

Interaction Blockade and Vortices ultracold, trapped atoms and quantum dots

S.M. Reimann
 reimann@matfys.Ith.se

The first quantum dot "artificial atoms"...

Today - smaller and more regular!

Samuelson et al., Lund 2004

Many-Body Problem in a Quantum Dot

$$
H=\sum_{i=1}^{N}\left\{\frac{\boldsymbol{p}_{i}^{2}}{2 m}+U\left(\boldsymbol{r}_{i}\right)\right\}+\frac{1}{2} \sum_{i, j=1 ; i \neq j}^{N} V\left(\boldsymbol{r}_{i}, \boldsymbol{r}_{j}\right)
$$

For a review, see for example Reimann and Manninen, Rev. Mod. Phys. (2002)

Many-Body Problem in a Quantum Do†

$$
\hat{V}_{e e}=\frac{e^{2}}{4 \pi \epsilon} \sum_{i<j}^{N_{c}} \frac{1}{\left|\vec{r}_{i}-\hat{r}_{j}\right|}
$$

Numerically exact many-body spectra for quantum dots with few electrons
D. Pfannkuche et al., PRB (1993)

For a review, see for example Reimann and Manninen, Rev. Mod. Phys. (2002)

Tarucha et al., PRL, 1996 in the transport through the dot structure

Gaps and Interaction Blockade

The fundamental gap in an N-body system:

$$
E_{g}(N)=E(N+1)-2 E(N)+E(N-1)
$$

Often approximated by density functional theory (DFT)
The Kohn-Sham gap is calculated from the Kohn-Sham eigenvalues of the N-body system:

$$
E_{g}^{\mathrm{KS}}=\varepsilon_{N+1}(N)-\varepsilon_{N}(N)
$$

In general a very poor approximation to E_{g}

HOMO-LUMO
 Gap

The exchange-correlation gap

E_{g}^{KS} ignores the exchange-correlation gap

$$
\Delta_{x c} \equiv E_{g}-E_{g}^{\mathrm{KS}}=\left.\frac{\delta E_{x c}[n]}{\delta n(\mathbf{r})}\right|_{N+\eta}-\left.\frac{\delta E_{x c}[n]}{\delta n(\mathbf{r})}\right|_{N-\eta}
$$

$\Delta_{x c}$ describes the gap that opens upon addition of a single particle to the system.

It disappears in the absence of interactions.

$\Delta_{x c}$ and Interaction Blockade

Usually, Coulomb blockade is modelled by a classical capacitance:

$$
E_{g}=\Delta \varepsilon+\frac{e^{2}}{C}
$$

Alternatively, $\Delta_{x c}$ can be associated with blockade:

$$
E_{g}=E_{g}^{\mathrm{KS}}+\Delta_{x c}
$$

Blockade phenomena may be ubiquitous and occur whenever there is $a \Delta_{x c}$ th cold atoms?

Bosonic Atoms in Optical Lattices

 with asymmetric wells"Single Site"

Asymmetric well with "bias"

P. Cheinet et al., PRL, 2008

For a discussion of interaction blockade, see Capelle et al., PRL (2008)

"Quantum dots with atoms" fermions with contact interactions

$\hat{H}=\sum_{i=1}^{N}\left(-\frac{\hbar^{2}}{2 M} \nabla_{i}^{2}+\frac{1}{2} M \omega_{\perp}^{2} \rho_{i}^{2}+\frac{1}{2} M \omega_{z} z_{i}^{2}\right) \pm \frac{4 \pi \hbar^{2} a}{2} \sum_{i N e e^{2} s_{j}}^{N} \dot{s o n}_{j}($ regular
Solved by
Configuration Interaction Method

"Quantum dots with atoms" shell structure and Hund's rules

M. Rontani, J. Armstrong et al., recent results
... and pairing: Odd-even oscillations in "blockade spectra"?

Seniority model gives a similar result!

attractive interactions

Excitation spectra for $\mathrm{N}=8$ trapped fermions

Rontani et al., to be publ. (2008)

Angular momentum M

Pairing in "atomic" quantum dots

 with attractive interactions
M. Rontani, J. Armstrong et al., recent results

Conditional Probabilities fix one particle, look at probability to find the others
?

Diagonalisation in the Lowest Landau Level

$$
\hat{H}=\sum_{i=1}^{N}\left(-\frac{\hbar^{2}}{2 M} \nabla_{i}^{2}+\frac{1}{2} M \omega_{\perp}^{2} \rho_{i}^{2}+\frac{1}{2} M \omega_{z} z_{i}^{2}\right)+\quad \frac{e^{2}}{4 \pi \epsilon} \sum_{i<j}^{N_{e}} \frac{1}{\left|\frac{\vec{r}_{i}}{}-\hat{\vec{r}}_{j}\right|}
$$

Diagonalize for fixed particle number N and total angular momentum L
Lowest Landau Level: no radial nodes, non-negative angular momentum m
basis states $\Phi_{0 m}(\rho, \varphi, z) \propto(\rho)^{|m|} e^{-\rho^{2} / 2} e^{i m \varphi} \phi_{0}(z)$

ROTATION $\hat{=}$ MAGNETIC FIELD

$L=\sum_{i=1}^{N} m_{i}$
total angular momentum is still a good quantum number SPIN is not considered yet

Repulsive

Interactions

Fermion ground state

 $\mathrm{L}_{\text {MID }}=\mathrm{N}(\mathrm{N}-1) / 2$$$
-\quad-\quad-\quad \text { - }
$$

Boson ground state
$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$
$L_{b e c}=0$

"YRAST" SPECTRUM, here for 8 particles In Lowest Landau Level (LLL): $<V_{\text {int }}>=E-\hbar \omega(N+L)$

FERMIONS

$$
L_{f e r}=L_{b o s}+\frac{N(N-1)}{2}=L_{b o s}+28
$$

BOSONS

"+" short-range "+" coulomb

Pair Correlations for trapped bosons

Conditional Probabilities - fix one particle, look at probability to find the others

[^0]

Vortices in BEC's that are set rotating:

Parabolic trap with $N=8$ electrons in LLL

Added point perturbation $\mathrm{V}=\alpha \bar{\delta}(\mathrm{r}-\mathrm{a})$ breaking the rotational symmetry, shown are the densities in the perturbed system

J. Christensson et al., Few Body Phys. (2008)

Parabolic trap with $N=8$ electrons in LLL
Added point perturbation $\mathrm{V}=\alpha \bar{\delta}(\mathrm{r}-\mathrm{a})$ breaking the rotational symmetry, shown are the densities in the perturbed system

J. Christensson et al., Few Body Phys. (2008)

Bosons, two vortices

CUSPS!

FERMION AND BOSON SPECTRA COMPARED

 (smooth background subtracted)Cusps due to vortex formation at small L, close to MDD

FERMIONS

r
$\mathrm{N}=20, \mathrm{~L}=224$
(second excited state, 2 vortices)

Density: $n(r)$

Current density: $\vec{j}(r)$

Velocity field: $\vec{j}(r) / n(r)$

Vorticity:

$$
\vec{\nu}(r)=\nabla \times\left(\frac{\vec{j}(r)}{n(r)}\right)
$$

(only z-component $\nu_{z}(r) \neq 0$)

FERMIONS

r
$\mathrm{N}=20, \mathrm{~L}=224$
second excited state,
2 vortices

BOSONS

r
$\mathrm{N}=20, \mathrm{~L}=34$
ground state,
2 vortices

Diagonalisation in the Lowest Landau Level

$$
\hat{H}=\sum_{i=1}^{N}\left(-\frac{\hbar^{2}}{2 M} \nabla_{i}^{2}+\frac{1}{2} M \omega_{\perp}^{2} \rho_{i}^{2}+\frac{1}{2} M \omega_{z} z_{i}^{2}\right)+\frac{4 \pi \hbar^{2} a}{2} \sum_{i, j=1, i \neq j}^{N} \delta\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)-\mathrm{L} \cdot \Omega
$$

two components:

$$
|\Psi\rangle=\left|\Psi_{A}\right\rangle \otimes\left|\Psi_{B}\right\rangle
$$

"equivalent" but distinguishable (similar to isospin; here more likely to be different hyperfine states)
equal masses
equal scattering lengths

$$
\begin{aligned}
& M_{A}=M_{B} \\
& a_{A A}=a_{B B}=a_{A B}
\end{aligned}
$$

Coreless Vortices in rotating Bose gases

 see also Kasamatsu et al, (2005); Bargi et al., 2007, 2008

Coreless Vortices in rotating Bose gases

 see also Kasamatsu et al, (2005), Bargi et al., 2007
Equal populations:

SUMMARY

Many analogies between quantum dots, and cold, trapped atoms!

- "Interaction blockade" with atoms
- Fermions in traps - from Hund's rules to pairing
- Vortices may form with bosons AND (repulsive) fermions (for example, in a rotating atom trap, or in a quantum dot at strong fields)

This also applies to two-component systems! (Coreless Vortices in quantum dots with spin)

THANKS to

G. Kavoulakis,
K. Kärkkäinen,
Y. Yu, M. Borgh,
M.Toreblad, and J. Christensson, Lund, LTH
B. Mottelson, Copenhagen
M. Manninen and M. Koskinen, Jyväskylä, JyFL
H. Saarikoski and A. Harju, HUT, Finland

[^0]: J. Christensson et al., Few Body Phys. (2008)

