ−5/2 exp(−ρ/b3), (7)

in every hyper-radial channel i. The constant b3=4 fm is chosen close to the size
of the bound state of 3α system. The excitation operator is taken as

F = ρ2 . (8)

The cross-section of a reaction into the final states with energies E ± ∆E
2 is

determined by the strength function, defined as

S(E) =
1
∆E

∑

En∈E±∆E
2

|Mn←a|2 . (9)
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Figure 1. Left: the strength function S(E) as function of the 3α energy E for different oscillator

lengths b. Right: the peak at 4.3MeV is fitted with a Lorentzian, Const/[(E − Er)
2 + Γ 2/4],

where Er=4.3 MeV and Γ=0.9 MeV.

The energy bin size ∆E has to be chosen on the one hand small enough as not
to smear out the essential features of the cross-section, and on the other hand
large enough to include many states. In our calculations the energy bins include
four states each.

The calculated strength function is shown on Figure 1. It reveals a broader
peak at 4.3 MeV and a narrow unresolved peak at ∼0.4 MeV. In the region of
the broader peak the strength function is well converged with respect to the trap
length, and the bin size is quite appropriate for the description of the width of
the peak as there are many points within the peak region.

The shape of the peak is well described by a Lorentzian

S(E)
E≈Er∝ 1

(E − Er)2 + Γ 2

4

(10)

with Er=4.3 MeV and Γ=0.9 MeV. These numbers are consistent with [2].
The narrow peak at in the strength function ∼0.4MeV is represented by only

one point. The position of the point reveals the resonance energy but not the
width. To resolve the width at least several points are needed within the peak
region. For resonances width exceedingly narrow width Γ this would demand
unreasonably large trap lengths of the order b ∼

√
~2/(2mΓ ).

However instead of the strength function the avoided crossings method can
be used to calculate narrow resonances using reasonably sized traps.

4 Avoided crossings

For large trap lengths the energy levels in the trap, En, scale with the trap size as
~ω ∝ b−2. By varying the trap size a level in the trap can be moved close to the
resonance level of the system. If the resonance were behind a completely impen-
etrable barrier (thus having a vanishing width) there would be no interference
through the barrier between the resonance and the state in the external trap.
The resonance would then be insensitive to the trap size. The spectrum of the
system in the trap, as function of the trap size, would thus show the trap levels
scaling as b−2 and crossing the resonance energy represented by a horizontal line.
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Figure 2. Left: the spectrum of the 3α system in an oscillator trap as function of the trap size

b in the region of the narrow peak on Figure 1: the sequence of avoided crossings indicates a

resonance at ∼ 0.38 MeV; Right: zoom-in into the region of avoided crossings: the resonance

energy is fitted with E(b) = Er + Kb−4 with Er = 0.38435 MeV and K=7.4714 MeV fm4.

If the barrier has small but finite penetrability the trap level approaching
the resonance to within its width becomes perturbed by the resonance resulting
in the “repulsion” of the two interfering levels. This shows up as a sequence of
avoided crossings in the spectrum of the system in the trap as function of the
trap size in the vicinity of the narrow resonance, see Figure 2 (left).

The resonance state gets a contribution from the oscillator potential (4) which
at large b is proportional to b−4. This contribution can be determined by a fit
Er +Kb−4 through the resonance energies as shown on Figure 2 (right). The fit
also provides the asymptotic estimate of the resonance energy Er = 0.38435 MeV.

fit
E′3

b, fm

en
er

gy
,
M

eV

3836

0.3846

0.3844

0.3842

Figure 3. The reduced energy E′
3 ≡ E3 − Kb−4 of the third level of the 3α system in an

oscillator trap as function of the trap length b in the region of the resonance Er = 0.38435 MeV

(indicated as a horizontal line) where the parameters K and Er are from the fit of the resonance

energy on Figure 2. The energy E′
3 is fitted with the curve b−b3

∆b3
= arctan Γ/2

E−Er
where b3, ∆b3,

and Γ are fitting parameters. The fit gives Γ = 77 eV.

Figure 3 shows the reduced energy of the third level, E′3 ≡ E3−Kb−4, where
the oscillator contribution is subtracted. It is possible to estimate the width Γ of
the resonance from the plot assuming that the energy region where the avoided
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6 Calculating few-body resonances...

crossing takes place is determined by the width of the resonance,

Γ

2
= ∆b

∂E′n
∂b

∣∣∣∣
En=Er

, (11)

where ∆b is the distance between the neighboring avoided crossings.
However, instead of numerical differentiation it is better to estimate the width

by fitting the calculated energies with the curve

b− bn
∆bn

= arctan
Γ/2

E′n − Er
, (12)

where bn, ∆bn, and Γ are fitting parameters. Figure 3 (right) shows such a fit for
E3 which gives Γ = 77 eV. This value is consistent with the estimates of 10-30 eV
in [7, 10] taking into account that our three-body potential provides a slightly
higher Er.

5 Conclusion

Using the two lowest Jπ=0+ resonances in the 3α system as an example, we have
investigated the possibility of calculating the energies and widths of few-body
resonances by placing the few-body system in an artificial oscillator trap. The
oscillator trap has particularly simple boundary condition and can be potentially
used in stochastic variational calculations with correlated Gaussians.

We have shown that broader resonances with the width Γ & ~2/(2mb2),
where b is the trap size, can be identified as Lorentzian peaks in the strength
function of a suitably chosen “gedanken” transition. Narrower resonances can be
identified through the pattern of avoided crossings in the spectrum of the system
in the trap as function of the trap size.
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Quantum scattering with the driven

Schrödinger approach and complex scaling ∗
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Abstract. Quantum scattering calculations of two and three-body systems
with Coulomb interaction using the driven Schrödinger equation combined
with exterior complex scaling are discussed. A rigorous formulation for two-
body scattering is reported, and its generalization to three-body scattering is
considered.

1 Introduction.

The understanding of the dynamics of small molecular systems have made a
considerable progress during the past ten years. The identification of the mea-
sured peak in the cross section of the reaction F + HD(v′, j′) → FHD →
FH(v′′, j′′) +D as an isolated resonance would not have been possible if not for
the simultaneous theoretical and computational developments described in [1]. A
number of other experimental and theoretical studies demonstrate the existence
of resonances in several primary chemical reactions [2, 3]. Theoretical methods to
describe these reactions were created by Manolopoulos, Schatz, Clary, Launay,
Alexander and others and are reviewed in Refs. [2, 3]. Most of these methods are
based on the hyperspherical approach and are limited to at most a few potential
energy surfaces and neutral reactants and products.
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2 Driven Schrödinger approach to quantum scattering.

Naturally abundant reactions may also include charged reactants or prod-
ucts. Some such processes may be studied in the double electrostatic storage
ring DESIREE [4], which is currently being built at Stockholm university. The
mutual neutralization reaction H+ +H− → H∗2 → H(1) +H(n) [5], where n is
a principal quantum number, will be one of the first experiments in this ring.
The charge transfer reaction N3+ + H → NH3+ → N2+ + H+ [6] is another
candidate for early experiments. Another interesting experiment is the similar
three-body reaction H+

2 + H− → H∗3 → H2 + H. A theoretical-computational
study of this reaction can be performed using a method that can describe many-
channel, three-body scattering of charged particles in a full angular momentum
framework ( MCTSCPFAM ) which includes the features of Refs. [5, 6].

In a well quoted short paper Nuttal and Cohen [7] propose the use of the
driven Schrödinger equation combined with complex scaling [8] to compute quan-
tum cross sections for short range potentials. McCurdy, Rescigno and cowork-
ers [9] have recently explored this method [7] combined with exterior complex
scaling [8] (ECS) in several electron-atom (molecule) scattering studies.

The present study is focused on developing theoretical and computational
methods for MCTSCPFAM. The driven Schrödinger approach is discussed in
section 2. In the following section 3 we give an outline of a new proof showing
that the method of ref. [9], in the two-body case, can be rigorously generalized
to include a potential composed of a short range potential and a long range
Coulomb contribution. For a more complete discussion of this work we refer to
recent work of Volkov et al. [10]. We then outline how to generalize the method
[10] to a many channel, three-body problem in section 4.

2 The driven Schrödinger equation - an introduction

The idea in Ref. [7] was to consider the Schrödinger equation and split the wave
function into an incoming Ψin and a scattered Ψscat part, Ψ = Ψin+Ψscat. As the
incoming wave satisfies the free Schrödinger equation, we find

(H − E)Ψ = 0 ⇒ (H − E)Ψscat = −(H − E)Ψin = −V Ψin, (1)

where V is the potential energy. With given boundary conditions, including ECS
we can compute the scattered wave for an arbitrary energy E. Following Ref. [7]
one can use complex scaling to obtain zero boundary condition at infinity if the
potential there decreases exponentially or faster. McCurdy, Rescigno and cowork-
ers [9] realized, without presenting rigorous arguments, that this method could
be extended to long-range potentials. Scattering quantities like the amplitude
and the S-matrix can then be computed. Below we use atomic unit.

3 The two-body problem for Coulomb plus short-range potentials.

Let the reduced mass be one. The partial wave Ψ`(k, r) with angular momentum
` satisfies the radial Schrödinger equation (H` + V − k2)Ψ` = 0. Here, the ”free”
Hamiltonian is H` = −∂2

r + `(` + 1)/r2 and the interaction potential V (r) =
2q/r + Vs(r), where q is a charge. The short-range potential Vs is assumed to
vanish faster than 1/r2 at large r.
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The asymptotic form of the scattering solution is defined in terms of the
Coulomb wave functions [11]. Let η = q/k. The scattering amplitude A =
e2iσ`(e2iδ` − 1)/(2i), where σ` = argΓ (1 + ` + iη), is determined by the phase
shift δ`, which is due to the presence of the potential Vs.

In order to reformulate the problem in terms of a driven Schrödinger equation,
the potential V is split into a sum of an interior part, VR, and an exterior part,
V R, such that V = VR + V R. Here R is a parametrical radius chosen such that
V (r)� E for r ≥ R. The finite-range interior potential VR is introduced in such
a way that VR = V , if r ≤ R, and VR = 0 otherwise. The splitting of the wave
function Ψ` = ΨR + ΨR leads to the inhomogeneous equation

(H` + V − k2)ΨR = −VRΨR (2)

provided that ΨR obeys the Schrödinger scattering problem for the exterior po-
tential

(H` + V R − k2)ΨR = 0, (3)

with the corresponding amplitude AR. Eq. (3) defines ΨR. For r ≤ R the
potential V R vanishes (V R(r) = 0). Therefore, the function ΨR(k, r) must be
proportional to the Riccati-Bessel function ĵ`:

ΨR(k, r) = aRĵ`(kr). (4)

The function ΨR(k, r) for r > R can be expressed in terms of Jost solutions [11].
The requirement for the wave function and its derivative to obey the continuity
conditions at the point r = R completes the construction of ΨR. This construc-
tion provides a way to calculate aR and the amplitude AR, defined through the
relation AR = e2iσ`(e2iδR − 1)/(2i).

Once the wave function ΨR has been constructed, Eq. (2) is well defined. By
imposing the boundary conditions

ΨR(k, 0) = 0, ΨR(k, r) ∼ AR u+
` (η, kr), r →∞, (5)

where u+
` = e−iσ`(G` + iF`) is the sum of the regular and irregular Coulomb

wave functions, this equation determines the remainder of the scattering wave
function ΨR = Ψ` − ΨR. As we solve the boundary value problem (2,5) for ΨR
on the interval [0, R] only, the function ΨR is well-defined through (4). The
amplitude AR is given by AR = A − AR. The representation of the amplitude
AR in terms of the residual phase shift δR = δ` − δR has the standard form

AR = e2i(σ`+δ
R)(e2iδR − 1)/(2i). (6)

The boundary problem (5) becomes simpler when the radius R is chosen large
enough. If kR� `(`+ 1) + η2, then the asymptotic form of ΨR(k, r) reduces to

ΨR(k, r) ∼ AR ei(kr−`π/2−η log 2kr). (7)

For the phase shift δR, we find the asymptotic behavior δR ∼ η log 2kR−σ`. The
asymptotic form (7) can be used in order to calculate the amplitude AR in its
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4 Driven Schrödinger approach to quantum scattering.

local representation. Using the Green’s function formalism, we can also find its
integral representation

AR = −k−1

∫ R

0
dr′ ΨR(k, r′)V (r′)

[
ΨR(k, r′) + ΨR(k, r′)

]
. (8)

The success in solving the driven Schrödinger equation by ECS depends on
whether the driving term vanishes for complex values of the radial coordinates.
The driven Schrödinger equation formulation (2,5) perfectly meets this require-
ment since the potential on the right hand side is of finite range. Another useful
observation made from the representation (8) is that the scattering amplitude
AR is completely determined by that part of the solution ΨR, which is restricted
on the finite domain 0 ≤ r ≤ R. After the ECS transformation of the coordi-
nate, the boundary condition (5) becomes the zero boundary condition, and the
Schrödinger equation (2) can be easily solved.

Summarizing the description of our approach, we can say that the only pa-
rameter affecting the results is the radius R. It is important that the scattering
problem (1) is exactly reduced to the boundary value problem on the interval
[0, R] for an arbitrary finite value R [10]. For the numerical calculations, however,
we need to use the asymptotics of the wave function at the right boundary R.
This gives an error, those magnitude is defined by the accuracy of the asymp-
totics.

In order to find the solution, we first ECS-transform and solve Eq. (2) with
the zero boundary conditions and compute the function ΨR(k, r). Then we find
the amplitude AR using the local representation (7) or with the integral repre-
sentation (8). Using Eq. (6) with δR = η log 2kR − σ`, we calculate the phase
shift δR and finally reconstruct δ` with the relation δ` = δR + δR. The numerical
implementation of this approach has recently been shown to have both good
accuracy and high efficiency [10].

4 The driven Schrödinger approach to the three-body problem

Three possible arrangements for an atom-diatom can be distinguished and de-
noted α = a, b, c. Let the mass-scaled Jacobi coordinates Rα and rα be the disso-
ciative and diatomic coordinates respectively. The total wave function Ψ(Rα, rα)
of the system is given as the solution to the Schrödinger equation in one of the
three Jacobi coordinate systems

[
−∆Rα −∆rα +

∑

β

Vβ(rβ)− E
]
Ψ(Rα, rα) = 0, α = a, b, c. (9)

Here, Vβ(rβ) is the atom-atom interaction. The total wave function can be repre-
sented as the sum of the incoming wave and an unknown function Φ(Rα, rα). The
incoming wave describes the initial state of the system when the third particle
is far away from the diatom in the rovibrational state j

Ψ(Rα, rα) = Φ(Rα, rα) + ϕjα(rα)ei(q
j
α,Rα). (10)
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Here, the third particle momentum qjα is defined according to E = (qjα)2 − εjα,
where ϕjα(rα) and εjα are the wave function and the energy of the diatom rovi-
brational state, respectively. Substituting representation (10) into Schrödinger
equation (9), we get its inhomogeneous (driven) form
[
−∆Rα−∆rα +

∑

β

Vβ(rβ)−E
]
Φ(Rα, rα) = −ϕjα(rα)ei(q

j
α,Rα)

∑

β 6=α
Vβ(rβ). (11)

In order to find the solution to Eq. (11) the asymptotic boundary condition
should be taken into account. This condition for large hyperradius ρ =

√
R2
α + r2α

reads [12]

Φ(Rα, rα) ∼
∑

α=a,b,c

∑

j

[
Ajα(R̂α)ϕjα(rα)

eiq
j
αRα

Rα

]
+A0

α(r̂α, R̂α, φα)
ei
√
Eρ

ρ5/2
. (12)

The amplitudes Ajα, j > 0 describe the elastic and rearrangement processes
while A0

α is the breakup amplitude.
The asymptotic form (12) has different forms in different arrangements.

Therefore, its implementation into a practical numerical method for the solu-
tion of the three-body Schrödinger Eq. (11) is problematic. Hence, the use of
the idea of the previous section leads in the three body case to drastic simplifi-
cations. If we apply ECS to the coordinates rα, Rα with some exterior radius,
the scattered wave Φ(Rα, rα) (12) vanishes exponentially. For exponentially de-
creasing potentials, the r.h.s. of Eq. (11) also vanishes, while for long-range
potentials we need to use a technique similar to that outlined in the previous
section. We then arrive at the equation (11) with zero boundary conditions at
infinity, which can be solved with already developed methods.

Finally, we should extract the scattering amplitudes from the wave function
Φ(Rα, rα). The simplest way is to define the elastic and rearrangement ampli-
tudes from the asymptotic boundary conditions. To do so, we choose the exterior
radius large enough so that asymptotics (12) is already satisfied with sufficient
accuracy. For smaller distances Rα, the first terms in (12) dominate over the
breakup term. For a chosen Jacobi coordinate frame (i.e. rearrangement channel
α), we project the wave function Φ onto ϕjα(rα). As the overlap integral of ϕkα(rα)
with ϕkβ(rβ) for α 6= β is zero, other arrangement channels do not contribute. In
the same channel, the vibrational eigenfunctions are orthogonal implying

∫
drαϕkα(rα)Φ(Rα, rα) ∼ Akα(R̂α)

eiq
k
αRα

Rα
. (13)

This equation gives both the elastic and rearrangement amplitudes.
A numerical generalization of the present MCTSCPFAM theory could be

accomplished with the framework of our three-body finite element method [13]
(ECSFEMFAM).The three-body eigenvalue problem for the bound state wave
function Φ(Rα, rα) is there formulated in terms of Eq. (11) with r.h.s. put to
zero. The coordinate space is described by a set of rectangular finite elements.
The solution wave function to the eigenvalue is described as the expansion over
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6 Driven Schrödinger approach to quantum scattering.

the FEM basis function fi, Φ =
∑

i cifi, i.e. as an eigenvector c. In this code the
Hamiltonian H is expressed as finite element matrix elements Hij , and the finite
element overlap matrix is expressed as Sij . If the inhomogeneous term in the
r.h.s. of Schrödinger equation (11) is represented as a vector b, we can formulate
the eigenvalue problem, EP , and the driven Schrödinger equation scattering
problem, DP , as

EP : Hc = ESc DP : (H− ES)c = b (14)

Starting with the ECSFEMFAM code we need to add the b term to compute
the scattering wave function in terms of c. The amplitudes are then obtained
from a numerical realization of Eq. (13).

5 Summary

We have here outlined the use of the driven Schrödinger equation combined with
exterior complex scaling in order to treat quantum scattering of few particles. A
rigorous formulation for two-body scattering is reported, and its generalization
to three-body scattering is considered. Finally, we indicate how the theory may
be realized numerically based on an existing finite element parallel coded which
is suitable for several potential energy surfaces.
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5. Stenrup M., Larson Å. and Elander N., Phys. Rev A. 79 (2009) 012713.

6. Shilyaeva K., Yarevsky E. and Elander N., J. Phys. B: At. Mol. Opt. Phys. 42,
(2009) 044011.

7. Nuttal J. and Cohen H. L., Phys. Rev. 188 (1969) 1542.

8. Hislop P.D. and Sigal I.M., Introd. Spectral Theory, Springer, New York, (1996).

9. Rescigno T. N., Baertschy M., Byrum D. and McCurdy C. W., Phys. Rev. A 55
(1997) 4253 .

10. Volkov M. V., Elander N., Yarevsky E. and Yakovlev S. L., EPL 85, (2009) 30001.

11. Newton R.G. Scattering Theory of Waves and Particles, Springer-Verlag, New-York,
1982.

12. Faddeev L.D. and Merkuriev S.P. Quantum Scattering Theory of Several Particle
Systems, Kluwer Acad Publ., Dordrect, 1993.

13. Alferova T., Andersson S., Elander N., Levin S. and Yarevsky E., Few Body Systems
31(2002) 177 .

131



Few-Body Systems 0, 1–5 (2009) Few-
Body

Systems
c© by Springer-Verlag 2009

Printed in Austria

A Quantum Version of Wigner’s Transition

State Theory∗

R. Schubert1∗∗, H. Waalkens1,2∗∗∗, S. Wiggins1†,

1 School of Mathematics, University Walk, University of Bristol, Bristol BS8 1TW, United
Kingdom

2 Department of Mathematics, University of Groningen, Nijenborgh 9, 9747 AG Groningen,
The Netherlands

Abstract. A quantum version of a recent realization of Wigner’s transition
state theory in phase space is presented. The theory developed builds on a
quantum normal form which locally decouples the quantum dynamics near the
transition state to any desired order in ~. This leads to an explicit algorithm
to compute cumulative quantum reaction rates and the associated Gamov-
Siegert resonances with high accuracy. This algorithm is very efficient since,
as opposed to other approaches, it requires no quantum time propagation.

1 Introduction

High resolution spectroscopic techniques allow one to study chemical reaction
processes in unprecedented detail (see, e.g., the review paper [1]). A reaction
can often be viewed as a transition across a saddle point of the potential energy
surface which describes the interaction between the constituent atoms. In the
30’s Eyring, Polanyi and Wigner developed transition state theory (TST) which
is a computationally efficient way to compute classical reaction rates without
integrating trajectories. The main idea is to define a dividing surface that parti-
tions the energy surface into a reactant and a product component and compute
the rate from the directional phase space flux through this surface. In order not
to overestimate the rate the dividing surface must not be recrossed by reactive
trajectories. For two degrees of freedom such a dividing surface was constructed
from a periodic orbit in the 70’s by Pechukas, Pollak and others [2, 3]. In higher
dimensions it has recently been shown that a dividing surface free of local re-
crossings is spanned by a normally hyperbolic invariant manifold (NHIM) [4].
∗Article based on the presentation by H. Waalkens at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received December 1st, 2008; Accepted January 8, 2009.
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2 A Quantum Version of Wigner’s Transition State Theory

The NHIM and the dividing surface can be explicitly constructed from an algo-
rithm which computes the (classical) normal form of the system near the saddle
and leads to a local nonlinear decoupling of the classical dynamics [5].

Much effort has been devoted to developing a quantum TST which inherits
the computational benefits of classical TST. The mere existence of such a theory
is discussed controversially in the literature. For example, in [6] Miller states that
“... there is no uniquely well defined quantum version of TST in the sense that
there is in classical mechanics. This is because tunneling along the reaction coor-
dinate necessarily requires one to solve the (quantum) dynamics for some finite
region about the TS dividing surface, and if one does this quantum mechani-
cally there is no theory’ left, i.e., one has a full dimensional quantum dynamics
treatment that is ipso facto exact, a quantum simulation.” In this short note we
present a quantum TST based on a quantum version of the normal form pro-
cedure which, classically, yields the realization of TST. Similar to the classical
case this quantum normal form (QNF) leads to a local decoupling of the quan-
tum dynamics to any desired order in ~ in terms of elementary operators with
well known spectral properties. This supersedes a full quantum simulation. In
this approach the cumulative reaction probability can be viewed as the quantum
mechanical flux through a (classically recrossing free) dividing surface which in-
herently includes tunneling. In this sense, our approach completely sidesteps the
issues and concerns expressed by Miller. The QNF computation can be imple-
mented as an explicit algorithm which leads to an efficient procedure to compute
cumulative reaction rates and the corresponding Gamov-Siegert resonances [7].
For the technical details of this note we refer to [8, 9], which also includes the
historical background for the development of the QNF theory.

2 The Quantum Normal Form

The key idea of our approach is to find a unitary transformation which simpli-
fies the Hamilton operator near the saddle point of the corresponding classical
dynamics (for the precise meaning of ‘near’ and the classical-quantum corre-
spondence see [8, 9]). More precisely, suppose that the classical system has an
equilibrium point of saddle-center-· · · -center stability type (‘saddle’ for short),
i.e. the matrix in the associated linearized classical Hamilton equations of motion
has one pair of real eigenvalues ±λ associated with the saddle or ‘reaction coor-
dinate’ and f − 1 pairs of imaginary eigenvalues ±iωk, k = 2, . . . , f , associated
with the center or ‘bath’ degrees of freedom. Suppose furthermore that the ωk are
rationally independent. Then for each N ≥ 2, there is a unitary transformation
UN such that

U?NĤUN = H
(N)
QNF(Î , Ĵ2, . . . , Ĵf ) + R̂(N+1) , (1)

where H(N)
QNF is a polynomial of order [N/2] in the elementary operators

Î =
~
i

(
q1

d
dq1

+
1
2

)
, Ĵk = −~2

2
d2

dq2k
+

1
2
q2k (k = 2, . . . , f) . (2)

133



R. Schubert et al. 3

We call H(N)
QNF(Î , Ĵ2, . . . , Ĵf ) the QNF of order N . The properties of the reaction

operator Î (which is unitarily equivalent to the inverted harmonic oscillator, see
[9]) and the harmonic bath operators Ĵk are explicitly known. Since they also
commute we can solve the quantum problem described by H

(N)
QNF(Î , Ĵ2, . . . , Ĵf )

analytically. The remainder R̂(N+1) is an operator which is small near the saddle
in a semiclassical sense, see [9]. Similar to the classical normal form the QNF and
UN can be computed order by order using the explicit algorithm developed in
[8, 9]. We note that if we give up the rational independence of the ωk, k = 2, . . . , f ,
one can find a unitary transformation which brings the original Hamiltonian into
a quantum version of the classical normal form reported in [10]. However, similar
to the classical case, the quantum problem can in general not be solved explicitly
if the ωk are rationally dependent.

3 Cumulative Reaction Probabilities and Quantum Resonances

The eigenfunctions of H(N)
QNF(Î , Ĵ2, . . . , Ĵf ) are products the harmonic oscillator

wave functions for the operators Ĵk, k = 2, . . . , f , and eigenstates of the operator
Î which can be chosen to be pairs of incoming or outgoing scattering wavefunc-
tions associated with reactants and products [9]. Relating the pairs of incoming
and outgoing states leads to a ‘local’ S-matrix which has a simple block structure
with the 2×2 matrices

Sn(E) =
ei(π

4
− I~ ln ~)

√
2π

Γ

(
1
2
− i

I

~

)(
−ie−

π
2
I
~ e

π
2
I
~

e
π
2
I
~ −ie−

π
2
I
~

)
(3)

along the diagonal. Here n denotes the vector (n2, . . . , nf ) of quantum numbers
of the modes in the center directions, and I(E) is implicitly defined by

H
(N)
QNF

(
I, ~(n2 + 1/2), . . . , ~(nf + 1/2)

)
= E . (4)

This matrix incorporates the effects of tunneling for energies close to the saddle-
energy.

Interestingly, the local S-matrix contains the full information required to com-
pute the cumulative reaction probability N(E) and Gamov-Siegert resonances.
In fact, N(E) is given as the sum over the individual transmission probabilities
of all modes n, i.e.

N(E) =
∑

n

Tn(E) , where Tn(E) = |Sn 12(E)|2 = (1 + e−2π I~ )−1 . (5)

Moreover, the poles of Sn(E) at I = −i~(n1 + 1/2), n1 ∈ N0, give the complex
energies of the resonances via (4).

4 Examples

In Fig. 1 we compare the cumulative reaction probability and Gamov Siegert
resonances computed from the QNF to the corresponding exact results for134
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Figure 1. (a) The top panel shows N(E) (oscillatory curve) and the classical flux [11] divided

by (2π~)2 (smooth curve) for the Eckart-Morse-Morse potential defined in the text with ε = 0.

The integers (n2, n3) mark the energies at which the corresponding Morse oscillator modes

contribute a quantization step to N(E). The bottom panel shows the resonances in the complex

energy plane marked by circles for the uncoupled case ε = 0 and by crosses for the strongly

coupled case ε = 0.3. (b) Errors for the cumulative reaction probability in (a) for different

orders of the QNF. (c) Errors for a selection of resonances (n1, n2, n3) computed from the QNF

for ε = 0.3. (The parameters are A = B/10 = 0.5, De;1 = 1, De;2 = 1.5, m = 1, and ~ = 0.1.)

a 3-degree-of-freedom system consisting of an Eckart potential VEckart(x) =
A exp(x + x0)/

(
1 + exp(x + x0)

)
+ B exp(x + x0)/

(
1 + exp(x + x0)

)2 with
x0 = ln(B + A)/(B − A) (B > A ≥ 0) in one degree of freedom, and two
Morse oscillators VMorse;k(xk) = De;k

(
exp(−2xk)− 2 exp(−xk)

)
, k = 2, 3, in the

other degrees of freedom, plus the kinetic coupling ε(p1p2 + p1p3 + p2p3).
In the uncoupled case, ε = 0, N(E) increases as a function of E at inte-

ger steps each time a new transition channel opens, i.e., when the transmission
probability T(n2,n3)(E) of a mode (n2, n3) of the two Morse oscillators switches
from 0 to 1. For both the uncoupled and strongly coupled case the resonances
form a distorted lattice parametrized by the mode quantum numbers (n2, n3)
in horizontal direction and the quantum number n1 in vertical direction. Each
string of constant (n2, n3) is related to one step of N(E). The agreement of the
QNF results with the exact results is excellent and this remains the case even
for the strongly coupled system.

5 Conclusions

We presented a quantum version of TST which is fully in the spirit of classical
TST in the sense that it requires no quantum simulation although it gives a135
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full account of the tunneling near the transition state. Our approach is based
on a quantum normal form which leads to a local decoupling of the quantum
dynamics. The quantum normal form can be cast into an explicit algorithm which
leads an efficient way to compute cumulative reaction probabilities and Gamov
Siegert resonances for multi-degree-of-freedom systems, for which other methods
are no longer feasible.
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Abstract. For two particles it is often convenient to replace local or non-local
potentials by zero-range interactions. Since they are zero-range, these inter-
actions can often be replaced by boundary conditions at a point where the
separation between two particles vanishes. In either case, zero-range poten-
tials are useful when the details of the interaction at small distances are not
critical for the dynamics. The description of Bose condensates is an example
where zero-range interactions are basic to theories of the condensed aggre-
gates. These theories employ the model interactions to obtain a mean field
description of large numbers of particles. On a more fundamental level, zero-
range interactions are employed to model the interactions of three particles,
where they have been used to study the properties of loosely-bound Efimov
states. Owning to their success in these areas they have been generalized to
allow for multichannel interactions, interactions for states with non-zero an-
gular momentum and energy dependent zero-range potentials. Properties of
these generalized potentials and their applications will be illustrated for the
interaction of three particles at vanishingly small kinetic energy.

The interactions of many particles near the threshold where all particles are
free is a topical subject owing to the ongoing investigations of dilute cold gasses
of Bosons and Fermions. In the theory of such systems, a single, low energy, two-
body parameter, namely the s-wave scattering length a, plays a central role. This
role is incorporated into many-body theories by defining pseudo-potentials [1],
here called zero-range potentials, according to

V (r)ψ = 2π
(`+ 1)[(2`− 1)!!]

[(2`)!!]
a2`+1

`

δ3(r)
r`

∂2`+1

∂r2`+1
r`+1 (1)

where the potential has been written for arbitrary `. The potential is strictly zero-
range only for ` = 0 since then quantities such as overlap integrals are defined.
∗Article based on the presentation by J.H. Macek at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received December 5, 2008; Accepted December 20, 2008137



2 Multiparticle interactions of zero-range potentials

For ` > 0 one must introduce additional conditions since, e.g. the matrix elements
〈ψi|ψj〉 where i and j refer to different energy eigenstates, are not defined. Such
potentials are still useful [6], but one must take the zero-range limit explicitly.
For that reason, and because it is the most import case, only ` = 0 is considered
here.

The zero-range potentials have been generalized in two other ways, namely,
energy dependent scattering lengths have been considered [1–4] and multichan-
nel versions have been employed [5]. The multichannel potentials are used to
incorporate the effect of Feshbach resonances, i.e. quasi-bound states in closed
channels. The multichannel generalization is well-founded for this purpose. Its
main drawback is the multiplicity of channels that are needed. Even for one of
the simplest non-trivial problems of three boson there are 2 states per boson thus
possible 23 = 8 channels for three particles. Symmetry considerations can often
reduce this number but the large number of channels is a distinct disadvantage
relative to a simple one-channel model.

To avoid the multiplicity of channels, but still incorporate some of the physics
of closed channels, one can introduce energy-dependent scattering lengths [2–4].
For example, by setting

k cot δ = 2(Er − E)/γ (2)

where Er is a resonance energy and kγ = Γ is the Wigner form for the resonance
width, one obtains an energy dependent scattering length a(E) = γ/(2(E−Er)).
There is, however, a fundamental difficultly with energy-dependent potentials,
namely, two-body energy eigenstates including continuum eigenstates are not
orthogonal. If the pseudo-potential varies linearly with E so that V (r) = V0(r)+
V1(r)E then one can redefine the inner product so that in coordinate space the
states are orthogonal relative to the weight function w(r) = 1 − V1(r) and the
othogonality relation becomes

〈i|j〉 =
∫
ψ1(r)ψj(r)w(r)d3r (3)

With this definition one can employ standard techniques to use the energy-
dependent pseudo-potentials for many-body interactions. In particular, scatter-
ing matrix elements Sij are well-defined since the two-body channel eigenstates
i and j are well defined.

Unfortunately, the linear dependence on E is too restrictive for many appli-
cations of physical interest. For example, the resonance expression of Eq. (2) has
a pseudo-potential with a pole at E = Er so that two-body eigenstates are not
orthogonal. This complicates the use of these potentials to model physical prob-
lems, however, one can still use them as approximations to more firmly based
interactions. One can hope to get some qualitative insights even though the un-
derlying theory is not well-founded. In this brief report I will compare results
for three-body interactions obtained using energy-dependent models with those
obtained using multichannel, but energy-independent, pseudo-potentials.

The many-body theory used here is the hyperspherical close-coupling rep-
resentation which is based upon what are now called adiabatic hyperspherical138
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Figure 1. Plot of adiabatic energy

curves U(ρ) vs. the hyper-radius ρ for

the multichannel ZRP model. Data

taken from Ref. [5]

.

basis functions [7]. This theory is well adapted to the computation of threshold
phenomena, such as three-body recombination, weakly bound states and other
processes near thresholds. For example, the effect of Feshbach resonances on
three-body processes is a topic of current interest since the constant term on the
right hand side of Eq. (2), namely, Er/2γ is just −1/a. Because Er in atom-atom
scattering can be varied by applying external fields, the scattering length can be
adjusted across a range of values near the threshold for three-body recombination
while with the multichannel ZRP this is done by adjusting energy-independent
two-body interactions. With the energy-dependent potentials this is done by
adjusting constants in the two-body energy dependent scattering length. The
multichannel ZRP approach with hyperspherical coordinates was pioneered by
Oleg Kartestev [5] who computed the hyperspherical potential energy curves for
three bosons using a model interaction which employed a pseudospin formalism
to enumerate the two-body channels. Each atom A had two states A and A∗

and the Feshbach resonance correlates with the A∗∗2 dimer. The adiabatic en-
ergy curves U(ρ), where ρ is the hyper-radius, are shown in Fig. (1). In these
graphs, the label U refers to ν2/ρ2, whereas the adiabatic potentials are actually
Veff(ρ) = (n2 − 1/4)/(2ρ2). The curves that correlate to negative values of U for
large ρ are channels with bound dimers, either A2 or A∗2, while channels that
correlate to positive U for large ρ are channels corresponding to three particle
breakup A+A+A. The section labeled A∗∗2 +A corresponds to a section of the
energy curves corresponding to the Feshbach resonance at U = 2Er.

To compare this multichannel curves with similar curves computed using
the energy-dependent two-channel model with Eq. (2) for the energy-dependent
effective range, first plot the generalized angular momentum term n2/ρ2 for n =
2, 6, 8 . . . as in Fig. 2. They correspond to the pure hyperspherical free-particle
channels A + A + A. The dotted curve corresponding to the constant Feshbach
energy 2Er is shown as a dashed line which crosses all of the free-particle energy
curves. When Eq. (2) is used for the energy-dependent scattering length with
the two-body energy k2/2 replaced by the “local” two-body energy ν2/(2ρ2) one
gets nearly identical potential curves except that the real crossings between the
A∗∗2 + A curve and the A + A + A curves become avoided crossings and the139
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Figure 2. (a) Solid lines- generalized angular momentum barrier in hyper-radial coordinates,

dashed line-Constant value of the parameter 2Er. (b) Adiabatic potential curves using the

energy dependent effective range of Eq. (1) with a Feshbach resonance at Er.

resonance curve turns down near ρ = 0 and goes to ≈ −1/ρ2 near ρ = 0.
Comparison of Fig. 1 and Fig. 2 shows qualitative agreement between approx-

imate results and exact results for the energy curves of the breakup channels.
The dimer channels are missing in the approximate calculation, as expected. It
is non-the-less apparent that much of the dynamics in the A+A+A three-body
channels are well-represented in Fig. 2b over most of the range of ρ.

There is, however, one important discrepancy with the multichannel ZRP
curves, namely, the behavior of the resonance curve near ρ = 0 is significantly
different. All multichannel curves becomes positively infinite, while the lowest
approximate curve becomes negatively infinite. This means that the approximate
result could have positive energy resonances while the full multichannel results do
not. This could mean that spurious structure may appear in the recombination
cross section near threshold.

In addition to spurious or incorrectly located resonances, the non-
orthogonality of the two-body channels implies that their non-adiabatic coupling
does not vanish for large values of ρ, although the effect of this, possibly spurious,
coupling remains to be investigated.

In summary, qualitative understanding of many body dynamics can be ob-
tained using energy-dependent pseudo-potentials, however, they can also give
spurious effects owing to non-orthogonality and incorrect behavior for small ρ.
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Abstract. A large two-body scattering length leads to universal behavior in
few-body systems. In particular, the three-body system displays interesting
features such as exact discrete scale invariance in the bound state spectrum
in the limit of infinite scattering length. Here, I will discuss how an effective
field theory (EFT) can be used to study these features and how the finite
range of the underlying interaction impacts the bound state spectrum at first
order in the EFT expansion.

1 Introduction

Few-body systems with a large two-body scattering length a display interest-
ing universal features. In the two-body system a large positive two-body scat-
tering length will lead to a bound state with binding energy proportional to
1/(Ma2) (where M denotes the mass). Vitaly Efimov showed that the situation
in the three-body system is more complicated. For example, for infinite scat-
tering length the binding energies of different states labeled with n and n∗ are
related by

B
(n)
3 = (e−2π/s0)n−n∗B(n∗)

3 , (1)

where s0 ≈ 1.00624. The geometric spectrum is a signature of discrete scaling
symmetry with scaling factor e−2π/s0 . Efimov pointed out furthermore that these
results are also relevant for finite scattering length a as long as a � l, where l
denotes the range of the underlying interaction [1, 2].

Over the last years an effective field theory (EFT) has been developed which
is tailored to calculate the low-energy properties of few-body systems with a
large two-body scattering length [3]. This short-range EFT is the appropriate
description of ultracold atoms close to a Feshbach resonance and nucleons at
very low energies. At leading order, the short-range EFT provides a powerful

∗Article based on the presentation by L. Platter at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received December 30, 2008; Accepted January 8, 2009.141
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Figure 1. Left panel: The correlation between the triton charge radius and binding energy. The

solid and dashed lines denote the leading-order result using different two-body input parameters

The circles and triangles indicate Faddeev calculations using different internucleon potentials.

The square indicates the experimental values. Right panel: The a−1−K plane for the four-body

and three-body problems. The circles and triangles indicate the four-body ground and excited

state energies, respectively , while the lower (upper) solid lines give the thresholds for decay

into a ground state (excited state) trimer and a particle. The dash-dotted (dashed) lines give

the thresholds for decay into two dimers (a dimer and two particles). The vertical dotted line

indicates infinite scattering length. All quantities are given in units of a three-body parameter

L3

framework to calculate observables in the zero-range limit and reproduces there-
fore the results derived by Efimov for the three-body sector exactly. It allows
furthermore to calculate the effects of the finite range of the underlying inter-
action systematically and to compute electroweak reactions relevant to nuclear
astrophysics.

2 One-Parameter Correlations and Universality

A particular feature of the short-range EFT is the appearance of a three-body
force at leading order. Once this three-body counterterm is adjusted such that
a known three-body datum is reproduced all remaining observables can be pre-
dicted. Three-body observables will therefore depend not only on the scattering
length a but also on one additional three-body parameter.

The necessity of this counterterm is more than just an artefact of the field-
theoretic formulation of the problem but is instead strongly tied to the afore-
mentioned discrete scale invariance in the three-body system. Its appearance at
leading order implies furthermore that two types of one-parameter correlations
can be generated within this framework. Either the three-body counterterm is
kept constant while the two-body scattering length is varied or a is kept constant
while the three-body counterterm is varied.

One example for each of these types of one-parameter correlations is shown
in Fig. 1. The correlation between the charge radius of the triton and its binding
energy is shown in the left panel of Fig. 1. The two different solid lines correspond142
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to two different choices of fixing the two-body counterterms, the circles and tri-
angles denote Faddeev calculations with different potentials, the square denotes
the experimental value. The difference between the experimental result and the
short-range EFT result is due to the importance of finite range corrections.

The right panel shows an Efimov plot which includes results for the four-body
system obtained with the short-range EFT. The circles and triangles denote the
binding momentum of two different four-body bound states which lie between two
successive three-body states. The lower solid line denotes the shallower of these
two three-bound states. The upper solid line denotes the next three-body state
in the Efimov spectrum. The dashed and dot-dashed lines denote the thresholds
for decay into atom plus dimer and two dimers, respectively.

3 Finite Range Corrections

A systematic calculation of higher order corrections is required for an appropriate
description of observables if the range of the underlying interaction leads to a
sizeable expansion parameter. This is the case in nuclear physics where the ratio
of effective range over scattering length is roughly ∼ 1/3.

Higher order corrections in the EFT expansion have been studied extensively
over the last years [6, 7, 8], however, analytical information on the form of these
range corrections is very limited. In [9] we used the fact that the wave functions of
the Efimov trimers are known in the unitary limit. This allowed us to calculate
the shift in the binding energies linear in the effective range in perturbation
theory. It is therefore necessary to calculate first the perturbing hyperspherical
potential [10, 11, 9]

VNLO = −s
2
0ξ0rs
R3

, (2)

which is done by implementing a next-to-leading order Bethe-Peierls condition
into the hyperangular equation. The shift in the binding energy of the nth bound
state can then be found by calculating the integral

2M
~2

∆B(1)
n = s20rsξ0

[∫ ∞
1
Λ

dRfn
2(R)

1
R3

− 2H1M

~2s20 rs ξ0
Λ2fn

2

(
1
Λ

)]
, (3)

where fn(R) is the leading-order wave function of the nth three-body bound
state. The second term on the right hand side arises from a three-body force

V
(1)
SR (R) = H1(Λ)Λ2δ

(
R− 1

Λ

)
(4)

which has been included to regularize the divergent first term. The expression
is renormalized by demanding that the shift in the binding energy of the state
with index n∗ is 0. It turns out that this condition leads to the surprising result
that the complete three-body spectrum remains unperturbed, i.e.

∆B(1)
n = 0 , (5)

for all n. This result which was also found numerically by Thøgersen et al. [12]
shows that the discrete scaling symmetry in the three-body system constrains
the form of higher order corrections strongly.143
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4 Summary

Effective field theories can be applied to any system in which a separation of
scales is present. They are not only perfectly suited to calculate observables in a
systematic low-energy expansion, but also provide a reliable error estimate and a
well-defined domain of applicability. An EFT appropriate for short-range inter-
actions has been applied to a large variety of physical systems. I discussed how
this short-range EFT can be used to study universal relations in the three-body
sector and how range corrections affect the three-body bound state spectrum.

It is a surprising result that the Efimov spectrum in the unitary limit remains
unchanged at next-to-leading order. It will be interesting to see how a finite range
effects the universal relations between different three-body observables such as
the relation between the minima in the three-body recombination rate and the
binding energy of Efimov trimers in the unitary limit. It might furthermore be
possible to obtain analytic results at next-to-next-to-leading order in the unitary
limit.

The consistent inclusion of finite range corrections is required for future cal-
culations of electroweak reactions in few-body systems relevant to nuclear as-
trophysics and will also be useful in applications of the short-range EFT to
Halo-nuclei [13] or α-clusters [14].
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Abstract. By considering nuclear and ultracold trapped atomic systems,
we review the trajectory of Efimov excited states in the complex plane by
changing the two-body scattering lengths and one three-body scale.

Large three-body systems in the maximally symmetric state with the interaction
range much smaller than the two-body subsystem scattering lengths have their
low-energy observables depending on few physical scales. These scales are the
subsystem scattering lengths (or the corresponding two-body energies) and one
three-body scale that can be identified with the three-body bound state energy
(see ref. [1]). In particular, the ratio between the energy of two consecutive
Efimov bound states, N and N + 1, for the ααβ three-body system, for a zero-
range potential, can be written as a scaling function:

E
(N+1)
3

E
(N)
3

= F


 καα√
|E(N)

3 |
,

καβ√
|E(N)

3 |)


 ≡ FN , (1)

where καα and καβ are, respectively, the inverse of the subsystems scattering
lengths aαα and aαβ. If α is a fermion, its momentum space wave function should
have a symmetric component, otherwise the Efimov phenomena with s−wave
potentials is absent. As N → ∞, a limit cycle (see ref. [1]) is reached for the
scaling function (1). However, in practice, the scaling function is already close
to its limiting value even for a small N .

The FN , given by Eq. (1), can also be identified with the threshold condition,
ξthresh ≡ FN , for the existence of a bound Efimov state (N+1). For a Borromean
system, i.e., aαβ < 0 and aαα < 0, ξthresh = 0, while for the other three pos-
sibilities given by at least one scattering length larger than zero, the threshold
is set by the smallest two-body binding energy. The solutions of ξthresh ≡ FN
∗Article based on the presentation by T. Frederico at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received December 2, 2008; Accepted December 12, 2008
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define the border of a bi-dimensional map, with axis given by καα/
√
|E(N)

3 | and

καβ/

√
|E(N)

3 |. A system lying inside such boundary presents at least one excited
state (N + 1) (see ref. [1]) as shown in Fig. 1 for α = n and β = c. The ex-
act Efimov limit is given by the point (0, 0). In this parametric space, crossing
the critical curve, two possibilities occur for the trajectory of an Efimov excited
state in the complex energy plane: i) For the Borromean case the excited state
turns into a continuum resonance (see ref. [1]); and, ii) in the case that at least
one subsystem is bound the excited state becomes a virtual one. In the nuclear
context, the two-neutron halo nucleus system n− n−18C, with a s−wave short-
range interaction between the pairs, has an Efimov excited state that moves
when the 19C binding is changed [2]. Indeed, this system presents a virtual state
that turns into an excited state when the 19C binding is decreased [4]. Close to
this condition, the s−wave n−19C effective range expansion has a pole, which is
sensitive to the position of the excited bound or virtual state. In the Borromean
case, only the three-body cut is present in the T-matrix in the complex energy
plane (upper right panel of Fig. 1). In the case of a ααα system, by decreasing

the dimensionless quantity |καα|/
√
|E(N)

3 |, one continuum three-body resonance
hits the critical border and turns into a (N + 1) bound Efimov state. In the
case when at least one subsystem is bound there are two branch points (lower

right panel). Again, by decreasing the dimensionless quantities |καα|/
√
|E(N)

3 |
one virtual state cross the boundary and turns into a (N + 1) bound Efimov
state. These qualitative features are independent of mass ratios.

Figure 1. Critical boundary for a neutron-neutron-core (n− n− c) system (left frame), where

Knn and Knc correspond, respectively, to two-body bound (virtual) state energies for positive

(negative) values. In the right frame, we have the analytic cut structures of the scattering am-

plitude in the complex energy plane. The Efimov-state trajectories are shown, for a Borromean

system, in the upper-right frame, with the state moving from a continuum resonance to a bound

system; and, when at least one subsystem is bound, moving from a virtual to a bound system.

The effect of a finite range force changes the boundary according to the ex-
pansion parameter r0/a (r0 effective range parameter). For a three-boson system,
it was found that the critical boundary enlarges for a > 0, while it shrinks for146
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a < 0 [5]. The qualitative understanding of that can be seen by approximating
the two-body scattering amplitude near the two-body pole as:

f(k) = (−a−1 +
1
2
r0k

2 − ik)−1 ≈
(

1± r0
2
|E2|

1
2

)(
∓|E2|

1
2 − ik

)−1
, (2)

where in the numerator + and − refers to a > 0 and a < 0, respectively. There-
fore, for a > 0 the scattering amplitude increases providing more attraction
implying in smaller values of a that still can hold an excited Efimov state, while
for a < 0 the effect is opposite, qualitatively consistent with [5]. One expects
that the region delimited by the critical boundary of Fig. 1, with all bound sub-
systems is somewhat enlarged, while for the Borromean case it shrinks. In the
two other quadrants, i.e., for tango and samba configurations there will be a
competition between the two effects, that may enlarge or shrink the region for
an excited Efimov state.

Figure 2. Scaling plots relating the three-boson excited-state energy B∗3 with
p
B2/B3 (left

frame); and with
p
B3/B2 (right frame), where B2 is the dimer binding energy and B3 is

the ground-state energy. The solid lines represent the zero range model. In the left frame,

the symbols correspond to results from realistic models for 4He3 (see details in ref.[3]). The

data with bars were extracted from the three-body recombination values for trapped ultracold

caesium atoms [6].

Experimental evidence of the trajectory in the complex energy plane of an
Efimov state in the Borromean case was recently obtained with trapped ultra-
cold caesium gas near a Feshbach resonance [7] from the measured three-body
recombination rate. The excited Efimov state moves to a three-boson contin-
uum resonance when the value of |a| decreases [8], and near the crossing point
decreasing further |a| the energy and width of the resonance increases. Such be-
havior was also indirectly observed. The existence of a three-boson continuum
resonance was evidenced by a peak in the recombination rate, that moves toward
smaller values of |a| with the increase of temperature. That effect is understood147
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as an increase of the average kinetic energy that puts the resonance effect at
larger values of the energy with a corresponding decrease in the value of |a| [9].

For a > 0, an Efimov state moves by changing a according to the universal
scaling plot [3], as shown in Fig. 2. The support of that curve delimits the region
where one Efimov state above another exists. Some indirect evidence for the
scaling plot can be extracted from the three-body recombination rate measured
for caesium atoms [7]. The recombination rate to an atom plus a shallow dimer
state is an universal function of the shallowest trimer energy [10]. Therefore,
knowing the experimental values of the recombination rate and scattering length,
one can obtain from the theoretical curve of the recombination rate the binding
energy of the shallowest trimer. The binding energy of the caesium trimer below
the shallowest one, needed in the plot of Fig. 2 is B3 = 1.31mK [9]. This value
comes from the position of the peak of the recombination rate at negative value
of a for the lowest possible temperature. In this way, we extract the data points
shown in Fig. 2. Of course, this comparison can only be viewed as indicative.
In the right panel of the figure, the Efimov state cross the critical point in
a much smaller value than the theoretical one. The discrepancy can be due
to several reasons. Let us mention, for example, that we have not considered
range effects, absorption to deep dimer channels, and possible changes of in
B3 as one varies the two-body scattering length. A measurement of the atom-
dimer relaxation at nanokelvin temperatures also indicates that the value of
the scattering length, for which the Efimov state crosses the threshold, differs
from the universality prediction [11]. Therefore, experimental verification of the
trajectory of an Efimov state is still a challenge to be pursued and understood.
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Abstract. The properties of two-component fermionic quantum systems in
two dimensions, such as they nowadays may be realized with cold atoms in
traps, are studied within the pairing model adapted from nuclear physics. We
compare the results with those of a full numerical diagonalization of the many-
body Hamiltonian. The chemical potential differences, excitation energies and
angular momentum spectra show that when the zero-range attractive inter-
action is varied in strength, strong odd-even effects, gaps and shell structure
emerge.

1 Introduction

In optical lattices, atom-trapping potentials may be designed with a high degree
of precision (see for example [1, 2] and references therein). This allows one to
examine a variety of quantum effects for many physical systems which are of-
ten close to the immaculate systems usually assumed by theory. In addition to
comparisons with condensed matter systems, trapped atoms in optical lattices
have connections in nuclear and high energy physics [3, 4, 5, 6]. If the depth of a
sinusoidal lattice is large enough, an individual lattice site resembles an isolated
harmonic trap. When loading the lattice with fermionic (or bosonic) atoms, the
energy levels at the single sites are filled according to statistics and temperature.
The interactions between the cold atoms are tunable in strength, and can even
be changed from attractive to repulsive. In the case of attractive fermions, the
single trap at a lattice site may share some of its characteristics with nuclei, such
as shell structure, and pairing [7, 8, 9]. In two dimensions, for repulsive interac-
tions the occurrence of shell structure is in fact very similar to that of quantum
∗Article based on the presentation by S. Reimann at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received December 1st, 2009; Accepted January 8, 2009.149
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dots [10]. The discrete transport of electrons through a quantum dot manifests it-
self in oscillations of the conductance, the so-called “Coulomb blockade” [11, 12].
For different types of interactions other than the Coulomb repulsion between the
electrons in a quantum dot, such as the short-ranged interactions between the
fermionic atoms, one may analogously observe an “interaction blockade” when
an atom is added or removed from the system [13]. For double wells in optical
lattices, this was recently reported by Cheinet et al. [14, 15].

In these proceedings, we explore the question how far the pairing model
adapted from nuclear physics can describe the ground and excited states of two-
dimensional few-fermion systems with attractive short-range interactions.

The Hamiltonian of N fermions confined harmonically in a two-dimensional
(2D) trap and interacting through an attractive contact interaction is

H =
N∑

i

(
− ~2

2m
∇2

i +
1
2
mω2

0r
2
i

)
+

1
2
g′
∑

i 6=j

δ(2)(ri − rj), (1)

where the coupling constant g′ has units of energy times area. The dimensionless
coupling constant, g, is the ratio of the coupling strength to the characteristic
energy and length scale of the system g = g′/(~ω0`

2), where the trap length is
` = (~/mω0)1/2. We solve equation (1) using the pairing model adapted from
nuclear physics [16, 17]. In this model, the sum in the second term in Eq. (1) is
restricted to summing over time-reversed orbits (the pairs). We use the seniority
scheme, where seniority is the number of unpaired particles. Unpaired particles
participate beyond the mean field only by blocking certain final states. The
unpaired particles also completely determine the possible angular momenta of
a given configuration. Compared to the full diagonalization, this model reduces
the numerical effort of the calculations significantly, and thus could be used to
reach much higher particle numbers. However, for the sake of comparison, Eq.
(1) was solved also by the full configuration interaction method [24]. The contact
interaction in Eq. (1) is rather disagreeable when one attempts to diagonalize a
Hamiltonian in more than one spatial dimension. An approximation is to impose
a cut-off [19, 20, 21, 22, 23] effectively renormalizing the interaction strength [25].
The pairing calculations, as well as the CI results, were performed in a model
space of six oscillator shells.

2 Results

Figure 1 (left) shows the excitation spectra calculated in the pairing model for
2 ≤ N ≤ 9 fermionic particles with a quasi-spin degree of freedom, confined in
a 2D circular harmonic trap. One can see quite clearly the transition from an
oscillator-like system to a strongly-paired system. When the pairing interaction
is weak (g = −0.3), for all particle numbers one observes essentially a sequence
of equally spaced levels, i.e. the ~ω level spacing of the oscillator. For g = −1,
the equidistant level spacing begins to break down. For the mid-shell particle
numbers 4 and 8, a low-lying first excited state appears. This is the first broken
pair state, which otherwise has the same single-particle configuration as the
fully paired ground state (in the occupation number representation |{ni}〉 =150
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Figure 1. Left: Excitation spectra relative to the ground state energy, Ei(N)−Egs(N), calcu-

lated for 2 ≤ N ≤ 9 harmonically confined contact-interacting fermions in a model space of six

oscillator shells, for three values of the coupling constant (from left to right for each particle

number), g = −0.3,−1.0,−5.0. The excitation energy is capped at 4 ~ω in order to focus on

the low energy features of the spectra. Right: Differences in chemical potential, ∆2(N), for four

values of the coupling constant calculated in the pairing model and the g = −5.0 result for the

CI calculation. The Inset shows for N = 8 the excitation eneries vs. M , in red for g = −0.3 and

in blue for g = −5.0, obtained in the pairing model. The first six excited states are shown for

each value of M .

|2, 2, 0, 0, 0, 0〉 for N = 4 and |2, 4, 2, 0, 0, 0〉 for N = 8, where {ni} is the sequence
of occupancies of the oscillator shells). This state moves steadily higher as the
pairing interaction strength is increased. This is seen generally for all considered
particle numbers, that for even-N systems, the first excited state moves steadily
higher, while in odd-N systems there always remains at least a small number of
energetically close, low-lying states.

Figure 1 (right) shows the so-called ”fundamental energy gap” [13] ∆2, cal-
culated in the pairing model and with the full Hamiltonian in a CI calculation.
∆2(N) is defined as the chemical potential difference for a system with N + 1
and N particles,

∆2 = E(N + 1) + E(N − 1)− 2E(N) (2)

where E(i) is the ground state energy of the i-particle system. In a oure mean
field picture, ∆2 is only non-zero at shell closures, which is seen in the figure.
As the attractive interaction is increased, odd-even oscillations appear, as it is
now more difficult to remove a particle from an even-numbered system than an
odd-numbered one. Except for the case of the largest interaction strength, the
pairing model follows the CI data, where the mid-shell peak at N = 4 is smaller
than the shell closure peaks at N = 2 and N = 6. For the largest interaction
strength, however, in the pairing model the peaks increase with each pair added
to the system.

The Inset to the right panel of Figure 1 shows the progression of excited states
of a certain angular momentum projection, M , for the eight-particle system.
From the weak interaction data, one recognizes the degenerate spectra of the151
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oscillator, where the excitation spectra of zero, two, and four angular momenta
are degenerate, as are both odd-M spectra, and the odd-even yrast line is offset
by one ~ω. When the interaction strength is increased, degeneracies are broken,
as seen from the splitting of the lowest-lying even- and odd-M states. The fully
paired ground state is pulled down in energy and the pair vibrations (excited
states with seniority zero) also come down, as breaking a pair becomes more
costly in energy than moving a pair to a higher mean-field energy level. The
g = −5 calculation shows a smoothing out of the ~ω staggering and the yrast
line now slowly increases with angular momentum.

When comparing with the CI results [25], the mean field-dominated results
are similar, but the CI results show reduced degeneracies (since all particles
participate in the two-body interaction). Thus, the large-g spectra show a more
narrow spread in excitation, and only the M = 0 spectrum has a similar band
widths in the excitation energies.

In the literature [7, 8, 9] for 3D systems three types of pairing are identified:
single-level pairing (in the same `-multiplet), single-shell pairing (within the same
oscillator shell), and multi-shell pairing (across oscillator shells). Which type
of pairing is prevalent depends on the particle number and pairing strength
relative to the oscillator strength [7]. In 2D, there is no distinction between
single-level pairing and single-shell pairing. We can, however, distinguish between
intra- and inter-shell pairing [7], which comes from the off-diagonal terms in the
Hamiltonian (1). For g = −0.3, the contribution of the off-diagonal terms to the
ground state energy is only a hundredth of a percent, but when g = −5, the
off-diagonal contribution is 25%. Further analysis should be done to examine the
collectivity of the states as the pairing strength is increased.

3 Conclusions

Cold fermions trapped in a 2D harmonic well were examined with a pairing
model Hamiltonian. The results of these calculations were compared with results
from CI calculations with the same attractive zero-range interaction. For excited
states and for strong interactions the terms neglected by the pairing Hamiltonian
may cause some difference. However, it was found that ground state properties
agree fairly well. When the zero-range attractive interaction is varied in strength,
strong odd-even effects, gaps and shell structure emerge in the chemical potential
differences, as well as in the angular momentum spectra.

Further studies could be done on how the wave functions evolve with the
strength of the pairing interaction and examine collective behavior and perhaps
look for evidence of chaos in the spectra. It would also be interesting to perform
density calculations and compare them with the CI results. Also, the small size
of the pairing calculations should be exploited and calculations should be done
for much larger systems.

Acknowledgement. This work was supported by FIRB No. RBIN04EY74 and No. RBIN06JB4C,
PRIN No. 2006022932, and INFM-CINECA Supercomputing Project 2007 and 2008, MAE
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Abstract. A one-dimensional system of two trapped bosons which interact
through a contact potential is studied using the optimized configuration in-
teraction method. The rapid convergence of the method is demonstrated for
trapping potentials of convex and non-convex shapes. The energy spectra,
as well as natural orbitals and their occupation numbers are determined in
function of the inter-boson interaction strength. Entanglement characteristics
are discussed in dependence on the shape of the confining potential.

1 Introduction

Entanglement as a measure of quantum correlations is investigated in the hope
of better understanding the structure of strongly-coupled many-body systems.
Recently there is a growing interest in studying few-particle trapped systems,
since they became accessible in experiments with ultracold gases in optical lat-
tices and microtraps. The interatomic interaction can be there considered as a
contact one. By choosing the transverse confinement much stronger than the
longitudinal one, the quasi-one-dimensional systems with an effective interaction
g1Dδ(x2 − x1) of an adjustable strength g1D may be experimentally realized [1].
In the Tonks–Girardeau (TG) limit of g1D →∞ the system is solvable for arbi-
trary trapping potential [2]. Theoretical consideration of such a system evolution
from weak to strong interactions is thus of interest.

We discuss entanglement properties for a system of two bosons interacting
through a contact potential and subject to a confining potential V (x). The di-
mensionless Schrödinger equation takes a form

Hφ(x1, x2) = Eφ(x1, x2), (1)

∗Article based on the presentation by A. Okopińska at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received November 30, 2008; Accepted January 8, 2009
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2 Two-boson Correlations

where the Hamiltonian reads

H = −1
2
∂2

∂x2
1

− 1
2
∂2

∂x2
2

+ V (x1) + V (x2) + g1Dδ(x2 − x1). (2)

Since the two-boson function is symmetric and may be chosen real, there exists
an orthonormal real basis {vl} such that

φ(x1, x2) =
∑

l

klvl(x1)vl(x2), (3)

where the coefficients kl are real and
∑

l k
2
l = 1. Therefore

∫ ∞

−∞
φ(x, x′)vl(x′)dx′ = klvl(x), (4)

which means that vl are eigenvectors of the two-particle function. It may be
shown that vl are also eigenvectors of the density matrix, known as natural
orbitals. Density matrix decomposition is given by ρ(x, x

′
) =

∑
λlvl(x)vl(x

′
),

where the occupancies λl = k2
l . The number of nonzero coefficients kl and the

distribution of their values characterize the degree of entanglement.

2 Optimized Configuration Interaction Method

The configuration interaction method (CI) consists in choosing the orthogonal
basis set in the Rayleigh-Ritz (RR) procedure so as to ensure proper symmetry
under exchange of particles [3]. For the two-boson system, the CI expansion reads

φ(x1, x2) =
∑

aijψij(x1, x2), (5)

where 〈x1, x2|ij〉 = ψij(x1, x2) = bij [ϕi(x1)ϕj(x2) + ϕj(x1)ϕi(x2)] with bij = 1/2
for i= j and bij = 1/

√
2 for i 6= j. Exact diagonalization of the infinite Hamilto-

nian matrix Hnmij = 〈nm|H|ij〉 determines the whole spectrum of the system.
Truncated matrices [H]N×N allow determination of successive approximations
to the larger and larger number of states by increasing the order N . We use the
one-particle basis of the harmonic oscillator eigenfunctions

ϕΩi (x) =

( √
Ω√
π2ii!

) 1
2

Hi(
√
Ωx) exp

[
−Ωx2/2

]
. (6)

Following the optimized RR scheme [4], we adjust the value of the frequency Ω
so as to make stationary the approximate sum of N bound-state energies, by
requiring

δTr[H]N×N
δΩ

= 0. (7)

Such a way of proceeding has been shown to improve strongly the convergence
of the RR method [4, 5]. The Nth order calculation provides approximations to
many eigenstates, which enables a direct determination of natural orbitals by155
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representing them in the same basis (6) as v(x) =
∑
pnϕ

Ω
n (x). This turns the

eigenequation (4) into an algebraic problem
∑

(Amn − knδmn)pn = 0,

Amn =
∫
ψΩm(x1)φ(x1, x2)ψΩn (x1)dx1dx2 =

{
ann for m = n

2−1/2amn for m 6= n

(8)

and anm are determined from diagonalization of [H]N×N . By diagonalization of
the matrix [A]N×N , the approximate coefficients kn may be determined. Due to
the fact that

∑
A2
nm = 1, their numerical values satisfy

∑
k2
n = 1.

3 Results
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λTG
1

Figure 1. The occupancies λ0 and λ1 for a harmonically confined two-boson system in function

of g1D, their TG limits are marked by horizontal lines.

In the case of harmonic confinement V (x) = mx2/2 and the contact interac-
tion, the two-particle wave function may be analytically expressed [6]. This allows
determination of the occupancies λi = k2

i by discretizing (4). The two largest
occupancies for the ground state are shown in Fig. 1 in function of g1D. The
state is non-entangled (λ0 = 1) only if the bosons do not interact. The weakly
entangled ”condensed” state with only one orbital significantly occupied is real-
ized at very weak interactions, g1D . 0.1. With increasing g1D, the entanglement
grows, which shows up in the increase of λ1 at the cost of λ0. The occupancies
monotonically approach their TG limits λTG0 ≈ 0.7745 and λTG1 ≈ 0.1765.

Entanglement properties in the case of multi-well potentials are markedly
different. Using the optimized RR method, we calculated the natural orbital oc-156
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Figure 2. Double-well potential (upper left), the occupancies λ0 and λ1 in function of g1D

(lower left) and two-boson densities (right) for (a) g1D = 0, (b) g1D = 2.5 · 10−8, (c) g1D =

5 · 10−8, (d) g1D = 10−6

cupancies of ground states in double-well potential V2well(x) = 2
27a(1−ax2)2 and

triple-well potential V3well(x) = 1
2x

2 − ax4 + a2

2 x
6. The potentials have minima

of the same depth and the maxima of the same height, controlled by the param-
eter a. The results for a = 0.025 are plotted in Figs. 2 and 3, where the upper
left presents the shapes of the potentials, and the lower left, the two largest
occupancies λ0 and λ1 in function of g1D. For g1D = 0, the ground state is non-
entangled, as λ0 = 1. With increasing interactions, λ0 decreases and λ1 grows,
monotonically approaching the TG limit of non-entangled ”fragmented” state,
λTG0 = λTG1 = 0.5. The critical value gcr1D, above which λ0 ≈ λ1, is much larger
for the triple-well potential than for the double-well one. The dependence of the
two-boson density on g1D for the double-well potential is shown on the right of
Fig. 2. For noninteracting bosons, the probability of both being in different wells
is the same as being in the same well. With increasing g1D, the probability of
finding the bosons in the same well quickly decreases and above gcr1D the state is
almost fragmented. In the triple-well case (right of Fig. 3) the particles live in the
middle well, only above gcr1D the probability of finding a particle in an external
well becomes considerable. In the TG limit of non-entangled “fragmented” state,
one particle is localized in the middle and the other in one of external wells.

157
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Figure 3. Same as Fig.2 but for the triple-well potential. The two-boson densities (right) for
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4 Conclusion

The optimized CI method proves very effective in determining the spectrum and
the natural orbitals of the two-particle confined systems.
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Abstract. We develop an effective low energy theory for multi-channel scat-
tering of cold atomic alkali atoms with particular focus on Feshbach reso-
nances. The scattering matrix is expressed in terms of observables only and
the theory allows for the inclusion of many-body effects both in the open
and in the closed channels. We then consider the frequency and damping of
collective modes for Fermi gases and demonstrate how medium effects signif-
icantly increase the scattering rate determining the nature of the modes. Our
results obtained with no fitting parameters are shown to compare well with
experimental data.

1 Introduction

The study of cold atomic gases has now been at the forefront of low temperature
physics for more than a decade. One can manipulate these gases with impres-
sive experimental flexibility using the powerful tools of quantum optics. This
has produced a string of ground breaking results relevant across many fields of
physics including quantum optics, AMO and condensed matter physics [1, 2]. A
particularly attractive feature of cold atomic gases is the ability to manipulate
the atom-atom interaction with the use of Feshbach resonances. The interaction
can be made strong/weak and attractive/repulsive simply by tuning an exter-
nal magnetic field. This has resulted in many important discoveries concerning
strongly interacting many-body systems and the pace at which new results are
being reported shows no sign of slowing down.

Sophisticated and very precise coupled channels calculations have been de-
veloped to describe atomic Feshbach resonances at the two-body level [3]. Such
coupled channels approaches are in general not easily generalized to study the
intriguing many-body effects observed in the atomic gases. Several effective the-
ories have therefore been developed which include a simplified version of the
two-body Feshbach physics such that many-body calculations are tractable [2].
∗Article based on the presentation by G. Bruun at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received January 9, 2009; Accepted January 30, 2009159
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Most of these theories either neglect the Feshbach molecule entirely using so-
called single channel models [4] or put it in by hand as a point boson [5]. Such
approaches have been very successful in calculating various many-body proper-
ties of the atomic gases for wide resonances where the multi-channel nature of
the scattering is less important. For narrow resonances however, single channel
approximations cannot be expected to be accurate, and even for wide resonances
there are observables which depend specifically on the multi-channel nature of
the scattering.

To address this, we describe in this paper an effective theory for the Feschbach
scattering which in the spirit of Landau expresses the multi-channel scattering
matrix in terms of observables only. The Feshbach molecule emerges dynami-
cally as a proper two-body state, yet the theory is still simple enough to be
easily generalized to treat many-body effects. As an application of this theory,
we consider the collective modes of trapped atomic Fermi gases. The study of
collective modes is a powerful probe into the properties of interacting quantum
liquids. In cold atomic Fermi gases, collective mode spectroscopy has revealed a
wealth of information about zero temperature T = 0 [2] as well as T > 0 prop-
erties [6, 7, 8]. We outline how one can calculate the frequency and damping of
the collective modes in the normal phase above the critical temperature Tc for
superfluidity. Focus is on how the modes reveal information about the collisional
properties and many-body effects.

2 Landau Theory for in-medium Scattering

First we develop an effective low energy theory for fermionic alkali atom-atom
scattering in a medium. Consider alkali atoms in a magnetic field B oriented
along the z-direction. The strongest part of the atom-atom interaction is the
electrostatic central potential given by

V (r) =
Vs(r) + 3Vt(r)

4
+ [Vt(r)− Vs(r)]S1 · S2 (1)

where Vs(r) and Vt(r) are the singlet and triplet potentials and S1 and S2 are
the spins of the valence electrons of the two alkali atoms [1]. Scattering via
the potential (1) is characterized by channels of anti-symmetrized two-particle
states with the same z-projection Mz of the total spin F . For a given Mz, the
two-particle state with the lowest energy εα2 + εα1 constitutes the open channel
|o〉 = |α1, α2〉. Here Ĥspin|α〉 = εα|α〉 are the eigenstates of the single particle
hyperfine Hamiltonian [1]. The interaction (1) couples this channel to a number
of higher energy states which form a set of closed channels |c(n)〉 = |α(n)

3 , α
(n)
4 〉.

The threshold energies for the closed channels are then E(n)
th (B) = ε

α
(n)
4

+ ε
α

(n)
3

−
εα2 − εα1 and they depend on the magnetic field.

Focus now on the case where there is one open |o〉 and one closed scattering
channel |c〉. It should be emphasized that our effective theory is readily general-
ized to more than two channels if appropriate. To arrive at an effective theory for
the scattering, we want to eliminate the bare microscopic interaction (1) which
has a complicated momentum dependence. The high energy physics is eliminated160
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by introducing an effective interaction Uij which is a solution to the zero energy
Lippmann-Schwinger equation when the hyperfine splitting of the channels is
ignored. This results in a momentum independent low energy interaction given
by [9]

Û(q′,q) =
4π
m

[
as + 3at

4
+ (at − as)S1 · S2

]
(2)

where as and at are the scattering lengths for the singlet Vs(r) and triplet Vt(r)
potentials, respectively. Any finite range effects can be introduced through form
factors which we have suppressed here for clarity. Using this low energy interac-
tion, the Lippmann-Schwinger equation reduces to a simple 2×2 matrix equation

[
Tcc Tco
Toc Too

]−1

=
[
Ucc Uco
Uoc Uoo

]−1

−
[
Πc 0
0 Πo

]
(3)

where Tij(ω,K) is the scattering matrix between the channels i and j. In ad-
dition to the usual dependence on the energy ω, it also depends on the center-
of-mass momentum K since Galilean invariance is broken by the presence of
the medium. The expressions for the pair propagators in the open and closed
channels Π0(ω,K) and Πc(ω,K, B) with medium effects included through the
ladder approximation are given in Ref. [9]. Equation (3) is easily solved and the
open channel scattering matrix can be written as

Too =
Uoo

1− UooΠo
+

Uoc
1− UooΠo

D
Uco

1− UooΠo
(4)

where

D−1(K, ω) = Πc
−1 − Ucc − Uoc2

Πo

1− UooΠo
(5)

is the in-medium pair propagator in the closed channel. Equation (4) provides a
transparent physical interpretation of the multi channel scattering: The first term
in (4) describes scattering induced by the open channel interaction only and the
second term describes the scattering via the closed channel. The diagrammatic
structure of (4)-(5) is shown in Fig. 1.

The scattering of alkali atoms depends on the magnetic field B both through
the hyperfine states and the matrix elements Uij . Close to a Feshbach resonance
located at a given field B0, the zero energy two-body scattering matrix in the
open channel can be parametrized as

T vacoo ≡
4πa
m

=
4πabg

m

(
1− ∆B

B −B0

)
. (6)

Here, abg is the (non-resonant) background scattering length and ∆B the width
of the resonance. The Feshbach resonance comes from the presence of a molecular
state in the closed channel. It is thus contained in the second term in (4). The
energy ωK of a Feshbach molecule (including medium effects) with momentum
K is determined by D−1(K, ωK) = 0. By making a pole expansion of (4) around
B = B0 and comparing with (6), one can write the scattering matrix in the very161
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Figure 1. The scattering matrix (4) decomposed into scattering in the open and closed chan-

nels. The closed channel molecule is dressed via its coupling to the open channel. Fermions

are indicated by straight lines, interaction within a channel is indicated by dashed lines, and

coupling between the open and closed channels is indicated by •.

useful form [9]

Too =
Tbg(

1 + ∆µ∆B
ω̃+h(ω)−∆µ(B−B0)

)−1
− TbgΠo(ω)

. (7)

Here Tbg = 4πabg/m, ω̃ = ω −K2/4m, and ∆µ is the magnetic moment of the
Feshbach molecule with respect to the open channel. A detailed analysis of the
molecular propagator (5) shows that ∆µ can be split into a contribution from
the magnetic dependence of the bare closed channel state and a contribution
from screening due to coupling to high energy states in the open channel. This
screening which reduces the magnetic moment from its bare value is often ignored
in the literature. It comes from a linear frequency dependence of the molecule self
energy in addition to the well known

√
ω threshold dependence, and it can lead

to a significant reduction of the magnetic moment of the molecule [9, 10]. The
function h(ω) is given in Ref. [9]. It describes effects coming from the composite
two-fermion nature of the Feshbach molecule, and it is here that many-body
effects in the closed channel enter.

With (7), we have arrived at an effective low energy theory for scattering in a
medium. The complicated energy and momentum dependent multichannel scat-
tering matrix is expressed in a simple way through the physical observables abg,
B0, ∆B, and ∆µ. The parameters abg, B0, ∆B can be measured in scattering
experiments whereas the magnetic moment of the Feshbach molecule can be mea-
sured in rethermalization experiments [9]. Contrary to many other approaches
in the literature, the theory allows one to include non-trivial many-body effects
in the closed channel as well as in the open channel. Examples of such closed
channel medium effects were considered in Ref. [9].162
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3 Collective Modes and Viscous Damping

We now consider the collective modes of trapped Fermi gases and examine how
they can reveal information about the scattering properties discussed in the
previous section. We focus on the normal state for temperatures T ≥ Tc. The
dynamics of the gas is assumed to be described by a semiclassical distribution
function f(r,p, t) which satisfies the Boltzmann equation. A collective mode
corresponds to a deviation δf = f − f0 away from the equilibrium distribution
f0(r,p). By expanding δf in a set of basis states with the symmetry appropriate
for the particular mode considered, one can express the Boltzmann equation
in matrix form [8, 11]. The corresponding determinants determine the mode
frequency ω.

To be specific, we model the collective modes studied experimentally in
Ref. [8], where the atoms are trapped in a very elongated harmonic potential
of the form V (r) = m(ω2

xx
2 +ω2

yy
2 +ω2

zz
2)/2 with ωz � ωy ≤ ωx. The motion of

the collective modes is then mainly in the xy-plane. For the scissors mode, the
determinant equation determining the mode frequency becomes [12]

iω

τ
(ω2 − ω2

h) + (ω2 − ω2
c1)(ω2 − ω2

c2) = 0. (8)

Here ωh =
√
ω2
x + ω2

y is the mode frequency in the hydrodynamic limit when
ωτ � 1 characteristic of many collisions, and ωc1 = ωx +ωy and ωc2 = |ωx−ωy|
are the mode frequencies in the collisionless limit ωτ � 1 [13]. The collision rate
1/τ is

1
τ

=
∫
d3rd3ppxpyI[pxpy]∫

d3rd3pp2
xp

2
yf

0(1− f0)
(9)

where I[pxpy] is the collision integral in the Boltzmann equation weighted by the
momentum function pxpy [8, 11]. It is in the collision integral, that the scattering
matrix enters. The collision rate (9) is closely related to the viscosity of the gas
and it is therefore sometimes called the viscous relaxation rate [14].

When the atoms are strongly interacting, there are significant pair correla-
tions even in the normal phase. The correlations depend strongly on temperature
and interaction strength which is parametrized by the scattering length a in (6).
Correlations and their dependence on a and T enter the theory for collective
modes through (9). In Fig. 2, we plot the scattering rate 1/τ as a function of
T for: (a) strong coupling right at a Feshbach resonance |a| → ∞, and (b) in
the weak coupling regime kFa = −0.06. To clearly identify the importance of
medium effects on the scattering matrix, the rate is calculated using three differ-
ent approximations. The dashed curves are a classical approximation where Pauli
blocking effects are neglected and the two-body scattering matrix is used. The
dash-dotted lines include Pauli blocking in the collision integral I[pxpy] while the
two-body scattering matrix is still used. We see that Pauli blocking reduces the
scattering rate as compared to the classical result as expected; the classical rate
scales as T−2 whereas τ−1 ∝ T 2 for T → 0 due to Pauli blocking. Finally, the
solid lines use the many-body scattering matrix (7) in addition to including Pauli
blocking effects in the collision integral. Medium effects in the scattering matrix163
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Figure 2. The viscous relaxation rate rate 1/τ for a gas in the unitarity limit (a) (From [8]) and

in the weak coupling limit (b). The superfluid region is indicated in (a) whereas it is not visible

in (b) due to the smallness of Tc. The dashed lines show the classical limit, the dash-dotted

lines include Fermi blocking, and the solid lines include medium effects in the cross section.

are included through the pair propagator Π0(ω,K) in (7). As seen by compar-
ing the solid and the dash-dotted lines in Fig. 2 (a), medium effects significantly
increase the scattering rate over a wide range of temperatures above Tc for the
strong coupling case. This is due to pair correlations. It is the same physics
which gives rise to a divergence in the K = 0 scattering matrix at Tc signaling
the onset of Cooper pairing. From Fig. 2 (a), we see that the scattering rate
calculated including both pair correlations and Pauli blocking effects is almost
the same as the classical rate which neglects both effects. Thus, pair correlations
nearly cancel the reduction of the scattering rate due to Pauli blocking in the
normal phase. These strong pair correlations are often referred to as the pseudo-
gap effect. So we have demonstrated that it is essential to include medium effects
in the scattering matrix (7) when one considers strong coupling Fermi gases; a
simple two-body scattering matrix strongly underestimates the correlations. In
contrast, there are no observable medium effects on the scattering matrix in the
weak coupling regime depicted in Fig. 2 (b). Here the curves using a two-body
and a many-body Too are essentially indistinguishable.

Once we know the scattering rate 1/τ , we can calculate the collective mode
frequencies as discussed above. In Fig. 3, we plot the scissors mode frequency
ωS and damping ΓS obtained from the real and imaginary parts of the solution
of (8), i.e. ω = ωS − iΓS . The scattering rate is obtained from (9) using the
many-body scattering matrix (7). The gas is strongly interacting with |a| → ∞
and we compare with the experimental data in Ref. [8]. Taking into account the
experimental uncertainties and the fact that there are no fitting parameters in
the theory, the agreement between theory and experiment is good. This indicates
that the expressions (7) and (9) account for most of the correlation effects even for
strongly correlated Fermi gases. Since the medium effects increase the scattering
rate significantly, they make the modes more hydrodynamic. We conclude that164
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Figure 3. Sketch of the compression mode, the quadrupole mode and the scissors mode (from

left to right) in the plane perpendicular to the long axis of the cloud [8].

the observation of well defined hydrodynamic modes above Tc (See Fig. 3 and
Ref. [8]) is a signature of many-body effects on the scattering.

4 Conclusion

We developed an effective theory for multi-channel Feshbach scattering in cold
alkali atom gases. The theory expresses the scattering in terms of physical ob-
servables only. It allows for the inclusion of many-body effects in all channels
and provides a precise link between microscopic two-body multi-channel calcula-
tions and effective many-body theories. Many-body effects significantly increase
the scattering rate over wide range of temperatures. We showed how this can
be detected on the frequency and damping of collective modes. Our results were
finally compared to experimental data obtaining good agreement.
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Abstract. An efficient full configuration-interaction (CI) treatment has been
recently developed as a benchmark quantum chemistry (QC) method to study
doped 3HeN clusters [J. Chem. Phys. 125, 221101 (2006)]. The method, which
uses an iterative Jacobi-Davidson diagonalization algorithm, is applied here
to small clusters (N ≤ 4) containing Cl2 as dopant.

1 Introduction

Infrared (IR) spectra of the carbonyl sulfide (OCS) molecule inside He nanodro-
plets have provided the first experimental evidence for the onset of microscopic
superfluidity [1] motivating numerous spectroscopic studies of small doped He
clusters [2, 3]. It has also given rise to renewed impetus for theoretical studies
in which, due to the non-classical nature of the particles involved, it is cru-
cial the use of quantum treatments. Thus, diffusion and path-integral Monte
Carlo methods have been applied to describe the structure and energy levels of
such species [4-6]. Alternatively, (QC)-like approaches, which consider [7] the He
atoms as “electrons” and the dopant as “nuclei”, provide also wave functions and
therefore allow, through spectral simulations, a proper comparison with the ex-
periment. Within this framework, Hartree/Hartree-Fock (H/HF) methods have
been implemented [8-13] for simulating Raman and infrared spectra of diatomic
molecules in bosonic/fermionic He environments. These simulations have stressed
the key role of the spin quantum statistics effects in the different spectra expe-
rimentally observed depending on the helium isotope considered [1]. The main
approximations involved in QC-like approaches (i.e, adiabaticity of the diatomic
stretch and decoupling of the diatomic rotation from the He-atoms orbital an-
gular momentum) have been recently assessed for heavy as well as light dopant
molecules [14, 15].

Major difficulties in developing these QC treatments are caused by the very
repulsive He-He short distance interaction. Thus, truncated He-He potentials are
∗Article based on the presentation by P. Villareal at the Fifth Workshop on Critical Stability,
Erice, Sicily, Received November 21, 2008; Accepted January 16, 2008

∗∗E-mail address: delara@imaff.cfmac.csic.es167



2 Using a Jacobi-Davidson “nuclear orbital” method for small doped 3He clusters

used, for example, in density-functional-theory approaches [16], a recent full CI
treatment [17], and H/HF implementations for doped helium clusters [10]. As
a benchmark method, we have developed a full CI treatment [18] where it has
been possible to treat the bare He-He potential by replacing the commonly used
Davidson (D) algorithm of diagonalization [19] by a Jacobi-Davidson (JD) one
[20]. The treatment, applied to (3He)N -Br2 clusters, is extended here to the study
of Cl2-doped fermionic helium clusters.

2 Application of the full CI method to (3He)N -Cl2 clusters

The (3He)N -Cl2 potential energy surface (PES) is described by the sum of pair-
wise Morse-type He-Cl [21] and semiempirical He-He [22] interactions. The Cl2
bond length is fixed to its equilibrium value [21]. The basis sets are composed by
products of nmax numerical radial functions and spherical harmonics Y`m with
different `max and mmax values, and the states are classified according to the
D2h point group.
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Figure 1. a) Left panel, energy (N=4, S = 0, nmax=4, `max=mmax=5 state) for JD and D

procedures as a function of the number of iterations. The converged, “exact”, energy is also

shown. b) Right panel, ground-state energies (cm−1) of (3He)N -Cl2 clusters as a function of

the cluster size for different `max and mmax values.

In Fig. 1(a), we first compare the convergence rate of D and JD procedures
to the (3He)4-Cl2 ground state energy. Each outer JD iterative solver used about
14 internal JD iterations, thus one JD result is presented at each 14 D iterations.
Note the fast convergence of the JD procedure as compared to the standard D
one. At the 335th outer JD iteration, the energy difference E(i) − E(i−1) has
converged to the desired accuracy (10−10 cm−1), the norm of the residual vector
[18] being only 4×10−4 cm−1. The total required number of Hamiltonian appli-
cations is about 5000. In contrast, after 5000 D iterations, the energy is still
2.7 cm−1 above the “exact” energy, the norm of the residual being very large
(13 cm−1). In fact, it was not possible to lower that value to less than 1 cm−1

through further 30000 D iterations.
Full CI energies of the different sized complexes are displayed in Table 1(a).

The high degree of degeneracy for the lowest-energy states of each spin multi-
plicity is reminiscent to that found for (3He)N -Br2 clusters. Thus, for any size,
the energy differences among these states are less than 1 cm−1. However, in con-168
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trast to the bromine case, the rather linear behavior of ground state energies
with N is not broken at N=4. In order to analyse this behavior, we have calcu-
lated ground state energies using different basis sets. The results are displayed in
Fig. 1(b). Note that the larger `max and mmax values, the clearer a linear behav-
ior of the energies with N . At N=4, also note that for `max=5 quite large mmax

values (≥ 4) are necessary to make the cluster bound, i.e to properly describe
the short-range He-He repulsion.

Table 1. Energies (cm−1) of N -sized clusters using `max=mmax=6. The states are classified

according to the total spin (S), and the symmetry within the D2h point group. Values in boldface

correspond to the lowest energy states within a given (N , S) manifold. (b) NO occupation

numbers larger than 0.05 for the lowest-energy states at each (N , S) manifold. Second column

indicates the symmetries of the NOs within the D2h point group whereas the corresponding D∞h

symmetries are specified in the first column.

(N , S)
a) (1,1/2) (2,0) (2,1) (3,1/2) (3,3/2) (4,0) (4,1) (4,2)

Ag -8.05 -15.85 -14.38 -22.47 -20.58 -28.70 -26.70 -28.06
B3u/B2u -7.43 -14.93 -15.48 -22.93 -21.75 -25.40 -28.57 -24.99
B1g -6.43 -14.80 -14.88 -22.47 -22.90 -28.41 -28.85 -28.09
B1u -3.14 -11.10 -10.95 -18.41 -19.76 -24.21 -24.27 -23.61
B2g/B3g -2.93 -10.80 -10.87 -18.36 -18.13 -24.23 -24.58 -24.07
Au -1.39 -10.41 -10.35 -18.31 -18.36 -24.84 -24.37 -24.63

b) η (NO occupation numbers)

1σ+
g 1ag 1.54 0.99 1.24 0.97 0.98 1.08 0.95

1πu 1b2u+1b3u 0.37 0.99 1.33 1.83 1.81 1.69 1.83
1δg 2ag+1b1g 0.08 0.38 0.13 0.87 0.84 0.98
1φu 2b3u+2b2u 0.06 0.24 0.29 0.15
1γg 3ag+2b1g 0.07 0.06 0.06

Single-particle wavefunctions diagonalizing the first-order density matrix de-
fine the “nuclear” natural orbitals (NO). Table 1(b) lists their relevant η occupa-
tion numbers at N ≥ 2. The first He populates the lowest energy 1σ+

g orbital. For
N=2, significant mixing between (1σ+

g )2, (1σ+
g ) (1πu), and (1σ+

g ) (1δg) configu-
rations is found for the lowest-energy singlet state whereas the triplet one is well
described by a (1σ+

g ) (1πu) single-reference state. Aside from the highest spin
states, the full CI wavefunctions for N ≥ 3 have not a clear dominant configura-
tion. For N=3, the quadruplet lowest-energy state is approximately described by
a (1σ+

g ) (1πu) (1πu) reference although there is also substantial configurational
mixing with 1δg and 1φu NOs. For N=4, the lowest-energy quintuplet state is
dominated by a (1σ+

g ) (1πu) (1πu) (1δg) configuration even though the configura-
tional mixing with 1φu and 1γg NOs is also considerable. For any cluster size, the
listed η values sum to at least 99% of N , while the remaining 1% is distributed
among more than 189 orbitals. Overall, this result points out the robustness of
the helium “nuclear orbital” approach already tested for (3He)N -Br2 complexes.
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3 Conclusions

In agreement to previous results, our full CI study of small (3He)N -Cl2 aggregates
indicates (1) the efficiency of the JD procedure; (2) the adequacy of the “nuclear
orbital” approach, and (3) the high degree of degeneracy for the lowest energy
spin states. It should be stressed that along with the corresponding selection
rules this high degeneracy is found to be the main responsible [8] for the broad
unstructured spectra exhibited by molecules inside fermionic nanodroplets [1].
Extensions to 4He and mixed 4He/3He doped clusters is now in progress.
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Abstract. The energy of the Ar trimer has been investigated in terms of the
temperature for T ≤ 1K, by means of a path-integral Monte Carlo calculation
and a variational approximate method based on the use of the interparticle
distances. The comparison reveals that the values of the energy obtained via
both methods are in a fairly good agreement.

1 Introduction

Molecular clusters formed by rare gas atoms has attracted the attention of a large
series of investigations in the past. Their unique properties convert them in an
ideal scenario in between few body molecular aggregates and continuum media.
Transition properties between solid-like and liquid-like forms for ArN with N ≥ 3
clusters have been analysed via different approaches such as, for example, Monte
Carlo methods [1, 2, 3]. The molecular Ar trimer, in particular, has been the
subject of numerous studies devoted to describe the energy levels and geometries
of the corresponding bound states for the case of a zero total angular momentum,
J = 0 (see Refs. [4, 5] for the most recent examples). Recently, the analysis of
the Ar3 system has been extended to the calculation of the rovibrational spectra
for J ≤ 6 [6, 7].

In this work we have studied the average binding energy of the Ar trimer
in terms of the temperature by means of a path-integral Monte Carlo (PIMC)
method. For comparison, an extension of the variational approximate approach
based on the use of distributed Gaussian functions (DGF) to describe the inter-
particle distances reported in Refs. [6, 8] have been used. The actual dependence
of the energy as a function of the temperature is obtained by means of a Boltz-
mann average of the corresponding rovibrational spectra for different values of J .
∗Article based on the presentation by T. González-Lezana at the Fifth Workshop on Critical
Stability, Erice, Sicily, Received November 14 2008; Accepted January 15, 2009

∗∗Alternative address: Instituto Superior de Tecnoloǵıas y Ciencias Aplicadas, Avda. Salvador
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2 A study of the Ar trimer at low temperature

The temperature range considered covers up to 1 K and the Ar-Ar interaction is
described by means of a Morse potential with the following values for the corre-
sponding parameters: D = 99 cm−1(1 cm−1 = 1.23984×10−4 eV), α = 1.717 Å−1

and r0 = 3.757 Å [9].

2 Theory

2.1 Path-integral Monte Carlo method

The PIMC approach employed here has been described elsewhere [10, 11]. Briefly,
the three-body density matrix at a temperature T is replaced by the product of
M density matrices at MT :

ρ(R1, RM+1;β) =
∫
dR2. . . dRM

M∏

α=1

ρ(Rα, Rα+1; τ), (1)

where Rα represents the 3N positions of the N particles: Rα ≡ {rα1 , . . . , rαN},
being the rαi vectors, those which determines the position of the ith Ar atom
in the Rα set, β = 1/kBT and τ = β/M . M is defined, in the case of the Ar3
system, as M = 80/T [12]. The energy E(T ) can be obtained as the thermal
average of the Hamiltonian H as:

E(T ) = Z−1

∫
dR1

∫
dRM+1 〈RM+1 |Ĥ |R1〉 ρ(R1, RM+1;β) (2)

where Z =
∫
dR ρ(R,R;β) is the partition function. Eq. (2) can be expressed,

by using the energy estimators proposed in Refs. [13, 14] as:

E(T )=

〈
3(N−1)

2
kBT+

1
2M

M∑

α=1

N∑

i=1

(rαi −rMi )
∂V (rαi )
∂rαi

+
1
M

M∑

α=1

N∑

i<j

V (rαij)

〉
, (3)

where rMi = M−1
∑M

α=1 rαi and rαij =| rαi − rαj |. The first two terms in Eq. (3)
correspond to the classical kinetic energy and a quantum correction. Finally, the
integration is effectively evaluated via a Metropolis Monte Carlo algorithm, as an
average over a number of paths {R1, R2, . . . , RM , RM+1} sampled according to a
probability density proportional to the factorised product of M density matrices
of Eq. (1).

2.2 Distributed Gaussian functions method

A DGF method [6] has been applied to calculate the rovibrational spectra for
the Ar3 system at different values of the total angular momentum, J . Bound
state energies for the J > 0 problem are obtained via the diagonalization of
the rotational Hamiltonian expressed on a basis formed by the eigenfunctions,
labelled with k, of the purely vibrational problem, J = 0, and standard rotational
functions in terms of J and its projection on the space- and body-fixed frames.
The latter projection, Ω, is employed, besides the vibrational quantum number `,
to classify the rovibrational states in the different irreducible representations [6].172
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The corresponding rovibrational spectra, EJkΩ, formed with those levels from
the physically acceptable representations A′1 and A′′1, are then used in the fol-
lowing Boltzmann average to obtain the energy in terms of T :

E(T ) =

[
Jmax∑

J=0

∑

i

EJi e
−EJ

i /kBT

]
·
[
Jmax∑

J=0

∑

i

e−E
J
i /kBT

]−1

(4)

where the i stands for the k,Ω indexes for those rovibrational states belonging,
for each value of J , to the A′1 and A′′1 representations. In order to converge the
results at T = 1 K, calculations with Jmax = 10 and 12 vibrational states were
necessary.

3 Results

The values of the average energy obtained via the two methods employed in this
work are shown in Figure 1. Although the PIMC predictions are below the DGF
results, both sets of energies are in a quite good agreement, with differences
which do not exceed 2 cm−1 for the T ≤ 1 K case studied here. According to Eq.
(3), the values of E(T ) calculated via the Monte Carlo approach are the result of
a classical contribution and some quantum mechanical correction. Results from
Fig. 1 indicate that at T ≈ 0 K, the PIMC calculation seems to take into account
most of the possible quantum effects which correct the classical estimation of
3×D = −297 cm−1.
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Figure 1. Energy for the Ar3 system in terms of the temperature for T ≤ 1 K: DGF results

are in red circles and dashed line and PIMC energies are in squares and black line.

The observed trend suggests a progressive improvement in the actual compar-
ison between the DGF and PIMC results as T increases. It would be of interest
to test the behaviour of the average energy at a higher temperature regime where173



4 A study of the Ar trimer at low temperature

the quantum contribution is expected to decrease and possible phase transition
effects are likely to appear. That requires the inclusion of the rovibrational spec-
tra of a larger number of total angular momentum in the DGF calculation. Work
in this direction is currently in progress.
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Abstract. The rate of ozone recombination, O2+O+M→ O3+M, is strongly
sensitive to the masses of the participating oxygen isotopes – the effect ul-
timately leading to the unconventional fractionations of ozone isotopomers
in the Earth atmosphere. The mass dependence for asymmetric molecules
is reconstructed, within the strong collision approximation, from the partial
widths of narrow resonances of O3 and demonstrated to stem from the con-
tributions of highly rotationally excited ozones.

1 Introduction

Ozone in the stratosphere is formed primarily in the Chapman cycle, i.e. via
collisional recombination of the atomic and molecular oxygen:

O(α) + O2(α) → O?
3 (1)

O?
3 + M → O3 + M . (2)

In (1), ozone above dissociation threshold, O?
3, forms from a given arrangement

(or isotope-specific) channel α. It can dissociate again unless stabilized in (2)
by a collision with the buffer gas M. The incoming oxygen atom in (1) always
becomes one of the end atoms of O3 (never the central atom). Likewise, the
dissociating O?

3 has only two accessible arrangement channels in which one of
the end atoms is removed.

An intriguing isotopic fractionation effect in O3 [1] was traced down to the
strong sensitivity of the recombination rates in (1-2) to the masses of oxygen
isotopes (16O, 17O, or 18O, abbreviated as 6, 7, or 8, respectively). Figure 1(a)
shows the room-temperature recombination rates, krec(kBT, α), measured in var-
ious isotope-specific channels α. For the 668 molecule, for example, two such
channels are:

8 + 66(ZPEα)� 866(?) � 86(ZPEβ) + 6 (3)
∗Article based on the presentation by S. Yu. Grebenshchikov at the Fifth Workshop on Critical
Stability, Erice, Sicily, Received January 16, 2009; Accepted February 10, 2009.
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2 A Quantum Mechanical Study of Ozone Isotope Effect

Figure 1. (a) Relative recombination rates versus ZPE difference between the outgoing and

the incoming diatomic oxygen molecules, ∆ZPE. Solid symbols are experimental rates [2] for

the following reactions (with respective ∆ZPE in cm−1): 8+66 and 68+8 (−23); 7+66 (−12);

88 + 7 (+12); 86 + 6 and 6 + 88 (+23); Open symbols – calculations with Eq. (4). Arrows relate

∆ZPE values to the calculated isotope-specific channels; (b,c) Branching ratio in the 6+68

channel for resonance states in the 668 ozone plotted against energy in excess of the lowest

(6+68) dissociation threshold, E‡. In (b): Averaging over all J ≤ 40. In (c): Averaging for fixed

J = 0 (1), J = 20 (2), J = 40 (3). Arrow marks the position of threshold for 8+66.

The rates in these channels (relative to the ‘standard’ rate of 6 + 66→ 666) are
substantially different: 0.92 in the left channel vs. 1.45 in the right one [Fig. 1(a)].
The measured rates correlate with the asymmetry between the thresholds of
the two channels, i.e. with the difference of the vibrational zero-point energies
(ZPEs) of the outgoing and incoming diatoms. In the 668 case, the ZPEα of the
lighter 66 diatom exceeds the ZPEβ of the heavier 68 diatom. The recombination
from the ‘heavier’ channel in Eq. (3), where ∆ZPE = ZPEα − ZPEβ > 0, is
faster than the ‘standard’ (for which ∆ZPE = 0). Conversely, channels with
lighter diatoms (∆ZPE < 0) generally lead to slower recombinations. This almost
linear dependence of krec(α) on ∆ZPE is surprisingly steep and significantly
exceeds the expected ratio of exp(∆ZPE/kBT ) ∼ 1.1 (the threshold asymmetry,
∆ZPE . 23 cm−1, is much smaller than both kBT ≈ 200 cm−1 or the depth of
the ozone well, V0 ≈ 9000 cm−1) [3].

The ∆ZPE-dependence has been extensively investigated using statistical
models [4] and classical mechanics [5]. Quantum scattering calculations per-
formed for a non-rotating ozone (see, e.g., Refs. [5, 6]) did not provide a consistent
explanation of the observed rates. The aim of this communication is to demon-
strate that the treatment of the association step (1) in terms of resonances in
rotationally excited O3 is capable of reproducing the experiment.176
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2 Resonance Recombination in the Strong Collision Approximation

The full quantum treatment of the reactions (1-2) is still beyond the power
of present-day computers. The problem is made tractable by first introducing
the strong collision approximation (SCA) [7] and replacing the step (2) with a
model stabilization probability. Next, the step (1) is assumed to be dominated
by isolated narrow resonances, the only stabilizable states above threshold. The
absolute thermal rate constant krec(kBT, α) becomes a sum over individual con-
tributions of resonance states, [En(J), Γn(J)], calculated for a fixed total angular
momentum J of O3 [7]:

Qr(α)krec(kBT, α) =
∑

J

(2J+1)
∑

n

Γn(α; J)
ω

ω + Γn(J)
exp(−En(J)/kBT ) (4)

Here Qr(α) is the O/O2 partition function, Γn(α; J) is the partial resonance
width in channel α, and ω is the frequency of ‘strong collisions’ with M. The
problem (1-2) reduces to calculation of near-threshold resonance states in the
isolated rotating O3. In the experimentally relevant low-pressure limit, krec ∼ ω,
and the relative rates are independent of the SCA parameter ω.

Dynamics calculations are performed using a modified version of the accurate
three-dimensional ozone potential [5] supporting ∼ 250 bound states. Shallow
van der Waals wells in the asymptotic channels are eliminated and only one
permutation is considered. The molecular Hamiltonian in Jacobi coordinates is
set in the discrete variable representation and made complex symmetric using an
optical potential in each channel α. The time-dependent Schrödinger equation is
solved and the complex eigenvalues are retrieved with filter diagonalization [8].
Only narrow states with Γn . 1 cm−1� ∆ZPE are considered. Two additional
calculations for each J are performed to estimate the partial widths Γn(α) and
Γn(β) = Γn − Γn(α) from perturbation theory. The coupling to products in the
optical Hamiltonian is slightly rescaled either in one (α) or in the other (β)
arrangement channel, and Γn(α) is evaluated from the variations, δ(α,β) Γn, of
the imaginary parts of the eigenvalues: Γn(α)/Γn = δ(α) Γn/(δ(α) Γn + δ(β) Γn).

3 Results and Discussion

Resonance spectra for J ≤ 40 are calculated for three isotopomers: 666, 668 and
667. About 6000 resonances are calculated for each molecule. The model is trust-
worthy and the relative rates based on Eq. (4) [Fig. 1(a)] agree with experiment
to within 80%. The ∆ZPE-dependence is reproduced remarkably well: The re-
combination from the ‘lighter’ channels (∆ZPE > 0) is significantly faster than
from the ‘heavier’ channels (∆ZPE < 0).

The explanation of the strong impact which tiny ∆ZPE asymmetries have
on krec(kBT ;α) is provided by Fig. 1(b,c) showing – for 668 – the branching ratio
in the lowest channel, G(6 + 68) = 〈Γ (6 + 68)/Γ 〉, versus energy in excess of the
6+68 threshold; G(6 + 68) in Fig. 1(b) is averaged over narrow energy windows
containing many resonances with all J ≤ 40. The lowest channel is preferentially
populated near threshold, G(6 + 68) ∼ 1. As energy increases, G(6 + 68) slowly
decreases and reaches the value of 0.5 – both arrangement channels become177
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statistically equivalent. The statistical limit is reached, however, only 500 cm−1

above threshold, high above ∆ZPE: The asymmetry ‘spreads’ across a broad
energy range. The effect is markedly J-dependent, as illustrated by G(6 + 68)
plotted for selected J values in Fig. 1(c). The higher J , the higher the energy, at
which the two channels equilibrate. The reason are the centrifugal barriers build-
ing up in both arrangement channels and reaching deep into continuum. Their
heights, which mark the effective thresholds, remain separated by ∼∆ZPE.
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