How to model *p*-scattering using point interactions and related problems

Pavel Kurasov

Lund University, SWEDEN

October 13, 2008

- Fermi-Berezin-Faddeev point interaction
 - \bullet Classical point interaction in \mathbb{R}^3
 - Alternative definition
 - Properties of the standard model
- **2** Why *p*-type point interactions are impossible in $L_2(\mathbb{R}^3)$?
 - How to define *p*-type interactions?
 - Conclusions
- O Cascade model for p-scattering
 - The model space
 - The differential operator
 - The model
- Properties of the cascade model
 - Spectral properties
 - Scattering properties
- O Perspectives

Classical point interaction in \mathbb{R}^3

Formal expression

$$L_{\alpha} = -\Delta + \alpha \delta \equiv -\Delta + \alpha \delta \langle \delta, \cdot \rangle.$$

Rigorous interpretation (in $L_2(\mathbb{R}^3)$):

The operator L^{γ} is defined on the functions possessing the following asymptotic expansion

$$U(x) = rac{u_-}{4\pi |\mathbf{x}|} + u_0 + o(1), \ \mathbf{x} \to 0$$

and the "boundary conditions"

$$u_0 = \gamma u_-, \ \gamma \in \mathbb{R} \cup \{\infty\}.$$

The real parameters α and γ are *somehow* connected, but precise relation between them cannot be established without additional assumptions.¹ We know only

$$\alpha = \mathbf{0} \Leftrightarrow \gamma = \infty.$$

¹See our book with S. Albeverio, where this connection is established using homogeneity properties of the formal operator L_{α} .

Alternative definition

The self-adjoint operator L^{γ} in $L_2(\mathbb{R}^3)$ is defined on the functions possessing the following representation

$$U(x) = U_r(x) + u_- \frac{e^{-\beta|\mathbf{x}|}}{4\pi|\mathbf{x}|}, \ \beta > 0,$$

with

$$U_r \in \mathrm{Dom}\,(-\Delta)(=W_2^2(\mathbf{R}^3)), \ u_- \in \mathbb{C}$$

and the "boundary conditions"

$$U_r(0) = \left(\gamma + \frac{\beta}{4\pi}\right) u_1.$$

The parameter $\tilde{\gamma} = \gamma + \frac{\beta}{4\pi}$ runs over $\mathbb{R} \cup \{\infty\}$ again. We extend the domain of the original operator $-\Delta$ by adding one-dimensional subspace spanned by $\frac{e^{-\beta|\mathbf{x}|}}{4\pi|\mathbf{x}|} = \frac{1}{-\Delta+\beta^2}\delta$, but as a compensation we need extra boundary condition. As a result the resolvent equation

$$(L^{\gamma} - \lambda)U = F$$

is again solvable for any $F \in L_2(\mathbb{R}^3)$ and $\Im \lambda > 0$.

• The operator L^{γ} is self-adjoint.

- The spectrum contains the absolutely continuous branch $[0, \infty)$ (inherited from the Laplacian) and at most one negative eigenvalue $E_0 = -(4\pi\gamma)^2$ provided $\gamma < 0$.
- The eigenfunction corresponding to $E_0=-\chi^2$ is spherically symmetric

$$\Psi_0 = \frac{e^{-\chi|\mathbf{x}|}}{4\pi|\mathbf{x}|}, \ \chi = -4\pi\gamma.$$

The scattered waves are

$$V(\lambda, \mathbf{k}, \mathbf{x}) = e^{i\mathbf{k}\cdot\mathbf{x}} + a(k)\frac{e^{ik|\mathbf{x}|}}{4\pi|\mathbf{x}|},$$

where the scattering amplitude is calculated by substituting $\mathbb V$ into the boundary conditions

$$a = a(|\mathbf{k}|) = \frac{-1}{ik/4\pi - \gamma}.$$

 The scattering amplitude a does not depend on the direction of the incoming wave ⇒ the scattering matrix is non-trivial in the s-channel onl

- The operator L^{γ} is self-adjoint.
- The spectrum contains the absolutely continuous branch $[0, \infty)$ (inherited from the Laplacian) and at most one negative eigenvalue $E_0 = -(4\pi\gamma)^2$ provided $\gamma < 0$.
- The eigenfunction corresponding to $E_0=-\chi^2$ is spherically symmetric

$$\Psi_0 = \frac{e^{-\chi|\mathbf{x}|}}{4\pi|\mathbf{x}|}, \ \chi = -4\pi\gamma.$$

The scattered waves are

$$V(\lambda, \mathbf{k}, \mathbf{x}) = e^{i\mathbf{k}\cdot\mathbf{x}} + a(k)\frac{e^{ik|\mathbf{x}|}}{4\pi|\mathbf{x}|},$$

where the scattering amplitude is calculated by substituting $\mathbb V$ into the boundary conditions

$$a = a(|\mathbf{k}|) = \frac{-1}{ik/4\pi - \gamma}.$$

 The scattering amplitude a does not depend on the direction of the incoming wave ⇒ the scattering matrix is non-trivial in the s-channel only

- The operator L^{γ} is self-adjoint.
- The spectrum contains the absolutely continuous branch $[0, \infty)$ (inherited from the Laplacian) and at most one negative eigenvalue $E_0 = -(4\pi\gamma)^2$ provided $\gamma < 0$.
- The eigenfunction corresponding to $E_0 = -\chi^2$ is spherically symmetric

$$\Psi_0 = rac{e^{-\chi|\mathbf{x}|}}{4\pi|\mathbf{x}|}, \ \chi = -4\pi\gamma.$$

The scattered waves are

$$V(\lambda, \mathbf{k}, \mathbf{x}) = e^{i\mathbf{k}\cdot\mathbf{x}} + a(k)\frac{e^{ik|\mathbf{x}|}}{4\pi|\mathbf{x}|},$$

where the scattering amplitude is calculated by substituting $\mathbb V$ into the boundary conditions

$$a = a(|\mathbf{k}|) = \frac{-1}{ik/4\pi - \gamma}.$$

 The scattering amplitude a does not depend on the direction of the incoming wave ⇒ the scattering matrix is non-trivial in the s-channel only

- The operator L^{γ} is self-adjoint.
- The spectrum contains the absolutely continuous branch $[0, \infty)$ (inherited from the Laplacian) and at most one negative eigenvalue $E_0 = -(4\pi\gamma)^2$ provided $\gamma < 0$.
- The eigenfunction corresponding to $E_0 = -\chi^2$ is spherically symmetric

$$\Psi_0=rac{e^{-\chi|\mathbf{x}|}}{4\pi|\mathbf{x}|}, \;\; \chi=-4\pi\gamma.$$

• The scattered waves are

$$V(\lambda, \mathbf{k}, \mathbf{x}) = e^{i\mathbf{k}\cdot\mathbf{x}} + a(k) rac{e^{ik|\mathbf{x}|}}{4\pi|\mathbf{x}|},$$

where the scattering amplitude is calculated by substituting $\ensuremath{\mathbb{V}}$ into the boundary conditions

$$a = a(|\mathbf{k}|) = rac{-1}{ik/4\pi - \gamma}$$

 The scattering amplitude a does not depend on the direction of the incoming wave ⇒ the scattering matrix is non-trivial in the s-channel only

- The operator L^{γ} is self-adjoint.
- The spectrum contains the absolutely continuous branch $[0, \infty)$ (inherited from the Laplacian) and at most one negative eigenvalue $E_0 = -(4\pi\gamma)^2$ provided $\gamma < 0$.
- The eigenfunction corresponding to $E_0 = -\chi^2$ is spherically symmetric

$$\Psi_0 = rac{e^{-\chi|\mathbf{x}|}}{4\pi|\mathbf{x}|}, \ \chi = -4\pi\gamma.$$

• The scattered waves are

$$V(\lambda, \mathbf{k}, \mathbf{x}) = e^{i\mathbf{k}\cdot\mathbf{x}} + a(k) rac{e^{ik|\mathbf{x}|}}{4\pi|\mathbf{x}|},$$

where the scattering amplitude is calculated by substituting $\ensuremath{\mathbb{V}}$ into the boundary conditions

$$a = a(|\mathbf{k}|) = rac{-1}{ik/4\pi - \gamma}$$

 The scattering amplitude a does not depend on the direction of the incoming wave ⇒ the scattering matrix is non-trivial in the s-channel only.

Kurasov (Lund)

Why *p*-type point interactions are impossible in L_2 ?

- All self-adjoint extensions of the operator −∆|_{C₀[∞](ℝ³\{0})} coincide with the family L^γ.
- It is expected that the operator is defined on the functions possessing the representation

$$U_r(x)+u_1g_1,$$

where g_1 has *p*-symmetry, for example

$$g_1 = \frac{\partial}{\partial x_1} \frac{e^{-\beta_1 |\mathbf{x}|}}{4\pi |\mathbf{x}|} = -\frac{\beta_1 |\mathbf{x}| + 1}{4\pi |\mathbf{x}|^3} x_1 \notin L_2(\mathbb{R}^3).$$

It is natural to expect that the boundary conditions take the form

$$\frac{\partial}{\partial x_1} U_r(0) = \tilde{\gamma} u_1,$$

but if U_r just belongs to the domain of $-\Delta$, then the value $\frac{\partial}{\partial x_1}U_r(0)$ is not properly defined!

Why *p*-type point interactions are impossible in L_2 ?

- O All self-adjoint extensions of the operator −∆|_{C₀[∞](ℝ³\{0})} coincide with the family L^γ.
- It is expected that the operator is defined on the functions possessing the representation

$$U_r(x)+u_1g_1,$$

where g_1 has *p*-symmetry, for example

$$g_1 = \frac{\partial}{\partial x_1} \frac{e^{-\beta_1 |\mathbf{x}|}}{4\pi |\mathbf{x}|} = -\frac{\beta_1 |\mathbf{x}| + 1}{4\pi |\mathbf{x}|^3} x_1 \notin L_2(\mathbb{R}^3).$$

It is natural to expect that the boundary conditions take the form

$$\frac{\partial}{\partial x_1}U_r(0)=\tilde{\gamma}u_1,$$

but if U_r just belongs to the domain of $-\Delta$, then the value $\frac{\partial}{\partial x_1}U_r(0)$ is not properly defined!

Why *p*-type point interactions are impossible in L_2 ?

- O All self-adjoint extensions of the operator −∆|_{C₀[∞](ℝ³\{0})} coincide with the family L^γ.
- It is expected that the operator is defined on the functions possessing the representation

$$U_r(x)+u_1g_1,$$

where g_1 has *p*-symmetry, for example

$$g_1 = \frac{\partial}{\partial x_1} \frac{e^{-\beta_1 |\mathbf{x}|}}{4\pi |\mathbf{x}|} = -\frac{\beta_1 |\mathbf{x}| + 1}{4\pi |\mathbf{x}|^3} x_1 \notin L_2(\mathbb{R}^3).$$

It is natural to expect that the boundary conditions take the form

$$\frac{\partial}{\partial x_1}U_r(0)=\tilde{\gamma}u_1,$$

but if U_r just belongs to the domain of $-\Delta$, then the value $\frac{\partial}{\partial x_1}U_r(0)$ is not properly defined!

In order to define *p*-type point interactions one has to

- extend the original Hilbert space $(L_2(\mathbb{R}^3))$ by adding elements like g_1 ,
- use smoother functions in order to make sense of the boundary condition.

The first problem can be resolved by just adding to the origianl Hilbert space a finite dimensional space.

The second problem can be resolved by considering the Sobolev space $W_2^1(\mathbb{R}^3)$ instead of $L_2(\mathbb{R}^3)$. The space $W_2^1(\mathbb{R}^3)$ is the space of all functions $f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^3$ with the finite norm

$$\parallel f \parallel_{W_2^1} = \parallel \sqrt{-\Delta + 1} f \parallel_{L_2}.$$

It is a Hilbert space and from the mathematical point of view there is no preference in using the space L_2 instead of W_2^1 .

The domain of the Laplace operator coincides with the set of functions such that

$$\| (\sqrt{-\Delta+1})^3 f \| < \infty.$$

Important fact (Sobolev embedding theorem) Every function f of three variables, such that $\| (\sqrt{-\Delta + 1})^3 f \| < \infty$ has continuous first derivatives, i.e. $\frac{\partial}{\partial x_i} f(0)$ are perfectly defined.

In order to define *p*-type point interactions one has to

- extend the original Hilbert space $(L_2(\mathbb{R}^3))$ by adding elements like g_1 ,
- use smoother functions in order to make sense of the boundary condition.

The first problem can be resolved by just adding to the origianl Hilbert space a finite dimensional space.

The second problem can be resolved by considering the Sobolev space $W_2^1(\mathbb{R}^3)$ instead of $L_2(\mathbb{R}^3)$. The space $W_2^1(\mathbb{R}^3)$ is the space of all functions $f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^3$ with the finite norm

$$\parallel f \parallel_{W_2^1} = \parallel \sqrt{-\Delta + 1} f \parallel_{L_2}$$
.

It is a Hilbert space and from the mathematical point of view there is no preference in using the space L_2 instead of W_2^1 .

The domain of the Laplace operator coincides with the set of functions such that

$$\| (\sqrt{-\Delta+1})^3 f \| < \infty.$$

Important fact (Sobolev embedding theorem) Every function f of three variables, such that $\| (\sqrt{-\Delta + 1})^3 f \| < \infty$ has continuous first derivatives, i.e. $\frac{\partial}{\partial x_i} f(0)$ are perfectly defined.

In order to define *p*-type point interactions one has to

- extend the original Hilbert space $(L_2(\mathbb{R}^3))$ by adding elements like g_1 ,
- use smoother functions in order to make sense of the boundary condition.

The first problem can be resolved by just adding to the origianl Hilbert space a finite dimensional space.

The second problem can be resolved by considering the Sobolev space $W_2^1(\mathbb{R}^3)$ instead of $L_2(\mathbb{R}^3)$. The space $W_2^1(\mathbb{R}^3)$ is the space of all functions $f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^3$ with the finite norm

$$\parallel f \parallel_{W_2^1} = \parallel \sqrt{-\Delta + 1} f \parallel_{L_2}.$$

It is a Hilbert space and from the mathematical point of view there is no preference in using the space L_2 instead of W_2^1 .

The domain of the Laplace operator coincides with the set of functions such that

$$\| (\sqrt{-\Delta+1})^3 f \| < \infty.$$

Important fact (Sobolev embedding theorem) Every function f of three variables, such that $\| (\sqrt{-\Delta + 1})^3 f \| < \infty$ has continuous first derivatives, i.e. $\frac{\partial}{\partial x_i} f(0)$ are perfectly defined.

In order to define *p*-type point interactions one has to

- extend the original Hilbert space $(L_2(\mathbb{R}^3))$ by adding elements like g_1 ,
- use smoother functions in order to make sense of the boundary condition.

The first problem can be resolved by just adding to the origianl Hilbert space a finite dimensional space.

The second problem can be resolved by considering the Sobolev space $W_2^1(\mathbb{R}^3)$ instead of $L_2(\mathbb{R}^3)$. The space $W_2^1(\mathbb{R}^3)$ is the space of all functions $f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^3$ with the finite norm

$$\parallel f \parallel_{W_2^1} = \parallel \sqrt{-\Delta + 1} f \parallel_{L_2}.$$

It is a Hilbert space and from the mathematical point of view there is no preference in using the space L_2 instead of W_2^1 .

The domain of the Laplace operator coincides with the set of functions such that

$$\| (\sqrt{-\Delta+1})^3 f \| < \infty.$$

Important fact (Sobolev embedding theorem) Every function f of three variables, such that $\| (\sqrt{-\Delta+1})^3 f \| < \infty$ has continuous first derivatives, i.e. $\frac{\partial}{\partial x_i} f(0)$ are perfectly defined.

Our aim is to get a model for *p*-type spherically symmetric point interaction. One may think about giving definition for the following formal operator

$$-\Delta + \sum_{i=1}^{3} lpha \partial_{x_i} \delta \langle \partial_{x_i} \delta, \cdot \rangle.$$

Introduce the notation $g_j(\lambda) = \frac{\partial}{\partial x_j} \frac{e^{ik|\mathbf{x}|}}{4\pi |\mathbf{x}|} = \frac{ik|\mathbf{x}| - 1}{4\pi |\mathbf{x}|^3} e^{ik|\mathbf{x}|} x_j$. The new Hilbert space can be chosen equal to

$$\mathbb{H} = W_2^1(\mathbb{R}^3) \dot{+} \mathcal{L}\{g_1(-\beta_1^2), g_2(-\beta_1^2), g_3(-\beta_1^2)\} \ni \mathbb{U} = U + \sum_{i=1}^3 u_1^i g_i(-\beta_1^2)$$

$$\mathbb{U} = U - \frac{\beta_1 |\mathbf{x}| + 1}{4\pi |\mathbf{x}|^3} e^{-\beta_1 |\mathbf{x}|} \mathbf{x} \cdot \mathbf{u}_1$$

Our aim is to get a model for *p*-type spherically symmetric point interaction. One may think about giving definition for the following formal operator

$$-\Delta + \sum_{i=1}^{3} lpha \partial_{x_i} \delta \langle \partial_{x_i} \delta, \cdot \rangle.$$

Introduce the notation $g_j(\lambda) = \frac{\partial}{\partial x_j} \frac{e^{ik|\mathbf{x}|}}{4\pi |\mathbf{x}|} = \frac{ik|\mathbf{x}| - 1}{4\pi |\mathbf{x}|^3} e^{ik|\mathbf{x}|} x_j$. The new Hilbert space can be chosen equal to

$$\mathbb{H} = W_2^1(\mathbb{R}^3) \dot{+} \mathcal{L}\{g_1(-\beta_1^2), g_2(-\beta_1^2), g_3(-\beta_1^2)\} \ni \mathbb{U} = U + \sum_{i=1}^3 u_1^i g_i(-\beta_1^2)$$

$$\mathbb{U} = U - \frac{\beta_1 |\mathbf{x}| + 1}{4\pi |\mathbf{x}|^3} e^{-\beta_1 |\mathbf{x}|} \mathbf{x} \cdot \mathbf{u}_1$$

Our aim is to get a model for *p*-type spherically symmetric point interaction. One may think about giving definition for the following formal operator

$$-\Delta + \sum_{i=1}^{3} lpha \partial_{x_i} \delta \langle \partial_{x_i} \delta, \cdot \rangle.$$

Introduce the notation $g_j(\lambda) = \frac{\partial}{\partial x_j} \frac{e^{ik|\mathbf{x}|}}{4\pi |\mathbf{x}|} = \frac{ik|\mathbf{x}| - 1}{4\pi |\mathbf{x}|^3} e^{ik|\mathbf{x}|} x_j$. The new Hilbert space can be chosen equal to

$$\mathbb{H} = W_2^1(\mathbb{R}^3) \dot{+} \mathcal{L}\{g_1(-\beta_1^2), g_2(-\beta_1^2), g_3(-\beta_1^2)\} \ni \mathbb{U} = U + \sum_{i=1}^3 u_1^i g_i(-\beta_1^2)$$

$$\mathbb{U} = U - \frac{\beta_1 |\mathbf{x}| + 1}{4\pi |\mathbf{x}|^3} e^{-\beta_1 |\mathbf{x}|} \mathbf{x} \cdot \mathbf{u}_1$$

Our aim is to get a model for *p*-type spherically symmetric point interaction. One may think about giving definition for the following formal operator

$$-\Delta + \sum_{i=1}^{3} \alpha \partial_{x_i} \delta \langle \partial_{x_i} \delta, \cdot \rangle.$$

Introduce the notation $g_j(\lambda) = \frac{\partial}{\partial x_j} \frac{e^{ik|\mathbf{x}|}}{4\pi |\mathbf{x}|} = \frac{ik|\mathbf{x}| - 1}{4\pi |\mathbf{x}|^3} e^{ik|\mathbf{x}|} x_j$. The new Hilbert space can be chosen equal to

$$\mathbb{H} = W_2^1(\mathbb{R}^3) \dot{+} \mathcal{L}\{g_1(-\beta_1^2), g_2(-\beta_1^2), g_3(-\beta_1^2)\} \ni \mathbb{U} = U + \sum_{i=1}^3 u_1^i g_i(-\beta_1^2)$$

$$\mathbb{U} = U - \frac{\beta_1 |\mathbf{x}| + 1}{4\pi |\mathbf{x}|^3} e^{-\beta_1 |\mathbf{x}|} \mathbf{x} \cdot \mathbf{u}_1$$

Our aim is to get a model for *p*-type spherically symmetric point interaction. One may think about giving definition for the following formal operator

$$-\Delta + \sum_{i=1}^{3} lpha \partial_{x_i} \delta \langle \partial_{x_i} \delta, \cdot \rangle.$$

Introduce the notation $g_j(\lambda) = \frac{\partial}{\partial x_j} \frac{e^{ik|\mathbf{x}|}}{4\pi |\mathbf{x}|} = \frac{ik|\mathbf{x}| - 1}{4\pi |\mathbf{x}|^3} e^{ik|\mathbf{x}|} x_j$. The new Hilbert space can be chosen equal to

$$\mathbb{H} = W_2^1(\mathbb{R}^3) \dot{+} \mathcal{L}\{g_1(-\beta_1^2), g_2(-\beta_1^2), g_3(-\beta_1^2)\} \ni \mathbb{U} = U + \sum_{i=1}^3 u_1^i g_i(-\beta_1^2)$$

$$\mathbb{U} = U - rac{eta_1 |\mathbf{x}| + 1}{4\pi |\mathbf{x}|^3} e^{-eta_1 |\mathbf{x}|} \mathbf{x} \cdot \mathbf{u}_1$$

The differential operator in \mathbb{H}

The model operator \mathbbm{A} should be defined so that it acts as Laplacian outside the origin, namely

$$\mathbb{A}\mathbb{U}=-(\mathbb{U}_{x_1x_1}+\mathbb{U}_{x_2x_2}+\mathbb{U}_{x_3x_3}), \ \mathbf{x}\neq \mathbf{0}.$$

Consider another free parameter $\beta \neq \beta_1$ and introduce

$$G_i = rac{1}{eta_1^2 - eta^2} (g_i(-eta^2) - g_i(-eta_1^2)).$$

The Laplacian acts on such function as follows

$$\begin{aligned} -\Delta G_i &= -\Delta \left(\frac{1}{\beta_1^2 - \beta^2} (g_i(-\beta^2) - g_i(-\beta_1^2)) \right) \\ &= \frac{1}{\beta_1^2 - \beta^2} \left(-\beta^2 g_i(-\beta^2) + \beta_1^2 g_i(-\beta_1^2) \right) \\ &= -\beta^2 G_i + g_i(-\beta_1^2). \end{aligned}$$

The functions G_i and g_i form a sort of cascade and the operator $-\Delta + \beta^2$ is a cascade operator

$$(-\Delta + \beta^2)G_i = g_i, \ (-\Delta + \beta_1^2)g_i = \partial_{x_i}\delta.$$

The differential operator in \mathbb{H}

The model operator \mathbbm{A} should be defined so that it acts as Laplacian outside the origin, namely

$$\mathbb{A}\mathbb{U}=-(\mathbb{U}_{x_1x_1}+\mathbb{U}_{x_2x_2}+\mathbb{U}_{x_3x_3}), \ \mathbf{x}\neq \mathbf{0}.$$

Consider another free parameter $\beta \neq \beta_1$ and introduce

$$G_i = rac{1}{eta_1^2 - eta^2} (g_i(-eta^2) - g_i(-eta_1^2)).$$

The Laplacian acts on such function as follows

$$\begin{aligned} -\Delta G_i &= -\Delta \left(\frac{1}{\beta_1^2 - \beta^2} (g_i(-\beta^2) - g_i(-\beta_1^2)) \right) \\ &= \frac{1}{\beta_1^2 - \beta^2} \left(-\beta^2 g_i(-\beta^2) + \beta_1^2 g_i(-\beta_1^2) \right) \\ &= -\beta^2 G_i + g_i(-\beta_1^2). \end{aligned}$$

The functions G_i and g_i form a sort of cascade and the operator $-\Delta + \beta^2$ is a cascade operator

$$(-\Delta + \beta^2)G_i = g_i, \ (-\Delta + \beta_1^2)g_i = \partial_{x_i}\delta.$$

The differential operator in \mathbb{H}

The model operator \mathbbm{A} should be defined so that it acts as Laplacian outside the origin, namely

$$\mathbb{A}\mathbb{U}=-(\mathbb{U}_{x_1x_1}+\mathbb{U}_{x_2x_2}+\mathbb{U}_{x_3x_3}), \ \mathbf{x}\neq \mathbf{0}.$$

Consider another free parameter $\beta \neq \beta_1$ and introduce

$$G_i = rac{1}{eta_1^2 - eta^2} (g_i(-eta^2) - g_i(-eta_1^2)).$$

The Laplacian acts on such function as follows

$$\begin{aligned} -\Delta G_i &= -\Delta \left(\frac{1}{\beta_1^2 - \beta^2} (g_i(-\beta^2) - g_i(-\beta_1^2)) \right) \\ &= \frac{1}{\beta_1^2 - \beta^2} \left(-\beta^2 g_i(-\beta^2) + \beta_1^2 g_i(-\beta_1^2) \right) \\ &= -\beta^2 G_i + g_i(-\beta_1^2). \end{aligned}$$

The functions G_i and g_i form a sort of cascade and the operator $-\Delta + \beta^2$ is a cascade operator

$$(-\Delta + \beta^2)G_i = g_i, \ (-\Delta + \beta_1^2)g_i = \partial_{x_i}\delta.$$

Definition of the operator

The operator $\mathbb{A}_{\theta}, \theta \in [0, \pi)$ is defined on the functions possessing the representation

$$\mathbb{U} = U_r + \sum_{i=1}^{3} u^i G_i(-\beta^2) + \sum_{i=1}^{3} u_1^i g_i(-\beta_1^2), U_r \in W_2^3(\mathbb{R}^3), \mathbf{u}, \mathbf{u}_1 \in \mathbb{C}^3,$$

and the boundary conditions

$$\sin\theta\left(\nabla U_r(0)+\gamma \mathbf{u}_1\right)=\cos\theta \,\mathbf{u},$$

by the formula

$$\mathbb{A}_{\theta} \left(U_r + \sum_{i=1}^{3} u^i G_i(-\beta^2) + \sum_{i=1}^{3} u_1^i g_i(-\beta_1^2) \right)$$

= $-\Delta U_r - \beta^2 \sum_{i=1}^{3} u^i G_i(-\beta^2) + \sum_{i=1}^{3} g_i(-\beta_1^2) \left(\mathbf{x} \cdot \mathbf{u} - \beta_1^2 \mathbf{x} \cdot \mathbf{u}_1 \right).$

Definition of the operator

The operator $\mathbb{A}_{\theta}, \theta \in [0, \pi)$ is defined on the functions possessing the representation

$$\mathbb{U} = U_r + \sum_{\substack{i=1\\ i=1}}^{3} u^i G_i(-\beta^2) + \sum_{\substack{i=1\\ i=1}}^{3} u^i_1 g_i(-\beta_1^2),$$
$$U_r \in W_2^3(\mathbb{R}^3), \mathbf{u}, \mathbf{u}_1 \in \mathbb{C}^3,$$

and the boundary conditions

$$\sin\theta\left(\boldsymbol{\nabla}U_r(0)+\gamma\mathbf{u}_1\right)=\cos\theta\,\mathbf{u},$$

by the formula

$$\mathbb{A}_{\theta} \left(U_r + \sum_{i=1}^{3} u^i G_i(-\beta^2) + \sum_{i=1}^{3} u_1^i g_i(-\beta_1^2) \right)$$

= $-\Delta U_r - \beta^2 \sum_{i=1}^{3} u^i G_i(-\beta^2) + \sum_{i=1}^{3} g_i(-\beta_1^2) \left(\mathbf{x} \cdot \mathbf{u} - \beta_1^2 \mathbf{x} \cdot \mathbf{u}_1 \right).$

Definition of the operator

The operator $\mathbb{A}_{\theta}, \theta \in [0, \pi)$ is defined on the functions possessing the representation

$$\mathbb{U} = U_r + \sum_{i=1}^{3} u^i G_i(-\beta^2) + \sum_{i=1}^{3} u_1^i g_i(-\beta_1^2), U_r \in W_2^3(\mathbb{R}^3), \mathbf{u}, \mathbf{u}_1 \in \mathbb{C}^3,$$

and the boundary conditions

$$\sin\theta\left(\boldsymbol{\nabla}U_r(0)+\gamma\mathbf{u}_1\right)=\cos\theta\,\mathbf{u},$$

by the formula

$$\mathbb{A}_{\theta} \left(U_{r} + \sum_{i=1}^{3} u^{i} G_{i}(-\beta^{2}) + \sum_{i=1}^{3} u_{1}^{i} g_{i}(-\beta_{1}^{2}) \right)$$

= $-\Delta U_{r} - \beta^{2} \sum_{i=1}^{3} u^{i} G_{i}(-\beta^{2}) + \sum_{i=1}^{3} g_{i}(-\beta_{1}^{2}) \left(\mathbf{x} \cdot \mathbf{u} - \beta_{1}^{2} \mathbf{x} \cdot \mathbf{u}_{1} \right).$

• The operator \mathbb{A}_{θ} is self-adjoint in the Hilbert space $\mathbb{H} = W_2^1(\mathbb{R}^3) \oplus \mathbb{C}^3$.

- The operator \mathbb{A}_{θ} commutes with the rotations around the origin and reflections in planes passing through the origin.
- Spectral properties of the operator are encoded in the following rational function

$$Q(\lambda) = \frac{1}{12\pi} \left\{ ik + \frac{\beta_1^2}{ik - \beta_1} + \beta + \frac{\beta_1^2}{\beta + \beta_1} \right\} + \frac{\gamma}{-\beta_1^2 - k^2}.$$

$$\begin{split} (\mathbb{A}_{\theta} - \lambda)^{-1} U &= \frac{1}{-\Delta - \lambda} U \\ &- \frac{1}{(k^2 + \beta_1^2)(Q(\lambda) + \cot \theta)} \left(\int_{\mathbb{R}^3} \frac{(ik|\mathbf{y}| - 1)e^{ik|\mathbf{y}|}}{4\pi |\mathbf{y}|^3} \mathbf{y}^t U(\mathbf{y}) d^3 \mathbf{y} \right) \frac{(ik|\mathbf{x}| - 1)e^{ik|\mathbf{x}|}}{4\pi |\mathbf{x}|^3} \mathbf{x}. \end{split}$$

- The operator \mathbb{A}_{θ} is self-adjoint in the Hilbert space $\mathbb{H} = W_2^1(\mathbb{R}^3) \oplus \mathbb{C}^3$.
- The operator \mathbb{A}_{θ} commutes with the rotations around the origin and reflections in planes passing through the origin.
- Spectral properties of the operator are encoded in the following rational function

$$Q(\lambda) = \frac{1}{12\pi} \left\{ ik + \frac{\beta_1^2}{ik - \beta_1} + \beta + \frac{\beta_1^2}{\beta + \beta_1} \right\} + \frac{\gamma}{-\beta_1^2 - k^2}.$$

$$(\mathbb{A}_{\theta} - \lambda)^{-1}U = \frac{1}{-\Delta - \lambda}U$$

$$-\frac{1}{(k^2 + \beta_1^2)(Q(\lambda) + \cot\theta)} \left(\int_{\mathbb{R}^3} \frac{(ik|\mathbf{y}| - 1)e^{ik|\mathbf{y}|}}{4\pi |\mathbf{y}|^3} \mathbf{y}^t U(\mathbf{y}) d^3\mathbf{y} \right) \frac{(ik|\mathbf{x}| - 1)e^{ik|\mathbf{x}|}}{4\pi |\mathbf{x}|^3} \mathbf{x}.$$

- The operator \mathbb{A}_{θ} is self-adjoint in the Hilbert space $\mathbb{H} = W_2^1(\mathbb{R}^3) \oplus \mathbb{C}^3$.
- The operator \mathbb{A}_{θ} commutes with the rotations around the origin and reflections in planes passing through the origin.
- Spectral properties of the operator are encoded in the following rational function

$$Q(\lambda) = \frac{1}{12\pi} \left\{ ik + \frac{\beta_1^2}{ik - \beta_1} + \beta + \frac{\beta_1^2}{\beta + \beta_1} \right\} + \frac{\gamma}{-\beta_1^2 - k^2}.$$

$$(\mathbb{A}_{\theta} - \lambda)^{-1}U = \frac{1}{-\Delta - \lambda}U -\frac{1}{(k^2 + \beta_1^2)(Q(\lambda) + \cot\theta)} \left(\int_{\mathbb{R}^3} \frac{(ik|\mathbf{y}| - 1)e^{ik|\mathbf{y}|}}{4\pi|\mathbf{y}|^3} \mathbf{y}^t U(\mathbf{y}) d^3\mathbf{y} \right) \frac{(ik|\mathbf{x}| - 1)e^{ik|\mathbf{x}|}}{4\pi|\mathbf{x}|^3} \mathbf{x}.$$

- The operator \mathbb{A}_{θ} is self-adjoint in the Hilbert space $\mathbb{H} = W_2^1(\mathbb{R}^3) \oplus \mathbb{C}^3$.
- The operator \mathbb{A}_{θ} commutes with the rotations around the origin and reflections in planes passing through the origin.
- Spectral properties of the operator are encoded in the following rational function

$$Q(\lambda) = \frac{1}{12\pi} \left\{ ik + \frac{\beta_1^2}{ik - \beta_1} + \beta + \frac{\beta_1^2}{\beta + \beta_1} \right\} + \frac{\gamma}{-\beta_1^2 - k^2}.$$

$$\begin{split} &(\mathbb{A}_{\theta}-\lambda)^{-1}U=\frac{1}{-\Delta-\lambda}U\\ &-\frac{1}{(k^2+\beta_1^2)(\mathcal{Q}(\lambda)+\cot\theta)}\left(\int_{\mathbb{R}^3}\frac{(ik|\mathbf{y}|-1)e^{ik|\mathbf{y}|}}{4\pi|\mathbf{y}|^3}\mathbf{y}^tU(\mathbf{y})d^3\mathbf{y}\right)\frac{(ik|\mathbf{x}|-1)e^{ik|\mathbf{x}|}}{4\pi|\mathbf{x}|^3}\mathbf{x}. \end{split}$$

Spectral properties

The model operator may have several bound states. Each one has mutiplicity 3. The corresponding eigenfunctions are

$$\mathbb{V}_{\lambda_0} = -\frac{\chi |\mathbf{x}| + 1}{4\pi |\mathbf{x}|^3} e^{-\chi |\mathbf{x}|} \mathbf{x} \cdot \mathbf{a}, \ \lambda_0 = -\chi^2,$$

where $\chi > 0$ is a solution to the equation

$$Q(-\chi^2) + \cot \theta = 0.$$

To prove this fact one writes the function $\ensuremath{\mathbb{V}}$ as a linear combination

$$\mathbb{V}=\sum_{i=1}^{3}g_{i}a_{i}+\sum_{i=1}^{3}G_{i}b_{i}+V,$$

where $V \in W_2^3(\mathbb{R}^3)$. Substituting into the boundary conditions one gets the dispersion equation.

• Absolutely continuous spectrum covers the branch $[0,\infty)$ inherited from the Laplacian.

• Continuous spectrum (generalized) eigenfunctions are

$$\mathbb{V}(\lambda, \mathbf{k}/k, \mathbf{x}) = e^{i\mathbf{k}\cdot\mathbf{x}} + \frac{i}{(k^2 + \beta_1^2)(Q(k^2) + \cot\theta)} \frac{ik|\mathbf{x}| - 1}{4\pi |\mathbf{x}|^3} e^{ik|\mathbf{x}|} \mathbf{x} \cdot \mathbf{k} \ \lambda > 0,$$

• The scattering amplitude depends on the angle between incoming and outgoing waves.

The scattering matrix is non-trivial in the *p*-channel!

 New type of eigenfunction expansions can be obtained by integrating the jump of the resolvent of A_θ on the real axis.

- Absolutely continuous spectrum covers the branch $[0,\infty)$ inherited from the Laplacian.
- Continuous spectrum (generalized) eigenfunctions are

$$\mathbb{V}(\lambda,\mathbf{k}/k,\mathbf{x}) = e^{i\mathbf{k}\cdot\mathbf{x}} + \frac{i}{(k^2 + \beta_1^2)(Q(k^2) + \cot\theta)} \frac{ik|\mathbf{x}| - 1}{4\pi|\mathbf{x}|^3} e^{ik|\mathbf{x}|} \mathbf{x} \cdot \mathbf{k} \ \lambda > 0,$$

 The scattering amplitude depends on the angle between incoming and outgoing waves.

The scattering matrix is non-trivial in the *p*-channel!

 New type of eigenfunction expansions can be obtained by integrating the jump of the resolvent of A_θ on the real axis.

- Absolutely continuous spectrum covers the branch $[0,\infty)$ inherited from the Laplacian.
- Continuous spectrum (generalized) eigenfunctions are

$$\mathbb{V}(\lambda,\mathbf{k}/k,\mathbf{x}) = e^{i\mathbf{k}\cdot\mathbf{x}} + \frac{i}{(k^2 + \beta_1^2)(Q(k^2) + \cot\theta)} \frac{ik|\mathbf{x}| - 1}{4\pi|\mathbf{x}|^3} e^{ik|\mathbf{x}|} \mathbf{x} \cdot \mathbf{k} \ \lambda > 0,$$

- The scattering amplitude depends on the angle between incoming and outgoing waves.
 The scattering matrix is non-trivial in the *p*-channel!
- New type of eigenfunction expansions can be obtained by integrating the jump of the resolvent of A_{θ} on the real axis.

- Absolutely continuous spectrum covers the branch $[0,\infty)$ inherited from the Laplacian.
- Continuous spectrum (generalized) eigenfunctions are

$$\mathbb{V}(\lambda,\mathbf{k}/k,\mathbf{x}) = e^{i\mathbf{k}\cdot\mathbf{x}} + \frac{i}{(k^2 + \beta_1^2)(Q(k^2) + \cot\theta)} \frac{ik|\mathbf{x}| - 1}{4\pi|\mathbf{x}|^3} e^{ik|\mathbf{x}|} \mathbf{x} \cdot \mathbf{k} \ \lambda > 0,$$

 The scattering amplitude depends on the angle between incoming and outgoing waves.
The scattering matrix is non-trivial in the *p*-channel!

The scattering matrix is non-trivial in the *p*-channels

 New type of eigenfunction expansions can be obtained by integrating the jump of the resolvent of A_θ on the real axis.

• Developed model can be used to describe scattering processes for atoms where *p*-electrons play an essential role;

- One may combine s- and p -type point interactions;
- The model can be generalized to include higher singularities: *d*, *f*, ... orbitals;
- Model all atoms from Mendeleev's table!
- The model can be used to calculate electron levels in simple molecules like H_2O ;
- Few-body problems;
- ...

Perspectives

- Developed model can be used to describe scattering processes for atoms where *p*-electrons play an essential role;
- One may combine s- and p -type point interactions;
- The model can be generalized to include higher singularities: *d*, *f*, ... orbitals;
- Model all atoms from Mendeleev's table!
- The model can be used to calculate electron levels in simple molecules like $H_2O;$
- Few-body problems;
- ...

Perspectives

- Developed model can be used to describe scattering processes for atoms where *p*-electrons play an essential role;
- One may combine s- and p -type point interactions;
- The model can be generalized to include higher singularities: *d*, *f*, ... orbitals;
- Model all atoms from Mendeleev's table!
- The model can be used to calculate electron levels in simple molecules like H_2O ;
- Few-body problems;

• ..

Perspectives

- Developed model can be used to describe scattering processes for atoms where *p*-electrons play an essential role;
- One may combine s- and p -type point interactions;
- The model can be generalized to include higher singularities: *d*, *f*, ... orbitals;
- Model all atoms from Mendeleev's table!
- The model can be used to calculate electron levels in simple molecules like H_2O ;
- Few-body problems;

• ..

Perspectives

- Developed model can be used to describe scattering processes for atoms where *p*-electrons play an essential role;
- One may combine s- and p -type point interactions;
- The model can be generalized to include higher singularities: *d*, *f*, ... orbitals;
- Model all atoms from Mendeleev's table!
- The model can be used to calculate electron levels in simple molecules like H_2O ;
- Few-body problems;

• ..

Perspectives

- Developed model can be used to describe scattering processes for atoms where *p*-electrons play an essential role;
- One may combine s- and p -type point interactions;
- The model can be generalized to include higher singularities: *d*, *f*, ... orbitals;
- Model all atoms from Mendeleev's table!
- The model can be used to calculate electron levels in simple molecules like H_2O ;
- Few-body problems;
- ...

Perspectives

- Developed model can be used to describe scattering processes for atoms where *p*-electrons play an essential role;
- One may combine s- and p -type point interactions;
- The model can be generalized to include higher singularities: *d*, *f*, ... orbitals;
- Model all atoms from Mendeleev's table!
- The model can be used to calculate electron levels in simple molecules like H_2O ;
- Few-body problems;

• ...