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Relativistic Hydrogenic Atom (Ion) in Strong
Homogeneous Magnetic Field

Constant magnetic field Bez in z-direction; ez = (0, 0, 1);
r = (x , y , z) ∈ R3

DB = DB
0 −

γ

|r | , γ = αZ

DB
0 = α · (i−1∇r + A

)
+ β;

A =
1

2
Bez ∧ r ;

α = (αx , αy , αz), β: Dirac-matrices

[Energy]= mc2; [Length] = ~
mc ; [B] = m2c2

|e|~ ' 4.4109 tesla

[DB , Jz ] = 0, Jz = Lz + Sz ⇒ restrict to Jz = Lz + Sz = −1/2
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Questions, I

I Spectral properties for large B - Stability, non-empty discrete
spectrum?

I Existence of effective one-dimensional Hamiltonian(s)
approximating DB in norm-resolvent sense as B →∞?
(Parallel to non-relativistic case where there is a hierarchy
effective one-dim potentials including the δ and the
regularized 1-dim Coulomb potential)

I Possible Interest: singular potentials like δ-potential, 1-dim
Coulomb, occur as natural limits of more physical models

I Mathematically: defining a Hamiltonian with singular
potential amounts to finding self-adjoint extension of the
operator defined away of the singularity through appropriate
B.C. at the singularity (cf. Kurasov’s talk on monday for δ,
∇δ in R3)

I Limiting procedure will single out some natural extension
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Questions, II

I Dolbeault, Esteban & Loss (2006): by variational argument
show disappearance of lowest eigenvalue in (−1, 1) into
negative continuous spectrum for sufficiently large B

I Does the discrete spectrum remain non-empty, or does the
atom become unstable?

I Interpretation? QED-effects like pair creation?

Method: essentially perturbative, starting from DB
0 with Coulomb

term as perturbation

DB
0 = DB

0,tr + DB
0,//

transverse resp. parallel Dirac operator (to magnetic field)
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”Free” Dirac operator DB
0 :

(DB
0,tr )

2 = |i−1∇x ,y + Ax ,y |2 + σzB ⊗ IC2

magnetic Pauli in dimension 2 with discrete spectrum: 2nB,
n = 0, 1, . . . (Landau levels)

ΠL := Projection onto Lowest Landau Level

= |χB
0 〉〈χB

0 |




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1


 (recall Jz = −1/2)

χB
0 (x , y) =

(
B

2π

)1/2

e−Bρ2/4

Fundamental Property: |DB
0,tr | ≥

√
2B on Im(ΠL)

⊥
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Adiabatic Approximation

Assume: to 1-st approximation. electrons ”frozen” in lowest
Landau orbits (with Jz = −1/2) in directions perpendicular to the
field

DB Ã ΠLDBΠL =: dB
L

dB
L = d0,z + V B

L (z)

Here:

d0,z = σ1pz + σ3m =

(
m pz

pz −m

)
(free Dirac in dim. 1)

V B
L (z) := −γ〈χB

0 (x , y)| 1

|r | |χ
B
0 〉 =

√
BV 1

L (
√

Bz)

where

V 1
L (z) = −γ

∫ ∞

0

e−u

√
2u + z2

du.
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Effective Adiabatic Hamiltonian: preview

I Eigenvalue problem for dB
L : not directly analytically solvable

⇒ we try to further simplify for large B

I Potential
√

BV 1(
√

Bz): looks like δ-family, except that
V 1(z) ' 1/|z | at ±∞ and therefore not integrable over R

I For |z | 6= 0:
√

BV 1(
√

Bz) → 1/|z | as B →∞ Coulomb in
dimension 1: needs to be regularized in 0

I Will see:

d0,z +
√

BV 1(
√

Bz) 'B→∞

{
d0,z − γ

|z| z 6= 0

B.C. in 0 (B-dependent)
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Adiabatic Hamiltonian: large B asymptotics

dB
L =

(
m + V B

L pz

pz −m + VL

)

= Uπ/4

(
pz + V B

L m
m −pz + V B

L

)
U∗

π/4

Uπ/4 :=

(
1
2

√
2 −1

2

√
2

1
2

√
2 1

2

√
2

)
. Now e.g.

pz + V B
L = e−iFB

pze
iFB

FB(z) :=

∫ z

0
V B

L (y) dy =

∫ √
Bz

0
V 1

L (y) dy
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Large B-asymptotics

FB(x) ' −γsgn(z)(log(
√

B |z |) + C︸ ︷︷ ︸
:=F∞,B

+O(|z |−2))

C = (Γ′(1) + log 2)/2, where Γ′(1) = Euler’s constant.

pz + V B = e−iFB
pze

iFB ' e−iF∞,B
pze

iF∞,B
, B →∞

=

{
pz − γ

|z| , z 6= 0

B.C. in 0

B.C.: e−iγsgn(z)(log(
√

Bz)+C)u(z) ∈ H1(R) and in particular
continuous at 0 ⇒ u has jump at 0 (reminiscent of δ-potential):

u(−ε)e iγ(log(ε)+log
√

B+C) ' u(ε)e−iγ(log(ε)+log
√

B+C), ε → 0.
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Effective Adiabatic Hamiltonian

After conjugation by Uπ/4, dB
L is asymptotic, in norm resolvent

convergence sense, to:

d∞,B
L :=

(
pz − γ/|z | m

m −pz − γ/|z |
)

, z 6= 0

u = (u1, u2) ∈ Dom(d∞,B
L ) ⇔

{
uj ∈ H1(R \ 0)
uj satisfies jump-type B.C. in 0

B.C.: B-dependent and in fact periodic in log B with period 2π/γ
⇒ same true for eigen-values (if exist).

E.v. problem:

d∞,B
L u = Eu, u ∈ L2(±∞), u satisfies B.C.

explicitly solvable using Whittaker functions (Coulomb wave
functions)
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Spectrum of h∞,B
L

I Continuous spectrum : (−∞,−1] ∪ [1,∞)

I E = E (B) ∈ (−1, 1) eigenvalue iff for some k = 0,±1,±2, . . .

A±(E ) = γ log B + 2kπ

Here:

A±(E ) := Arg(F±(E ))

F±(E ) := (∓)
E + iτ/2

|E + iτ/2| · τ
2iγ · Γ(1− 2iγ)

Γ(1 + 2iγ)
· Γ(1 + iγ − κ)

Γ(1− iγ − κ)

·e−iγ(log(2)+Γ′(1))

τ := τ(E ) := 2
√

1− E 2, κ := κ(E ) := 2γE/τ
Arg(w) := princ. value of argument of w ∈ C; ∈ (−π, π] )
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Graphical Analysis
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Large B-behavior of eigen-values

I Infinitely many e.v. E0(B) < E1(B) < · · · accumulating at 1 :
En(B) ↑ 1, n →∞
En(B): decreasing in B

I Stability for all B in sense that σdiscr 6= ∅ for all B (both for

d∞,B
L and for dL

B for B suff. large)

I E0(B) → −1 if B ↑ Bc , where

γ log Bc = π + 2γ(log γ + 1)− iγΓ′(1) + Arg
(

Γ(1− 2iγ)

Γ(1 + 2iγ)

)

In particular: γ log Bc → π as γ → 0 (Dolbeault, Esteban,
Loss)

I E2(B) becomes the new lowest e.v., which decreases further
with increasing B, etc. Whole phenomenon periodic in log B,
period 2π/γ
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Problems

I What about DB? OK if γ2
√

B ¿ 1;
Otherwise: Coulomb interaction between lowest and higher
Landau-levels needs somehow to be taken into account - not
yet clear how

I Physical interpretation of bound electron-state in (−1, 1) with
negative energy?

I Physical interpretation of bound electron disappearing into
negative sea?
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