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Fermi-Berezin-Faddeev point interaction

Classical point interaction in R3

Formal expression
Lα = −∆ + αδ ≡ −∆ + αδ〈δ, ·〉.

Rigorous interpretation (in L2(R3) ):
The operator Lγ is defined on the functions possessing the following asymptotic
expansion

U(x) =
u−

4π|x|
+ u0 + o(1), x → 0

and the ”boundary conditions”

u0 = γu−, γ ∈ R ∪ {∞}.

The real parameters α and γ are somehow connected, but precise relation
between them cannot be established without additional assumptions.1 We know
only

α = 0 ⇔ γ = ∞.

1See our book with S. Albeverio, where this connection is established using homogeneity
properties of the formal operator Lα.
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Fermi-Berezin-Faddeev point interaction

Alternative definition

The self-adjoint operator Lγ in L2(R3) is defined on the functions possessing the
following representation

U(x) = Ur (x) + u−
e−β|x|

4π|x|
, β > 0,

with
Ur ∈ Dom (−∆)(= W 2

2 (R3)), u− ∈ C
and the ”boundary conditions”

Ur (0) =

(
γ +

β

4π

)
u1.

The parameter γ̃ = γ + β
4π runs over R ∪ {∞} again.

We extend the domain of the original operator −∆ by adding one-dimensional

subspace spanned by e−β|x|

4π|x| = 1
−∆+β2 δ, but as a compensation we need extra

boundary condition. As a result the resolvent equation

(Lγ − λ)U = F

is again solvable for any F ∈ L2(R3) and =λ > 0.
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Fermi-Berezin-Faddeev point interaction Properties of the standard model

Properties of the standard model

The operator Lγ is self-adjoint.
The spectrum contains the absolutely continuous branch [0,∞) (inherited
from the Laplacian) and at most one negative eigenvalue E0 = −(4πγ)2

provided γ < 0.
The eigenfunction corresponding to E0 = −χ2 is spherically symmetric

Ψ0 =
e−χ|x|

4π|x|
, χ = −4πγ.

The scattered waves are

V (λ, k, x) = e ik·x + a(k)
e ik|x|

4π|x|
,

where the scattering amplitude is calculated by substituting V into the
boundary conditions

a = a(|k|) =
−1

ik/4π − γ
.

The scattering amplitude a does not depend on the direction of the
incoming wave ⇒ the scattering matrix is non-trivial in the s-channel only.
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Why p-type point interactions are impossible in L2(R3)?

Why p-type point interactions are impossible in L2?

1 All self-adjoint extensions of the operator −∆|C∞0 (R3\{0}) coincide with the
family Lγ .

2 It is expected that the operator is defined on the functions possessing the
representation

Ur (x) + u1g1,

where g1 has p-symmetry, for example

g1 =
∂

∂x1

e−β1|x|

4π|x|
= −β1|x|+ 1

4π|x|3
x1 /∈ L2(R3).

3 It is natural to expect that the boundary conditions take the form

∂

∂x1
Ur (0) = γ̃u1,

but if Ur just belongs to the domain of −∆, then the value ∂
∂x1

Ur (0) is not
properly defined!
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Why p-type point interactions are impossible in L2(R3)? Conclusions

Conclusions

In order to define p-type point interactions one has to

extend the original Hilbert space (L2(R3)) by adding elements like g1,

use smoother functions in order to make sense of the boundary condition.

The first problem can be resolved by just adding to the origianl Hilbert space a
finite dimensional space.
The second problem can be resolved by considering the Sobolev space W 1

2 (R3)
instead of L2(R3). The space W 1

2 (R3) is the space of all functions f (x), x ∈ R3

with the finite norm
‖ f ‖W 1

2
=‖

√
−∆ + 1 f ‖L2 .

It is a Hilbert space and from the mathematical point of view there is no
preference in using the space L2 instead of W 1

2 .
The domain of the Laplace operator coincides with the set of functions such that

‖ (
√
−∆ + 1)3f ‖< ∞.

Important fact (Sobolev embedding theorem)
Every function f of three variables, such that ‖ (

√
−∆ + 1)3f ‖< ∞ has

continuous first derivatives, i.e. ∂
∂xj

f (0) are perfectly defined.
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Cascade model for p-scattering

The model space

Our aim is to get a model for p-type spherically symmetric point interaction.
One may think about giving definition for the following formal operator

−∆ +
3∑

i=1

α∂xi δ〈∂xi δ, ·〉.

Introduce the notation gj(λ) =
∂

∂xj

e ik|x|

4π|x|
=

ik|x| − 1

4π|x|3
e ik|x|xj . The new Hilbert

space can be chosen equal to

H = W 1
2 (R3)+̇L{g1(−β2

1), g2(−β2
1), g3(−β2

1)} 3 U = U +
3∑

i=1

ui
1gi (−β2

1)

with the norm ‖ U ‖2
H=‖ U ‖2

W 1
2

+γ ‖ u1 ‖2 . Real positive numbers β1 and γ

are free parameters of the model. Every function from this space possesses the
representation

U = U − β1|x|+ 1

4π|x|3
e−β1|x|x · u1
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Cascade model for p-scattering

The differential operator in H
The model operator A should be defined so that it acts as Laplacian outside the
origin, namely

AU = −(Ux1x1 + Ux2x2 + Ux3x3), x 6= 0.

Consider another free parameter β 6= β1 and introduce

Gi =
1

β2
1 − β2

(gi (−β2)− gi (−β2
1)).

The Laplacian acts on such function as follows

−∆Gi = −∆
(

1
β2

1−β2 (gi (−β2)− gi (−β2
1))
)

= 1
β2

1−β2

(
−β2gi (−β2) + β2

1gi (−β2
1)
)

= −β2Gi + gi (−β2
1).

The functions Gi and gi form a sort of cascade and the operator −∆ + β2 is a
cascade operator

(−∆ + β2)Gi = gi , (−∆ + β2
1)gi = ∂xi δ.
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Cascade model for p-scattering

Definition of the operator

The operator Aθ, θ ∈ [0, π) is defined on the functions possessing the
representation

U = Ur +
3∑

i=1

uiGi (−β2) +
3∑

i=1

ui
1gi (−β2

1),

Ur ∈ W 3
2 (R3),u,u1 ∈ C3,

and the boundary conditions

sin θ (∇∇∇Ur (0) + γu1) = cos θ u,

by the formula

Aθ

(
Ur +

3∑
i=1

uiGi (−β2) +
3∑

i=1

ui
1gi (−β2

1)

)

= −∆Ur − β2
3∑

i=1

uiGi (−β2) +
3∑

i=1

gi (−β2
1)
(
x · u− β2

1x · u1

)
.
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Properties of the cascade model

Properties of the operator

The operator Aθ is self-adjoint in the Hilbert space H = W 1
2 (R3)⊕ C3.

The operator Aθ commutes with the rotations around the origin and
reflections in planes passing through the origin.

Spectral properties of the operator are encoded in the following rational
function

Q(λ) =
1

12π

{
ik +

β2
1

ik − β1
+ β +

β2
1

β + β1

}
+

γ

−β2
1 − k2

.

The resolvent of the operator on W 1
2 ⊂ H is given by

(Aθ − λ)−1U =
1

−∆− λ
U

− 1

(k2 + β2
1)(Q(λ) + cot θ)

(∫
R3

(ik|y| − 1)e ik|y|

4π|y|3
ytU(y)d3y

)
(ik|x| − 1)e ik|x|

4π|x|3
x.
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Properties of the cascade model

Spectral properties

The model operator may have several bound states. Each one has mutiplicity 3.
The corresponding eigenfunctions are

Vλ0 = −χ|x|+ 1

4π|x|3
e−χ|x|x · a, λ0 = −χ2,

where χ > 0 is a solution to the equation

Q(−χ2) + cot θ = 0.

To prove this fact one writes the function V as a linear combination

V =
3∑

i=1

giai +
3∑

i=1

Gibi + V ,

where V ∈ W 3
2 (R3). Substituting into the boundary conditions one gets the

dispersion equation.
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Properties of the cascade model

Scattering properties

Absolutely continuous spectrum covers the branch [0,∞) inherited from
the Laplacian.

Continuous spectrum (generalized) eigenfunctions are

V(λ, k/k, x) = e ik·x +
i

(k2 + β2
1)(Q(k2) + cot θ)

ik|x| − 1

4π|x|3
e ik|x|x · k λ > 0,

The scattering amplitude depends on the angle between incoming and
outgoing waves.
The scattering matrix is non-trivial in the p-channel!

New type of eigenfunction expansions can be obtained by integrating the
jump of the resolvent of Aθ on the real axis.
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Perspectives

Perspectives

Developed model can be used to describe scattering processes for atoms
where p-electrons play an essential role;

One may combine s- and p -type point interactions;

The model can be generalized to include higher singularities: d , f , ... -
orbitals;

Model all atoms from Mendeleev’s table!

The model can be used to calculate electron levels in simple molecules like
H2O;

Few-body problems;

...

This is an area where collaboration between mathematicians and physicists can
be especially fruitful!

Kurasov (Lund) p-type point interactions and related problems Erice 2008 14 / 14



Perspectives

Perspectives

Developed model can be used to describe scattering processes for atoms
where p-electrons play an essential role;

One may combine s- and p -type point interactions;

The model can be generalized to include higher singularities: d , f , ... -
orbitals;

Model all atoms from Mendeleev’s table!

The model can be used to calculate electron levels in simple molecules like
H2O;

Few-body problems;

...

This is an area where collaboration between mathematicians and physicists can
be especially fruitful!

Kurasov (Lund) p-type point interactions and related problems Erice 2008 14 / 14



Perspectives

Perspectives

Developed model can be used to describe scattering processes for atoms
where p-electrons play an essential role;

One may combine s- and p -type point interactions;

The model can be generalized to include higher singularities: d , f , ... -
orbitals;

Model all atoms from Mendeleev’s table!

The model can be used to calculate electron levels in simple molecules like
H2O;

Few-body problems;

...

This is an area where collaboration between mathematicians and physicists can
be especially fruitful!

Kurasov (Lund) p-type point interactions and related problems Erice 2008 14 / 14



Perspectives

Perspectives

Developed model can be used to describe scattering processes for atoms
where p-electrons play an essential role;

One may combine s- and p -type point interactions;

The model can be generalized to include higher singularities: d , f , ... -
orbitals;

Model all atoms from Mendeleev’s table!

The model can be used to calculate electron levels in simple molecules like
H2O;

Few-body problems;

...

This is an area where collaboration between mathematicians and physicists can
be especially fruitful!

Kurasov (Lund) p-type point interactions and related problems Erice 2008 14 / 14



Perspectives

Perspectives

Developed model can be used to describe scattering processes for atoms
where p-electrons play an essential role;

One may combine s- and p -type point interactions;

The model can be generalized to include higher singularities: d , f , ... -
orbitals;

Model all atoms from Mendeleev’s table!

The model can be used to calculate electron levels in simple molecules like
H2O;

Few-body problems;

...

This is an area where collaboration between mathematicians and physicists can
be especially fruitful!

Kurasov (Lund) p-type point interactions and related problems Erice 2008 14 / 14



Perspectives

Perspectives

Developed model can be used to describe scattering processes for atoms
where p-electrons play an essential role;

One may combine s- and p -type point interactions;

The model can be generalized to include higher singularities: d , f , ... -
orbitals;

Model all atoms from Mendeleev’s table!

The model can be used to calculate electron levels in simple molecules like
H2O;

Few-body problems;

...

This is an area where collaboration between mathematicians and physicists can
be especially fruitful!

Kurasov (Lund) p-type point interactions and related problems Erice 2008 14 / 14



Perspectives

Perspectives

Developed model can be used to describe scattering processes for atoms
where p-electrons play an essential role;

One may combine s- and p -type point interactions;

The model can be generalized to include higher singularities: d , f , ... -
orbitals;

Model all atoms from Mendeleev’s table!

The model can be used to calculate electron levels in simple molecules like
H2O;

Few-body problems;

...

This is an area where collaboration between mathematicians and physicists can
be especially fruitful!

Kurasov (Lund) p-type point interactions and related problems Erice 2008 14 / 14


	Main Part
	Table of contents
	Fermi-Berezin-Faddeev point interaction
	Properties of the standard model

	Why  p-type point interactions are impossible in  L2 (R3) ?
	Conclusions

	Cascade model for p -scattering
	Properties of the cascade model
	Perspectives


