

Ettore Majorama Centre for Scientific Culture

Anna Okopińska and Przemysław Kościk

University of Humanities and Sciences KIELCE, POLAND

Outline

- Introduction
- Correlation and entanglement measures
- Two bosons in an external trap
 - harmonic confinement: exact results
 - multi-well confinement: optimized Configuration Interaction method
- Summary and outlook

N identical particles in a trap

Mezoscopic realizations - very promising for Quantum Informatics !

Non-interacting bosons

Interacting bosons

$$H(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N) = \sum_{i=1}^N \left[-\frac{\hbar^2}{2m_i}\Delta_i + V(\vec{r}_i)\right] + \sum_{i=1}^N U(\vec{r}_i, \vec{r}_j)$$

One-particle reduced density matrix

$$\rho(\vec{r},\vec{r}') = \int d\vec{\xi}_2 \dots d\vec{\xi}_N \ \Psi^*(\vec{r},\vec{\xi}_2,\dots,\vec{\xi}_N) \Psi(\vec{r}',\vec{\xi}_2,\dots,\vec{\xi}_N) \qquad Tr \ \rho = 1$$

Interacting bosons

Distribution of occupancies of natural orbitals:

Tonks-Girardeau gas

$$H(x_{1}, x_{2}, ..., x_{N}) = \sum_{i=1}^{N} \left[-\frac{\hbar^{2}}{2m} \frac{\partial^{2}}{\partial x_{i}^{2}} + V(x_{i}) \right] + g_{1D} \sum_{i>j}^{N} \delta(x_{i} - x_{j})$$

$$\mathbf{g}_{1D} \rightarrow \infty$$
L.Tonks (1936) classical T $\rightarrow 0$

M.Girardeau (1960) quantum T→0 Bose-Fermi mapping:

Bose-Fermi mapping:

$$\psi_B(x_1, x_2, \dots, x_N) = |\psi_F(x_1, x_2, \dots, x_N)| = \frac{1}{N!} \det \begin{pmatrix} \chi_1(x_1) & \chi_2(x_1) & \dots & \chi_N(x_1) \\ \chi_1(x_2) & \chi_2(x_2) & \dots & \chi_N(x_1) \\ \dots & \dots & \dots & \dots \\ \chi_1(x_N) & \chi_2(x_N) & \dots & \chi_N(x_N) \end{pmatrix}$$
strongly interacting non-interacting

2 interacting bosons

$$H(x_{1}, x_{2}) = \frac{1}{2m} \frac{\partial^{2}}{\partial x_{1}^{2}} + V(x_{1}) + \frac{1}{2m} \frac{\partial^{2}}{\partial x_{2}^{2}} + V(x_{2}) + g_{1D} \delta(x_{1} - x_{1})$$

2-particle wave function

Entanglement & Correlations

Schmidt Number:

$$\psi(x, y) = \sum_{\alpha} k_{\alpha} v_{\alpha}^{*}(x) v_{\alpha}(y)$$

number of nonvanishing terms

Non-entangled particles:		Ghirardi (2004)	
fermions:	SN=1 SN=2	one determinant	Slater number =1
bosons	SN=1,2	one permanent	"Slater" number =1

Entangled particles:

distribution of Schmidt (Slater) modes provides a measure of entanglement

Correlation measures

Entanglement measures:

von Neumann entropy $S = -Tr\rho \log_2 \rho = -\sum k_{\alpha}^2 \log_2 k_{\alpha}^2 = -\sum \lambda_{\alpha} \log_2 \lambda_{\alpha}$

linear entropy
$$L = 1 - Tr\rho^2 = 1 - \sum k_{\alpha}^4 = 1 - \sum \lambda_{\alpha}^2$$

K coefficient
$$K = \frac{1}{Tr\rho^2} = \frac{1}{1-L}$$

robustness
$$R = (Tr\phi)^2 - 1 = (\sum k_{\alpha})^2 - 1$$

11

Correlation measures

Kutzelnigg coefficient

$$\tau = \frac{\left\langle \vec{r}_{1} \cdot \vec{r}_{2} \right\rangle - \left\langle \vec{r} \right\rangle^{2}}{\left\langle \vec{r}^{2} \right\rangle - \left\langle \vec{r} \right\rangle^{2}} = \frac{\int \vec{r}_{1} \cdot \vec{r}_{2} \phi^{2}(\vec{r}_{1}, \vec{r}_{2})}{\int \vec{r}^{2} n(\vec{r})}$$
$$\frac{\left\langle \vec{r} \right\rangle}{\left\langle \vec{r} \right\rangle = 0}$$

position measured from the trap center

Correlation measures

Correlation energy $E_c = E_{mean field} - E_{exact}$

mean field for bosons:

 $\Phi_{GP}(x_1, x_2) = \psi(x_1)\psi(x_2)$

$$E_{GP}[\psi] = 2 \int_{-\infty}^{-\infty} \frac{1}{2} \left| \frac{d\psi(x)}{dx} \right|^2 + V(x) |\psi(x)|^2 + \frac{g_{1D}}{2} |\psi(x)|^4 dx.$$

$$\mu\psi(x) = -\frac{1}{2}\frac{d^2\psi(x)}{dx^2} + V(x)\psi(x) + g_{1D}|\psi(x)|^2\psi(x)$$

Gross-Pitaevski equation

$$\int |\psi(\vec{r})|^2 d\vec{r} = 1 \quad \longrightarrow \quad \mu \quad \longrightarrow \quad E_{GP} = E_{GP}[\psi]$$

Harmonic trap

$$H(x_{1}, x_{2}) = -\frac{1}{2} \frac{\partial^{2}}{\partial x_{1}^{2}} - \frac{1}{2} \frac{\partial^{2}}{\partial x_{2}^{2}} + \frac{1}{2} (x_{1}^{2} + x_{2}^{2}) + \hat{g}_{1D} \delta(x_{1} - x_{1})$$
ratio of interaction to confinement
separation of variables $H = H^{CM} + H^{r}$ ratio of interaction to confinement
 $x = \frac{1}{\sqrt{2}} (x_{1} + x_{2})$ $\psi(x_{1}, x_{2}) = \psi^{r}(x)\psi^{CM}(X)$ $\hat{g}_{1D} = \sqrt{\frac{m}{\hbar^{3}\omega}}g_{1D}$
 $x = \frac{1}{\sqrt{2}} (x_{2} - x_{1})$

CM eq: $H^{CM}\psi^{CM} = E^{CM}\psi^{CM}$ $\psi^{CM} = \frac{1}{2} \frac{\partial^{2}}{\partial X^{2}} + \frac{1}{2}X^{2}$
 $H^{CM} = -\frac{1}{2} \frac{\partial^{2}}{\partial X^{2}} + \frac{1}{2}X^{2}$

relative motion eq: $H^{r}\psi^{r} = E^{r}\psi^{r}$ $\psi^{r}(x) \propto U(\frac{1}{4}(1 - E_{m}^{r}), \frac{1}{2}, x^{2})e^{-x^{2}/2}$
 $-\frac{2}{\Gamma[(1 - E_{m}^{r})/4]} = \frac{g_{1D}}{\sqrt{2}\Gamma[(3 - 2E_{m}^{r})/4]}$

Grobe, Rzazewski, Eberly (1)[494)

Ground state of the 2-particle system

Orbital expansion

 $\psi_N(x, y) = \sum_{\alpha=0}^N k_\alpha v_\alpha^*(x) v_\alpha(y)$

 $E^{(N)} = \langle \Psi_N | H | \Psi_N \rangle / || \Psi_N ||^2$

Correlation measures

Non-harmonic confinement

$$H(x_1, x_2) = -\frac{1}{2} \frac{\partial^2}{\partial x_1^2} + V(x_1) - \frac{1}{2} \frac{\partial^2}{\partial x_2^2} + V(x_2) + g_{1D} \delta(x_1 - x_2)$$
$$V(x) = wx^2 + z_4 x^4 + z_6 x^6 + \dots$$

Optimized Configuration Interaction method

Rayleigh-Ritz
$$\phi_D(x_1, x_2) = \sum_{j \ge i}^D a_{ij} \psi_{ij}(x_1, x_2).$$
$$\psi_{ij}(x_1, x_2) = \begin{cases} \varphi_j(x_1) \varphi_j(x_2) & \text{for } i = j \\ \frac{1}{\sqrt{2}} [\varphi_i(x_1) \varphi_j(x_2) + \varphi_j(x_1) \varphi_i(x_2)] & \text{for } i \neq j \end{cases}$$
$$\varphi_i^{\Omega}(x) = \left(\frac{\sqrt{\Omega}}{\sqrt{\pi}2^i i!}\right)^{\frac{1}{2}} H_i(\sqrt{\Omega}x) e^{-\frac{\Omega x^2}{2}}.$$

optimization of Ω Principle of Minimal Sensitivity

$$\frac{\partial TrH}{\partial \Omega} = 0$$

A.O. (1987) P.K , A.O. (2007)

$$TrH = \sum_{n=0}^{(D+1)(D+2)/2} E_n(\Omega)$$

20

Non-harmonic confinement

Determining natural orbitals

$$\int \phi(x, x') v(x') dx' = k v(x)$$

 $v(x) = \sum p_n \varphi_n^{\Omega}(x)$

through the optimized CI method

$$\phi_D(x_1, x_2) = \sum_{j \ge i}^D a_{ij} \psi_{ij}(x_1, x_2).$$

$$\sum (A_{mn} - k_n \delta_{mn}) p_n = 0,$$

$$A_{mn} = \int \varphi_m^{\Omega}(x_1) \phi_D(x_1, x_2) \varphi_n^{\Omega}(x_2) dx_1 dx_{\overline{2}^{-}} \begin{cases} a_{nn} & \text{for } n = m \\ \frac{a_{nm}}{\sqrt{2}} & \text{for } m > n \\ \frac{a_{mn}}{\sqrt{2}} & \text{for } n > m \end{cases}$$
diagonalization of A $\longrightarrow k_{\alpha} \longrightarrow \lambda_{\alpha} = k_{\alpha}^2$

Double well trap $V(x) = -\frac{1}{2}x^2 + \frac{1}{10}x^4$ **Correlation measures** 2.5 E_{c} S 2 τ L R 1.5 Κ 1 0.5 2 8 10 0 6 4 attraction **g**1 d repulsion

23

Double-well trap

 $V(x) = -\frac{1}{2}x^2 + zx^4$

Von Neumann entropy

the deeper the wells, the smaler g_{1D} for which the TG behavior is achieved

Comparison of 2- and 3-well case

a > the barriers higher and wider

Summary

Ground-state properties of 2-boson systems in function of the contact interaction strength g_{1D} and the confining potential shape

HO confinement

- evolution is smooth in the entire range of \mathbf{g}_{1D} : from the attractive to the repulsive case
- various entanglement measures reveal comparable behavior in function of $\mathbf{g}_{1\mathrm{D}}$
- correlation energy shows a behavior different from other correlation measures
- mean field (GP) approach applicable only if the interparticle interaction is very weak

DOUBLE- AND TRIPLE- WELL confinement

- occupancies of natural orbitals, strongly depend on the number of potential wells
- behavior of entanglement measures is similar as in the HO confinement case
- fragmentation in non-convex confining potentials depends on the barriers height
- the value of **g**_{1D}, for which the Tonks-Girardeau regime is approximately achieved depends on the number of potential wells and on their depth: the deeper the barriers, the quickest fermionization

Outlook

Optimized Configuration Interaction method shows high efficiency in determining the Schmidt eigenspectrum of confined few-particle systems

Work in progress : application of the optimized CI method to

- excited states
- resonances
- other interaction potentials: 1/r, 1/r³,...
- N>2 bosons
- N>2 fermions QDs