How to model p-scattering using point interactions and related problems

Pavel Kurasov

Lund University, SWEDEN
October 13, 2008
(1) Fermi-Berezin-Faddeev point interaction

- Classical point interaction in \mathbb{R}^{3}
- Alternative definition
- Properties of the standard model
(2) Why p-type point interactions are impossible in $L_{2}\left(\mathbb{R}^{3}\right)$?
- How to define p-type interactions?
- Conclusions
(3) Cascade model for p-scattering
- The model space
- The differential operator
- The model
(4) Properties of the cascade model
- Spectral properties
- Scattering properties
(0) Perspectives

Classical point interaction in \mathbb{R}^{3}

Formal expression

$$
L_{\alpha}=-\Delta+\alpha \delta \equiv-\Delta+\alpha \delta\langle\delta, \cdot\rangle .
$$

Rigorous interpretation (in $L_{2}\left(\mathbb{R}^{3}\right)$):
The operator L^{γ} is defined on the functions possessing the following asymptotic expansion

$$
U(x)=\frac{u_{-}}{4 \pi|\mathbf{x}|}+u_{0}+o(1), \mathbf{x} \rightarrow 0
$$

and the "boundary conditions"

$$
u_{0}=\gamma u_{-}, \quad \gamma \in \mathbb{R} \cup\{\infty\} .
$$

The real parameters α and γ are somehow connected, but precise relation between them cannot be established without additional assumptions. ${ }^{1}$ We know only

$$
\alpha=0 \Leftrightarrow \gamma=\infty .
$$

[^0]
Alternative definition

The self-adjoint operator L^{γ} in $L_{2}\left(\mathbb{R}^{3}\right)$ is defined on the functions possessing the following representation

$$
U(x)=U_{r}(x)+u_{-} \frac{e^{-\beta|\mathbf{x}|}}{4 \pi|\mathbf{x}|}, \beta>0
$$

with

$$
U_{r} \in \operatorname{Dom}(-\Delta)\left(=W_{2}^{2}\left(\mathrm{R}^{3}\right)\right), \quad u_{-} \in \mathbb{C}
$$

and the "boundary conditions"

$$
U_{r}(0)=\left(\gamma+\frac{\beta}{4 \pi}\right) u_{1} .
$$

The parameter $\tilde{\gamma}=\gamma+\frac{\beta}{4 \pi}$ runs over $\mathbb{R} \cup\{\infty\}$ again.
We extend the domain of the original operator $-\Delta$ by adding one-dimensional subspace spanned by $\frac{e^{-\beta|x|}}{4 \pi|x|}=\frac{1}{-\Delta+\beta^{2}} \delta$, but as a compensation we need extra boundary condition. As a result the resolvent equation

$$
\left(L^{\gamma}-\lambda\right) U=F
$$

is again solvable for any $F \in L_{2}\left(\mathbb{R}^{3}\right)$ and $\Im \lambda>0$.

Properties of the standard model

- The operator L^{γ} is self-adjoint.

Properties of the standard model

- The operator L^{γ} is self-adjoint.
- The spectrum contains the absolutely continuous branch $[0, \infty)$ (inherited from the Laplacian) and at most one negative eigenvalue $E_{0}=-(4 \pi \gamma)^{2}$ provided $\gamma<0$.

Properties of the standard model

- The operator L^{γ} is self-adjoint.
- The spectrum contains the absolutely continuous branch $[0, \infty)$ (inherited from the Laplacian) and at most one negative eigenvalue $E_{0}=-(4 \pi \gamma)^{2}$ provided $\gamma<0$.
- The eigenfunction corresponding to $E_{0}=-\chi^{2}$ is spherically symmetric

$$
\Psi_{0}=\frac{e^{-\chi|\mathbf{x}|}}{4 \pi|\mathbf{x}|}, \quad \chi=-4 \pi \gamma
$$

Properties of the standard model

- The operator L^{γ} is self-adjoint.
- The spectrum contains the absolutely continuous branch $[0, \infty)$ (inherited from the Laplacian) and at most one negative eigenvalue $E_{0}=-(4 \pi \gamma)^{2}$ provided $\gamma<0$.
- The eigenfunction corresponding to $E_{0}=-\chi^{2}$ is spherically symmetric

$$
\Psi_{0}=\frac{e^{-\chi|\mathbf{x}|}}{4 \pi|\mathbf{x}|}, \quad \chi=-4 \pi \gamma
$$

- The scattered waves are

$$
V(\lambda, \mathbf{k}, \mathbf{x})=e^{i \mathbf{k} \cdot \mathbf{x}}+a(k) \frac{e^{i k|\mathbf{x}|}}{4 \pi|\mathbf{x}|}
$$

where the scattering amplitude is calculated by substituting \mathbb{V} into the boundary conditions

$$
a=a(|\mathbf{k}|)=\frac{-1}{i k / 4 \pi-\gamma} .
$$

Properties of the standard model

- The operator L^{γ} is self-adjoint.
- The spectrum contains the absolutely continuous branch $[0, \infty)$ (inherited from the Laplacian) and at most one negative eigenvalue $E_{0}=-(4 \pi \gamma)^{2}$ provided $\gamma<0$.
- The eigenfunction corresponding to $E_{0}=-\chi^{2}$ is spherically symmetric

$$
\Psi_{0}=\frac{e^{-\chi|\mathbf{x}|}}{4 \pi|\mathbf{x}|}, \quad \chi=-4 \pi \gamma
$$

- The scattered waves are

$$
V(\lambda, \mathbf{k}, \mathbf{x})=e^{i \mathbf{k} \cdot \mathbf{x}}+a(k) \frac{e^{i k|\mathbf{x}|}}{4 \pi|\mathbf{x}|}
$$

where the scattering amplitude is calculated by substituting \mathbb{V} into the boundary conditions

$$
a=a(|\mathbf{k}|)=\frac{-1}{i k / 4 \pi-\gamma} .
$$

- The scattering amplitude a does not depend on the direction of the incoming wave \Rightarrow the scattering matrix is non-trivial in the s-channel only.

Why p-type point interactions are impossible in L_{2} ?

(1) All self-adjoint extensions of the operator $-\left.\Delta\right|_{C_{0}^{\infty}\left(\mathbb{R}^{3} \backslash\{0\}\right)}$ coincide with the family L^{γ}.
representation
where g_{1} has p-symmetry, for example

(3) It is natural to expect that the boundary conditions take the form

Why p-type point interactions are impossible in L_{2} ?

(1) All self-adjoint extensions of the operator $-\left.\Delta\right|_{c_{0}^{\infty}\left(\mathbb{R}^{3} \backslash\{0\}\right)}$ coincide with the family L^{γ}.
(2) It is expected that the operator is defined on the functions possessing the representation

$$
U_{r}(x)+u_{1} g_{1},
$$

where g_{1} has p-symmetry, for example

$$
g_{1}=\frac{\partial}{\partial x_{1}} \frac{e^{-\beta_{1}|\mathbf{x}|}}{4 \pi|\mathbf{x}|}=-\frac{\beta_{1}|\mathbf{x}|+1}{4 \pi|\mathbf{x}|^{3}} x_{1} \notin L_{2}\left(\mathbb{R}^{3}\right) .
$$

Why p-type point interactions are impossible in L_{2} ?

(1) All self-adjoint extensions of the operator $-\left.\Delta\right|_{c_{0}^{\infty}\left(\mathbb{R}^{3} \backslash\{0\}\right)}$ coincide with the family L^{γ}.
(2) It is expected that the operator is defined on the functions possessing the representation

$$
U_{r}(x)+u_{1} g_{1},
$$

where g_{1} has p-symmetry, for example

$$
g_{1}=\frac{\partial}{\partial x_{1}} \frac{e^{-\beta_{1}|\mathbf{x}|}}{4 \pi|\mathbf{x}|}=-\frac{\beta_{1}|\mathbf{x}|+1}{4 \pi|\mathbf{x}|^{3}} x_{1} \notin L_{2}\left(\mathbb{R}^{3}\right) .
$$

(3) It is natural to expect that the boundary conditions take the form

$$
\frac{\partial}{\partial x_{1}} U_{r}(0)=\tilde{\gamma} u_{1},
$$

but if U_{r} just belongs to the domain of $-\Delta$, then the value $\frac{\partial}{\partial x_{1}} U_{r}(0)$ is not properly defined!

Conclusions

In order to define p-type point interactions one has to

- extend the original Hilbert space $\left(L_{2}\left(\mathbb{R}^{3}\right)\right)$ by adding elements like g_{1},
- use smoother functions in order to make sense of the boundary condition.

Conclusions

In order to define p-type point interactions one has to

- extend the original Hilbert space $\left(L_{2}\left(\mathbb{R}^{3}\right)\right)$ by adding elements like g_{1},
- use smoother functions in order to make sense of the boundary condition.

The first problem can be resolved by just adding to the origianl Hilbert space a finite dimensional space.

Conclusions

In order to define p-type point interactions one has to

- extend the original Hilbert space $\left(L_{2}\left(\mathbb{R}^{3}\right)\right)$ by adding elements like g_{1},
- use smoother functions in order to make sense of the boundary condition.

The first problem can be resolved by just adding to the origianl Hilbert space a finite dimensional space.
The second problem can be resolved by considering the Sobolev space $W_{2}^{1}\left(\mathbb{R}^{3}\right)$ instead of $L_{2}\left(\mathbb{R}^{3}\right)$. The space $W_{2}^{1}\left(\mathbb{R}^{3}\right)$ is the space of all functions $f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{3}$ with the finite norm

$$
\|f\|_{W_{2}^{1}}=\|\sqrt{-\Delta+1} f\|_{L_{2}} .
$$

It is a Hilbert space and from the mathematical point of view there is no preference in using the space L_{2} instead of W_{2}^{1}.
The domain of the Laplace operator coincides with the set of functions such that

$$
\left\|(\sqrt{-\Delta+1})^{3} f\right\|<\infty
$$

Conclusions

In order to define p-type point interactions one has to

- extend the original Hilbert space $\left(L_{2}\left(\mathbb{R}^{3}\right)\right)$ by adding elements like g_{1},
- use smoother functions in order to make sense of the boundary condition.

The first problem can be resolved by just adding to the origianl Hilbert space a finite dimensional space.
The second problem can be resolved by considering the Sobolev space $W_{2}^{1}\left(\mathbb{R}^{3}\right)$ instead of $L_{2}\left(\mathbb{R}^{3}\right)$. The space $W_{2}^{1}\left(\mathbb{R}^{3}\right)$ is the space of all functions $f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{3}$ with the finite norm

$$
\|f\|_{W_{2}^{1}}=\|\sqrt{-\Delta+1} f\|_{L_{2}} .
$$

It is a Hilbert space and from the mathematical point of view there is no preference in using the space L_{2} instead of W_{2}^{1}.
The domain of the Laplace operator coincides with the set of functions such that

$$
\left\|(\sqrt{-\Delta+1})^{3} f\right\|<\infty
$$

Important fact (Sobolev embedding theorem)
Every function f of three variables, such that $\left\|(\sqrt{-\Delta+1})^{3} f\right\|<\infty$ has continuous first derivatives, i.e. $\frac{\partial}{\partial x_{j}} f(0)$ are perfectly defined.

The model space

Our aim is to get a model for p-type spherically symmetric point interaction. One may think about giving definition for the following formal operator

$$
-\Delta+\sum_{i=1}^{3} \alpha \partial_{x_{i}} \delta\left\langle\partial_{x_{i}} \delta, \cdot\right\rangle
$$

The model space

Our aim is to get a model for p-type spherically symmetric point interaction. One may think about giving definition for the following formal operator

$$
-\Delta+\sum_{i=1}^{3} \alpha \partial_{x_{i}} \delta\left\langle\partial_{x_{i}} \delta, \cdot\right\rangle .
$$

Introduce the notation $g_{j}(\lambda)=\frac{\partial}{\partial x_{j}} \frac{e^{i k|\mathbf{x}|}}{4 \pi|\mathbf{x}|}=\frac{i k|\mathbf{x}|-1}{4 \pi|\mathbf{x}|^{3}} e^{i k|\mathbf{x}|} x_{j}$.

The model space

Our aim is to get a model for p-type spherically symmetric point interaction. One may think about giving definition for the following formal operator

$$
-\Delta+\sum_{i=1}^{3} \alpha \partial_{x_{i}} \delta\left\langle\partial_{x_{i}} \delta, \cdot\right\rangle
$$

Introduce the notation $g_{j}(\lambda)=\frac{\partial}{\partial x_{j}} \frac{e^{i k|\mathbf{x}|}}{4 \pi|\mathbf{x}|}=\frac{i k|\mathbf{x}|-1}{4 \pi|\mathbf{x}|^{3}} e^{i k|x|} x_{j}$. The new Hilbert space can be chosen equal to

$$
\mathbb{H}=W_{2}^{1}\left(\mathbb{R}^{3}\right)+\dot{L}\left\{g_{1}\left(-\beta_{1}^{2}\right), g_{2}\left(-\beta_{1}^{2}\right), g_{3}\left(-\beta_{1}^{2}\right)\right\} \ni \mathbb{U}=U+\sum_{i=1}^{3} u_{1}^{i} g_{i}\left(-\beta_{1}^{2}\right)
$$

The model space

Our aim is to get a model for p-type spherically symmetric point interaction. One may think about giving definition for the following formal operator

$$
-\Delta+\sum_{i=1}^{3} \alpha \partial_{x_{i}} \delta\left\langle\partial_{x_{i}} \delta, \cdot\right\rangle
$$

Introduce the notation $g_{j}(\lambda)=\frac{\partial}{\partial x_{j}} \frac{e^{i k|\mathbf{x}|}}{4 \pi|\mathbf{x}|}=\frac{i k|\mathbf{x}|-1}{4 \pi|\mathbf{x}|^{3}} e^{i k|x|} x_{j}$. The new Hilbert space can be chosen equal to

$$
\mathbb{H}=W_{2}^{1}\left(\mathbb{R}^{3}\right)+\dot{L}\left\{g_{1}\left(-\beta_{1}^{2}\right), g_{2}\left(-\beta_{1}^{2}\right), g_{3}\left(-\beta_{1}^{2}\right)\right\} \ni \mathbb{U}=U+\sum_{i=1}^{3} u_{1}^{i} g_{i}\left(-\beta_{1}^{2}\right)
$$

with the norm $\|\mathbb{U}\|_{\mathbb{H}}^{2}=\|U\|_{W_{2}^{1}}^{2}+\gamma\left\|\mathbf{u}_{1}\right\|^{2}$.

The model space

Our aim is to get a model for p-type spherically symmetric point interaction. One may think about giving definition for the following formal operator

$$
-\Delta+\sum_{i=1}^{3} \alpha \partial_{x_{i}} \delta\left\langle\partial_{x_{i}} \delta, \cdot\right\rangle .
$$

Introduce the notation $g_{j}(\lambda)=\frac{\partial}{\partial x_{j}} \frac{e^{i k|\mathbf{x}|}}{4 \pi|\mathbf{x}|}=\frac{i k|\mathbf{x}|-1}{4 \pi|\mathbf{x}|^{3}} e^{i k|\mathbf{x}|} x_{j}$. The new Hilbert space can be chosen equal to

$$
\mathbb{H}=W_{2}^{1}\left(\mathbb{R}^{3}\right) \dot{+} \mathcal{L}\left\{g_{1}\left(-\beta_{1}^{2}\right), g_{2}\left(-\beta_{1}^{2}\right), g_{3}\left(-\beta_{1}^{2}\right)\right\} \ni \mathbb{U}=U+\sum_{i=1}^{3} u_{1}^{i} g_{i}\left(-\beta_{1}^{2}\right)
$$

with the norm $\|\mathbb{U}\|_{\mathbb{H}}^{2}=\|U\|_{W_{2}^{1}}^{2}+\gamma\left\|\mathbf{u}_{1}\right\|^{2}$. Real positive numbers β_{1} and γ are free parameters of the model. Every function from this space possesses the representation

$$
\mathbb{U}=U-\frac{\beta_{1}|\mathbf{x}|+1}{4 \pi|\mathbf{x}|^{3}} e^{-\beta_{1}|\mathbf{x}|} \mathbf{x} \cdot \mathbf{u}_{1}
$$

The differential operator in \mathbb{H}

The model operator \mathbb{A} should be defined so that it acts as Laplacian outside the origin, namely

$$
\mathbb{A} \mathbb{U}=-\left(\mathbb{U}_{x_{1} x_{1}}+\mathbb{U}_{x_{2} x_{2}}+\mathbb{U}_{x_{3} x_{3}}\right), \quad \mathbf{x} \neq 0 .
$$

The differential operator in \mathbb{H}

The model operator \mathbb{A} should be defined so that it acts as Laplacian outside the origin, namely

$$
\mathbb{A} \mathbb{U}=-\left(\mathbb{U}_{x_{1} x_{1}}+\mathbb{U}_{x_{2} x_{2}}+\mathbb{U}_{x_{3} x_{3}}\right), \quad \mathbf{x} \neq 0 .
$$

Consider another free parameter $\beta \neq \beta_{1}$ and introduce

$$
G_{i}=\frac{1}{\beta_{1}^{2}-\beta^{2}}\left(g_{i}\left(-\beta^{2}\right)-g_{i}\left(-\beta_{1}^{2}\right)\right) .
$$

The Laplacian acts on such function as follows

$$
\begin{aligned}
-\Delta G_{i} & =-\Delta\left(\frac{1}{\beta_{1}^{2}-\beta^{2}}\left(g_{i}\left(-\beta^{2}\right)-g_{i}\left(-\beta_{1}^{2}\right)\right)\right) \\
& =\frac{1}{\beta_{1}^{2}-\beta^{2}}\left(-\beta^{2} g_{i}\left(-\beta^{2}\right)+\beta_{1}^{2} g_{i}\left(-\beta_{1}^{2}\right)\right) \\
& =-\beta^{2} G_{i}+g_{i}\left(-\beta_{1}^{2}\right) .
\end{aligned}
$$

The differential operator in \mathbb{H}

The model operator \mathbb{A} should be defined so that it acts as Laplacian outside the origin, namely

$$
\mathbb{A} \mathbb{U}=-\left(\mathbb{U}_{x_{1} x_{1}}+\mathbb{U}_{x_{2} x_{2}}+\mathbb{U}_{x_{3} x_{3}}\right), \quad \mathbf{x} \neq 0 .
$$

Consider another free parameter $\beta \neq \beta_{1}$ and introduce

$$
G_{i}=\frac{1}{\beta_{1}^{2}-\beta^{2}}\left(g_{i}\left(-\beta^{2}\right)-g_{i}\left(-\beta_{1}^{2}\right)\right) .
$$

The Laplacian acts on such function as follows

$$
\begin{aligned}
-\Delta G_{i} & =-\Delta\left(\frac{1}{\beta_{1}^{2}-\beta^{2}}\left(g_{i}\left(-\beta^{2}\right)-g_{i}\left(-\beta_{1}^{2}\right)\right)\right) \\
& =\frac{1}{\beta_{1}^{2}-\beta^{2}}\left(-\beta^{2} g_{i}\left(-\beta^{2}\right)+\beta_{1}^{2} g_{i}\left(-\beta_{1}^{2}\right)\right) \\
& =-\beta^{2} G_{i}+g_{i}\left(-\beta_{1}^{2}\right) .
\end{aligned}
$$

The functions G_{i} and g_{i} form a sort of cascade and the operator $-\Delta+\beta^{2}$ is a cascade operator

$$
\left(-\Delta+\beta^{2}\right) G_{i}=g_{i}, \quad\left(-\Delta+\beta_{1}^{2}\right) g_{i}=\partial_{x_{i}} \delta .
$$

Definition of the operator

The operator $\mathbb{A}_{\theta}, \theta \in[0, \pi)$ is defined on the functions possessing the representation

$$
\begin{aligned}
\mathbb{U}= & U_{r}+\sum_{i=1}^{3} u^{i} G_{i}\left(-\beta^{2}\right)+\sum_{i=1}^{3} u_{1}^{i} g_{i}\left(-\beta_{1}^{2}\right), \\
& U_{r} \in W_{2}^{3}\left(\mathbb{R}^{3}\right), \mathbf{u}, \mathbf{u}_{1} \in \mathbb{C}^{3},
\end{aligned}
$$

Definition of the operator

The operator $\mathbb{A}_{\theta}, \theta \in[0, \pi)$ is defined on the functions possessing the representation

$$
\begin{aligned}
\mathbb{U}= & U_{r}+\sum_{i=1}^{3} u^{i} G_{i}\left(-\beta^{2}\right)+\sum_{i=1}^{3} u_{1}^{i} g_{i}\left(-\beta_{1}^{2}\right), \\
& U_{r} \in W_{2}^{3}\left(\mathbb{R}^{3}\right), \mathbf{u}, \mathbf{u}_{1} \in \mathbb{C}^{3},
\end{aligned}
$$

and the boundary conditions

$$
\sin \theta\left(\nabla U_{r}(0)+\gamma \mathbf{u}_{1}\right)=\cos \theta \mathbf{u}
$$

Definition of the operator

The operator $\mathbb{A}_{\theta}, \theta \in[0, \pi)$ is defined on the functions possessing the representation

$$
\begin{aligned}
\mathbb{U}= & U_{r}+\sum_{i=1}^{3} u^{i} G_{i}\left(-\beta^{2}\right)+\sum_{i=1}^{3} u_{1}^{i} g_{i}\left(-\beta_{1}^{2}\right), \\
& U_{r} \in W_{2}^{3}\left(\mathbb{R}^{3}\right), \mathbf{u}, \mathbf{u}_{1} \in \mathbb{C}^{3},
\end{aligned}
$$

and the boundary conditions

$$
\sin \theta\left(\nabla U_{r}(0)+\gamma \mathbf{u}_{1}\right)=\cos \theta \mathbf{u}
$$

by the formula

$$
\begin{gathered}
\mathbb{A}_{\theta}\left(U_{r}+\sum_{i=1}^{3} u^{i} G_{i}\left(-\beta^{2}\right)+\sum_{i=1}^{3} u_{1}^{i} g_{i}\left(-\beta_{1}^{2}\right)\right) \\
=-\Delta U_{r}-\beta^{2} \sum_{i=1}^{3} u^{i} G_{i}\left(-\beta^{2}\right)+\sum_{i=1}^{3} g_{i}\left(-\beta_{1}^{2}\right)\left(\mathbf{x} \cdot \mathbf{u}-\beta_{1}^{2} \mathbf{x} \cdot \mathbf{u}_{1}\right) .
\end{gathered}
$$

Properties of the operator

- The operator \mathbb{A}_{θ} is self-adjoint in the Hilbert space $\mathbb{H}=W_{2}^{1}\left(\mathbb{R}^{3}\right) \oplus \mathbb{C}^{3}$. reflections in planes passing through the origin.
- Spectral proverties of the operator are encoded in the following rational
function

Properties of the operator

- The operator \mathbb{A}_{θ} is self-adjoint in the Hilbert space $\mathbb{H}=W_{2}^{1}\left(\mathbb{R}^{3}\right) \oplus \mathbb{C}^{3}$.
- The operator \mathbb{A}_{θ} commutes with the rotations around the origin and reflections in planes passing through the origin.
function

Properties of the operator

- The operator \mathbb{A}_{θ} is self-adjoint in the Hilbert space $\mathbb{H}=W_{2}^{1}\left(\mathbb{R}^{3}\right) \oplus \mathbb{C}^{3}$.
- The operator \mathbb{A}_{θ} commutes with the rotations around the origin and reflections in planes passing through the origin.
- Spectral properties of the operator are encoded in the following rational function

$$
Q(\lambda)=\frac{1}{12 \pi}\left\{i k+\frac{\beta_{1}^{2}}{i k-\beta_{1}}+\beta+\frac{\beta_{1}^{2}}{\beta+\beta_{1}}\right\}+\frac{\gamma}{-\beta_{1}^{2}-k^{2}} .
$$

Properties of the operator

- The operator \mathbb{A}_{θ} is self-adjoint in the Hilbert space $\mathbb{H}=W_{2}^{1}\left(\mathbb{R}^{3}\right) \oplus \mathbb{C}^{3}$.
- The operator \mathbb{A}_{θ} commutes with the rotations around the origin and reflections in planes passing through the origin.
- Spectral properties of the operator are encoded in the following rational function

$$
Q(\lambda)=\frac{1}{12 \pi}\left\{i k+\frac{\beta_{1}^{2}}{i k-\beta_{1}}+\beta+\frac{\beta_{1}^{2}}{\beta+\beta_{1}}\right\}+\frac{\gamma}{-\beta_{1}^{2}-k^{2}} .
$$

- The resolvent of the operator on $W_{2}^{1} \subset \mathbb{H}$ is given by

$$
\begin{aligned}
& \left(\mathbb{A}_{\theta}-\lambda\right)^{-1} U=\frac{1}{-\Delta-\lambda} U \\
& -\frac{1}{\left(k^{2}+\beta_{1}^{2}\right)(Q(\lambda)+\cot \theta)}\left(\int_{\mathbb{R}^{3}} \frac{(i k|\mathbf{y}|-1) e^{i k|\mathbf{y}|}}{4 \pi|\mathbf{y}|^{3}} \mathbf{y}^{t} U(\mathbf{y}) d^{3} \mathbf{y}\right) \frac{(i k|\mathbf{x}|-1) e^{i k|\mathbf{x}|}}{4 \pi|\mathbf{x}|^{3}} \mathbf{x} .
\end{aligned}
$$

Spectral properties

The model operator may have several bound states. Each one has mutiplicity 3. The corresponding eigenfunctions are

$$
\mathbb{V}_{\lambda_{0}}=-\frac{\chi|\mathbf{x}|+1}{4 \pi|\mathbf{x}|^{3}} e^{-\chi|\mathbf{x}|} \mathbf{x} \cdot \mathbf{a}, \quad \lambda_{0}=-\chi^{2}
$$

where $\chi>0$ is a solution to the equation

$$
Q\left(-\chi^{2}\right)+\cot \theta=0 .
$$

To prove this fact one writes the function \mathbb{V} as a linear combination

$$
\mathbb{V}=\sum_{i=1}^{3} g_{i} a_{i}+\sum_{i=1}^{3} G_{i} b_{i}+V
$$

where $V \in W_{2}^{3}\left(\mathbb{R}^{3}\right)$. Substituting into the boundary conditions one gets the dispersion equation.

Scattering properties

- Absolutely continuous spectrum covers the branch $[0, \infty)$ inherited from the Laplacian.
- The scattering amplitude depends on the angle between incoming and outgoing waves.

Scattering properties

- Absolutely continuous spectrum covers the branch $[0, \infty)$ inherited from the Laplacian.
- Continuous spectrum (generalized) eigenfunctions are

$$
\mathbb{V}(\lambda, \mathbf{k} / k, \mathbf{x})=e^{i \mathbf{k} \cdot \mathbf{x}}+\frac{i}{\left(k^{2}+\beta_{1}^{2}\right)\left(Q\left(k^{2}\right)+\cot \theta\right)} \frac{i k|\mathbf{x}|-1}{4 \pi|\mathbf{x}|^{3}} e^{i k|\mathbf{x}|} \mathbf{x} \cdot \mathbf{k} \lambda>0,
$$

Scattering properties

- Absolutely continuous spectrum covers the branch $[0, \infty)$ inherited from the Laplacian.
- Continuous spectrum (generalized) eigenfunctions are

$$
\mathbb{V}(\lambda, \mathbf{k} / k, \mathbf{x})=e^{i \mathbf{k} \cdot \mathbf{x}}+\frac{i}{\left(k^{2}+\beta_{1}^{2}\right)\left(Q\left(k^{2}\right)+\cot \theta\right)} \frac{i k|\mathbf{x}|-1}{4 \pi|\mathbf{x}|^{3}} e^{i k|\mathbf{x}|} \mathbf{x} \cdot \mathbf{k} \lambda>0,
$$

- The scattering amplitude depends on the angle between incoming and outgoing waves.
The scattering matrix is non-trivial in the p-channel!

Scattering properties

- Absolutely continuous spectrum covers the branch $[0, \infty)$ inherited from the Laplacian.
- Continuous spectrum (generalized) eigenfunctions are

$$
\mathbb{V}(\lambda, \mathbf{k} / k, \mathbf{x})=e^{i \mathbf{k} \cdot \mathbf{x}}+\frac{i}{\left(k^{2}+\beta_{1}^{2}\right)\left(Q\left(k^{2}\right)+\cot \theta\right)} \frac{i k|\mathbf{x}|-1}{4 \pi|\mathbf{x}|^{3}} e^{i k|\mathbf{x}| \mathbf{x} \cdot \mathbf{k} \lambda>0,}
$$

- The scattering amplitude depends on the angle between incoming and outgoing waves.
The scattering matrix is non-trivial in the p-channel!
- New type of eigenfunction expansions can be obtained by integrating the jump of the resolvent of \mathbb{A}_{θ} on the real axis.

Perspectives

- Developed model can be used to describe scattering processes for atoms where p-electrons play an essential role;

Perspectives

- Developed model can be used to describe scattering processes for atoms where p-electrons play an essential role;
- One may combine s - and p-type point interactions;

Perspectives

- Developed model can be used to describe scattering processes for atoms where p-electrons play an essential role;
- One may combine s - and p-type point interactions;
- The model can be generalized to include higher singularities: d, f, \ldots orbitals;

Perspectives

- Developed model can be used to describe scattering processes for atoms where p-electrons play an essential role;
- One may combine s - and p-type point interactions;
- The model can be generalized to include higher singularities: d, f, \ldots orbitals;
- Model all atoms from Mendeleev's table!
- Few-body problems;

Perspectives

- Developed model can be used to describe scattering processes for atoms where p-electrons play an essential role;
- One may combine s - and p-type point interactions;
- The model can be generalized to include higher singularities: d, f, \ldots orbitals;
- Model all atoms from Mendeleev's table!
- The model can be used to calculate electron levels in simple molecules like $\mathrm{H}_{2} \mathrm{O}$;

Perspectives

- Developed model can be used to describe scattering processes for atoms where p-electrons play an essential role;
- One may combine s - and p-type point interactions;
- The model can be generalized to include higher singularities: d, f, \ldots orbitals;
- Model all atoms from Mendeleev's table!
- The model can be used to calculate electron levels in simple molecules like $\mathrm{H}_{2} \mathrm{O}$;
- Few-body problems;
- ...

Perspectives

- Developed model can be used to describe scattering processes for atoms where p-electrons play an essential role;
- One may combine s - and p-type point interactions;
- The model can be generalized to include higher singularities: d, f, \ldots orbitals;
- Model all atoms from Mendeleev's table!
- The model can be used to calculate electron levels in simple molecules like $\mathrm{H}_{2} \mathrm{O}$;
- Few-body problems;
- ...

This is an area where collaboration between mathematicians and physicists can be especially fruitful!

[^0]: ${ }^{1}$ See our book with S. Albeverio, where this connection is established using homogeneity properties of the formal operator L_{α}.

