The Hyperspherical Harmonic method for a A-body system without permutation symmetry

Mario Gattobigio, A. Kievsky, P. Barletta, and M. Viviani

17 October 2007

 Accurate solutions of Nuclear Hamiltonians – Model validation

- Accurate solutions of Nuclear Hamiltonians Model validation
- Hyperspherical Harmonics as systematic expansion basis

- Accurate solutions of Nuclear Hamiltonians Model validation
- Hyperspherical Harmonics as systematic expansion basis
 - Difficulties in constructing A-particles wave functions with a given permutation symmetry
 - Difficulties to take care of permutation-symmetry-breaking terms

- Accurate solutions of Nuclear Hamiltonians Model validation
- Hyperspherical Harmonics as systematic expansion basis
 - Difficulties in constructing A-particles wave functions with a given permutation symmetry
 - Difficulties to take care of permutation-symmetry-breaking terms
- Use of Hyperspherical Harmonics without permutation symmetry

- Accurate solutions of Nuclear Hamiltonians Model validation
- Hyperspherical Harmonics as systematic expansion basis
 - Difficulties in constructing A-particles wave functions with a given permutation symmetry

٢

- Difficulties to take care of permutation-symmetry-breaking terms
- Use of Hyperspherical Harmonics without permutation symmetry
 - No need of symmetrization procedure
 - Simpler matrix-element calculations
 - Simpler permutation-breaking calculations
 Image: Imag

- Accurate solutions of Nuclear Hamiltonians Model validation
- Hyperspherical Harmonics as systematic expansion basis
 - Difficulties in constructing A-particles wave functions with a given permutation symmetry
 - Difficulties to take care of permutation-symmetry-breaking terms
- Use of Hyperspherical Harmonics without permutation symmetry
 - No need of symmetrization procedure
 - Simpler matrix-element calculations
 - Simpler permutation-breaking calculations
 - Bigger basis set

() ()

٢

• Jacobi Coordinates

- Jacobi Coordinates
- Hyperspherical Coordinates

- Jacobi Coordinates
- Hyperspherical Coordinates
- Hyperspherical Harmonics

- Jacobi Coordinates
- Hyperspherical Coordinates
- Hyperspherical Harmonics
- Potential Basis

- Jacobi Coordinates
- Hyperspherical Coordinates
- Hyperspherical Harmonics
- Potential Basis
- Hamiltonian on "One Side"

- Jacobi Coordinates
- Hyperspherical Coordinates
- Hyperspherical Harmonics
- Potential Basis
- Hamiltonian on "One Side"
- Application to (Testbed) Volkov's Potential

- Jacobi Coordinates
- Hyperspherical Coordinates
- Hyperspherical Harmonics
- Potential Basis
- Hamiltonian on "One Side"
- Application to (Testbed) Volkov's Potential
- Conclusions

Kinetic Energy

Kinetic Energy

Center of Mass

$$ec{X} = rac{1}{M}\sum_{i=1}^{A}m_iec{r}_i$$
, $M = \sum_{i=1}^{A}m_i$

Jacobi's coordinates

$$egin{aligned} ec{x}_{N-j+1} &= \sqrt{rac{2m_{j+1}M_j}{(m_{j+1}+M_j)m}} \, (ec{r}_{j+1} - ec{X}_j) \ j &= 1, \dots, N = A - 1 \end{aligned}$$

$$M_{j} = \sum_{i=1}^{j} m_{j}$$
, $\vec{X}_{j} = \frac{1}{M_{j}} \sum_{i=1}^{j} m_{i} \vec{r}_{i}$

Kinetic Energy Center of Mass $T = -\frac{\hbar^2}{2M}\nabla_{\mathbf{X}}^2 - \frac{\hbar^2}{m}\sum_{\mathbf{X}_i}^N \nabla_{\mathbf{X}_i}^2 \qquad \vec{X} = \frac{1}{M}\sum_{i=1}^A m_i \vec{r}_i , \quad M = \sum_{i=1}^A m_i$ Jacobi's coordinates $ec{x}_{N-j+1} = \sqrt{rac{2m_{j+1}M_j}{(m_{j+1}+M_j)m}} (ec{r}_{j+1} - ec{X}_j)$ $j = 1, \dots, N = A-1$ U x

$$\mathcal{M}_j = \sum_{i=1}^j m_j$$
 , $ec{\mathcal{X}}_j = rac{1}{\mathcal{M}_j} \sum_{i=1}^j m_i ec{r}_i$

Kinetic Energy

 $T = -\frac{\hbar^2}{2M} \nabla_{\mathbf{X}}^2 - \frac{\hbar^2}{m} \sum_{i=1}^N \nabla_{\mathbf{x}_i}^2$

Center of Mass

$$ec{X} = rac{1}{M}\sum_{i=1}^{A}m_iec{r}_i$$
, $M = \sum_{i=1}^{A}m_i$

Jacobi's coordinates

Hyperradius

$$\rho = \left(x_1^2 + x_2^2 + \dots + x_N^2\right)^{1/2}$$

Hyperradius

$$\rho = \left(x_1^2 + x_2^2 + \dots + x_N^2\right)^{1/2}$$

Hyperangles

$$\Omega_{N} = (\hat{x}_{1}, \ldots, \hat{x}_{N}, \varphi_{2}, \ldots, \varphi_{N})$$

Hyperradius

$$\rho = \left(x_1^2 + x_2^2 + \dots + x_N^2\right)^{1/2}$$

Hyperangles

$$\Omega_{N} = (\hat{x}_{1}, \ldots, \hat{x}_{N}, \varphi_{2}, \ldots, \varphi_{N})$$

Where

$$\begin{split} x_N &= \rho \cos \varphi_N \\ x_{N-1} &= \rho \sin \varphi_N \cos \varphi_{N-1} \\ &\vdots \\ x_1 &= \rho \sin \varphi_N \cdots \sin \varphi_3 \sin \varphi_2 \end{split}$$

$$\cos arphi_i = rac{x_i}{\sqrt{x_1^2 + \cdots + x_j^2}}$$
 $j = 2, \dots, N$

Laplacian Operator (Kinetic Energy)

$$\Delta = \sum_{i=1}^{N} \nabla_{\mathbf{x}_{i}}^{2} = \left(\frac{\partial^{2}}{\partial \rho^{2}} + \frac{3N-1}{\rho}\frac{\partial}{\partial \rho} + \frac{\Lambda_{N}^{2}(\Omega_{N})}{\rho^{2}}\right)$$

Laplacian Operator (Kinetic Energy)

$$\Delta = \sum_{i=1}^{N} \nabla_{\mathbf{x}_{i}}^{2} = \left(\frac{\partial^{2}}{\partial \rho^{2}} + \frac{3N-1}{\rho}\frac{\partial}{\partial \rho} + \frac{\Lambda_{N}^{2}(\Omega_{N})}{\rho^{2}}\right)$$

Grand-Angular operator momentum - recurrence equation

$$\begin{split} \Lambda_{N}^{2}(\Omega_{N}) = & \frac{\delta^{2}}{\delta \varphi_{N}^{2}} + \left[3(N-2) \cot \varphi_{N} + 2(\cot \varphi_{N} - \tan \varphi_{N}) \right] \frac{\delta}{\delta \varphi_{N}} + \\ & \frac{L_{N}^{2}(\hat{x}_{N})}{\cos^{2} \varphi_{N}} + \\ & \frac{\Lambda_{N-1}^{2}(\Omega_{N-1})}{\sin^{2} \varphi_{N}} \end{split}$$

Defining Equation

$$\Big(\Lambda_N^2(\Omega_N) + \mathcal{K}(\mathcal{K} + 3N - 2)\Big)\mathcal{Y}_{[\mathcal{K}]}(\Omega_N) = 0$$

Defining Equation

$$\Big(\Lambda_N^2(\Omega_N) + \mathcal{K}(\mathcal{K} + 3N - 2)\Big)\mathcal{Y}_{[\mathcal{K}]}(\Omega_N) = 0$$

$$\boldsymbol{\mathcal{Y}}_{[\mathcal{K}]}(\Omega_{\mathcal{N}}) = \left[\prod_{j=1}^{\mathcal{N}} \boldsymbol{\mathcal{Y}}_{l_j, m_j}(\hat{\boldsymbol{x}}_j)\right]$$

$$[K] = (I_1, m_1, \cdots, I_N, m_N)$$

Defining Equation

$$\Big(\Lambda_{\mathcal{N}}^{2}(\Omega_{\mathcal{N}})+\mathcal{K}(\mathcal{K}+3\mathcal{N}-2)\Big)\mathcal{Y}_{[\mathcal{K}]}(\Omega_{\mathcal{N}})=0$$

$$\begin{split} \mathcal{Y}_{[K]}(\Omega_{N}) &= \left[\prod_{j=1}^{N} Y_{l_{j},m_{j}}(\hat{x}_{j})\right] \\ &\left[\prod_{j=2}^{N} \mathcal{N}_{n_{j}}^{l_{j},K_{j}} (\cos \varphi_{j})^{l_{j}} (\sin \varphi_{j})^{K_{j-1}} \mathcal{P}_{n_{j}}^{K_{j-1}+(3j-5)/2,l_{j}+1/2} (\cos 2\varphi_{j})\right] \\ &[K] &= (l_{1},m_{1},\cdots,l_{N},m_{N},n_{2},\cdots,n_{N}) \end{split}$$

Defining Equation

$$\Big(\Lambda_{N}^{2}(\Omega_{N})+K(K+3N-2)\Big)\mathcal{Y}_{[K]}(\Omega_{N})=0$$

$$\begin{split} \mathcal{Y}_{[K]}(\Omega_N) &= \left[\prod_{j=1}^N Y_{l_j,m_j}(\hat{x}_j)\right] \\ &\left[\prod_{j=2}^N \mathcal{N}_{n_j}^{l_j,K_j} (\cos \varphi_j)^{l_j} (\sin \varphi_j)^{K_{j-1}} \mathcal{P}_{n_j}^{K_{j-1}+(3j-5)/2,l_j+1/2} (\cos 2\varphi_j)\right] \\ &\left[K\right] &= (l_1,m_1,\cdots,l_N,m_N,n_2,\cdots,n_N) \\ &K_j &= \sum_{i=1}^j (l_i+2n_i), \qquad n_1 = 0, \qquad K \equiv K_N \end{split}$$

Defining Equation

$$\Big(\Lambda_{N}^{2}(\Omega_{N})+\textit{K}(\textit{K}+3\textit{N}-2)\Big)\mathcal{Y}_{[\textit{K}]}(\Omega_{N})=0$$

$$\begin{split} \mathcal{Y}_{[K]}(\Omega_{N}) &= \left[\prod_{j=1}^{N} Y_{l_{j},m_{j}}(\hat{x}_{j})\right]_{L,M} \\ &\left[\prod_{j=2}^{N} \mathcal{N}_{n_{j}}^{l_{j},K_{j}}(\cos\varphi_{j})^{l_{j}}(\sin\varphi_{j})^{K_{j-1}} \mathcal{P}_{n_{j}}^{K_{j-1}+(3j-5)/2,l_{j}+1/2}(\cos 2\varphi_{j})\right] \\ &[K] = (l_{1},m_{1},\cdots,l_{N},m_{N},n_{2},\cdots,n_{N}) \\ &K_{j} &= \sum_{i=1}^{j} (l_{i}+2n_{i}), \qquad n_{1} = 0, \qquad K \equiv K_{N} \end{split}$$

Defining Equation

$$\Big(\Lambda_{\mathcal{N}}^{2}(\Omega_{\mathcal{N}})+\mathcal{K}(\mathcal{K}+3\mathcal{N}-2)\Big)\mathcal{Y}_{[\mathcal{K}]}(\Omega_{\mathcal{N}})=0$$

$$\mathcal{Y}_{[K]}(\Omega_{N}) = \left[\prod_{j=1}^{N} Y_{l_{j},m_{j}}(\hat{x}_{j})\right]_{L,M} \left[\prod_{j=2}^{N} {}^{(j)}\mathcal{P}_{K_{j}}^{l_{j},K_{j-1}}(\varphi_{j})\right]$$
$$\left[\prod_{j=2}^{N} \mathcal{N}_{n_{j}}^{l_{j},K_{j}}(\cos\varphi_{j})^{l_{j}}(\sin\varphi_{j})^{K_{j-1}}\mathcal{P}_{n_{j}}^{K_{j-1}+(3j-5)/2,l_{j}+1/2}(\cos 2\varphi_{j})\right]$$
$$[K] = (l_{1},m_{1},\cdots,l_{N},m_{N},n_{2},\cdots,n_{N})$$

$$\mathcal{K}_j = \sum_{i=1}^j (I_i + 2n_i)$$
, $n_1 = 0$, $\mathcal{K} \equiv \mathcal{K}_N$

Defining Equation

$$\Big(\Lambda_{N}^{2}(\Omega_{N})+\textit{K}(\textit{K}+3\textit{N}-2)\Big)\mathcal{Y}_{[\textit{K}]}(\Omega_{N})=0$$

$$\boldsymbol{\mathcal{Y}}_{[K]}(\boldsymbol{\Omega}_{N}) = \left[\prod_{j=1}^{N} \boldsymbol{\mathcal{Y}}_{l_{j},m_{j}}(\hat{\boldsymbol{x}}_{j})\right]_{L,M} \left[\prod_{j=2}^{N} \boldsymbol{\mathcal{Y}}_{K_{j}}^{l_{j},K_{j-1}}(\boldsymbol{\varphi}_{j})\right]$$

Defining Equation

$$\Big(\Lambda_{\mathcal{N}}^{2}(\Omega_{\mathcal{N}})+\mathcal{K}(\mathcal{K}+3\mathcal{N}-2)\Big)\mathcal{Y}_{[\mathcal{K}]}(\Omega_{\mathcal{N}})=0$$

Explicit form

$$\boldsymbol{\mathcal{Y}}_{[K]}(\boldsymbol{\Omega}_{N}) = \left[\prod_{j=1}^{N} \boldsymbol{Y}_{l_{j},m_{j}}(\hat{\boldsymbol{x}}_{j})\right]_{L,M} \left[\prod_{j=2}^{N} \boldsymbol{y}_{K_{j}}^{l_{j},K_{j-1}}(\boldsymbol{\varphi}_{j})\right]$$

Orthogonality

$$\int d\Omega_{N} \left(\boldsymbol{\mathcal{Y}}_{[K']}(\Omega_{N}) \right)^{*} \boldsymbol{\mathcal{Y}}_{[K]}(\Omega_{N}) = \boldsymbol{\delta}_{[K],[K']}$$

Defining Equation

$$\Big(\Lambda_{\mathcal{N}}^{2}(\Omega_{\mathcal{N}})+\mathcal{K}(\mathcal{K}+3\mathcal{N}-2)\Big)\mathcal{Y}_{[\mathcal{K}]}(\Omega_{\mathcal{N}})=0$$

Explicit form

$$\boldsymbol{\mathcal{Y}}_{[K]}(\boldsymbol{\Omega}_{N}) = \left[\prod_{j=1}^{N} \boldsymbol{Y}_{l_{j},m_{j}}(\hat{\boldsymbol{x}}_{j})\right]_{L,M} \left[\prod_{j=2}^{N} \boldsymbol{y}_{K_{j}}^{l_{j},K_{j-1}}(\boldsymbol{\varphi}_{j})\right]$$

Orthogonality

$$\int d\Omega_{N} \Big(\boldsymbol{\mathcal{Y}}_{[K']}(\Omega_{N}) \Big)^{*} \boldsymbol{\mathcal{Y}}_{[K]}(\Omega_{N}) = \boldsymbol{\delta}_{[K],[K']}$$

Completeness

$$\sum_{[K]} \left(\boldsymbol{\mathcal{Y}}_{[K]}(\Omega_{N}) \right)^{*} \boldsymbol{\mathcal{Y}}_{[K]}(\Omega_{N}') = \delta^{3N-1}(\Omega_{N}' - \Omega_{N})$$

Potential Basis

Basis set to develop one-side functions $f(\vec{r}_i - \vec{r}_j)$

$$f(\vec{r}_i - \vec{r}_j) = \sum_{n,l,m} f_{n,l,m} \mathcal{Y}_{n,l,m}^{PB}(\hat{x}_N, \varphi_N)$$

Jacobi coordinate $\vec{x}_N = \vec{r}_i - \vec{r}_j$

Potential Basis

Basis set to develop one-side functions $f(\vec{r}_i - \vec{r}_j)$

$$f(\vec{r}_i - \vec{r}_j) = \sum_{n,l,m} f_{n,l,m} \mathcal{Y}_{n,l,m}^{PB}(\hat{x}_N, \varphi_N)$$

Jacobi coordinate $\vec{x}_N = \vec{r}_i - \vec{r}_j$

Defined by

Potential Basis

Basis set to develop one-side functions $f(\vec{r}_i - \vec{r}_j)$

$$f(\vec{r}_i - \vec{r}_j) = \sum_{n,l,m} f_{n,l,m} \mathcal{Y}_{n,l,m}^{PB}(\hat{x}_N, \varphi_N)$$

Jacobi coordinate $\vec{x}_N = \vec{r}_i - \vec{r}_j$

Defined by

• Hyperspherical functions K = 2n + 1

$$\Lambda_{\mathcal{N}}^{2}(\Omega_{\mathcal{N}})\mathcal{Y}_{n,l,\mathfrak{m}}^{\mathcal{P}\mathcal{B}}(\hat{x}_{\mathcal{N}},\varphi_{\mathcal{N}})=-\mathcal{K}(\mathcal{K}+3\mathcal{N}-2)\mathcal{Y}_{n,l,\mathfrak{m}}^{\mathcal{P}\mathcal{B}}(\hat{x}_{\mathcal{N}},\varphi_{\mathcal{N}})$$
Basis set to develop one-side functions $f(\vec{r}_i - \vec{r}_j)$

$$f(\vec{r}_i - \vec{r}_j) = \sum_{n,l,m} f_{n,l,m} \mathcal{Y}_{n,l,m}^{PB}(\hat{x}_N, \varphi_N)$$

Jacobi coordinate $\vec{x}_N = \vec{r}_i - \vec{r}_j$

Defined by

• Hyperspherical functions K = 2n + 1

$$\Lambda_{\mathcal{N}}^{2}(\Omega_{\mathcal{N}})\mathcal{Y}_{n,l,m}^{\mathcal{PB}}(\hat{x}_{\mathcal{N}},\varphi_{\mathcal{N}}) = -\mathcal{K}(\mathcal{K}+3\mathcal{N}-2)\mathcal{Y}_{n,l,m}^{\mathcal{PB}}(\hat{x}_{\mathcal{N}},\varphi_{\mathcal{N}})$$

• Rotation invariance in $\{\vec{x}_1, \ldots, \vec{x}_{N-1}\}$

$$\Lambda^2_{N-1}(\Omega_{N-1})\boldsymbol{\mathcal{Y}}^{PB}_{n,l,m}(\hat{\boldsymbol{x}}_N,\boldsymbol{\varphi}_N)=\boldsymbol{0}$$

Basis set to develop one-side functions $f(\vec{r}_i - \vec{r}_j)$

$$f(\vec{r}_i - \vec{r}_j) = \sum_{n,l,m} f_{n,l,m} \mathcal{Y}_{n,l,m}^{PB}(\hat{x}_N, \varphi_N)$$

Jacobi coordinate $\vec{x}_N = \vec{r}_i - \vec{r}_j$

Explicitly

$$\begin{split} \mathcal{Y}_{n,l,m}^{PB}(\hat{x}_{N},\varphi_{N}) &= \mathcal{Y}_{[K]}(\Omega_{N}) \Big|_{\substack{l_{1}=\cdots=l_{N-1}=0\\m_{1}=\cdots=m_{N-1}=0\\n_{2}=\cdots=n_{N-1}=0}} \\ &= \mathcal{N} \mathcal{Y}_{l,m}(\hat{x}_{N})(\cos\varphi_{N})^{l} \mathcal{P}_{n}^{3(N-1)/2-1,l+1/2}(\cos 2\varphi_{N})\,, \end{split}$$

Basis set to develop one-side functions $f(\vec{r}_i - \vec{r}_j)$

$$f(\vec{r}_i - \vec{r}_j) = \sum_{n,l,m} f_{n,l,m} \mathcal{Y}_{n,l,m}^{PB}(\hat{x}_N, \varphi_N)$$

Jacobi coordinate $\vec{x}_N = \vec{r}_i - \vec{r}_j$

Explicitly

$$\begin{split} \mathcal{Y}_{n,l,m}^{PB}(\hat{x}_{N},\varphi_{N}) &= \mathcal{Y}_{[K]}(\Omega_{N}) \Big|_{\substack{I_{1}=\cdots=I_{N-1}=0\\n_{2}=\cdots=n_{N-1}=0}} \\ &= \mathcal{N}\mathcal{Y}_{l,m}(\hat{x}_{N})(\cos\varphi_{N})^{l}\mathcal{P}_{n}^{3(N-1)/2-1,l+1/2}(\cos2\varphi_{N}), \\ &\qquad \mathcal{Y}_{n}^{PB}(\hat{x}_{N},\varphi_{N}) = \left[\mathcal{Y}_{n,l,m}^{PB}(\hat{x}_{N},\varphi_{N})\right]_{L=0} \end{split}$$

Basis set to develop one-side functions $f(\vec{r}_i - \vec{r}_j)$

$$f(r_{ij}) = \sum_{n} f_n(\rho) \mathcal{Y}_n^{\rho_{\mathcal{B}}}(\Omega_{ij})$$

Jacobi coordinate $\vec{x}_N = \vec{r}_i - \vec{r}_j$

Explicitly

$$\begin{split} \boldsymbol{\mathcal{Y}}_{n,l,m}^{PB}(\hat{\boldsymbol{x}}_{N},\boldsymbol{\varphi}_{N}) &= \boldsymbol{\mathcal{Y}}_{[K]}(\boldsymbol{\Omega}_{N}) \Big|_{\substack{I_{1}=\cdots=I_{N-1}=0\\n_{2}=\cdots=n_{N-1}=0}} \\ &= \boldsymbol{\mathcal{N}}\boldsymbol{\mathcal{Y}}_{l,m}(\hat{\boldsymbol{x}}_{N})(\cos\boldsymbol{\varphi}_{N})^{l}\boldsymbol{\mathcal{P}}_{n}^{3(N-1)/2-1,l+1/2}(\cos 2\boldsymbol{\varphi}_{N}), \\ & \boldsymbol{\mathcal{Y}}_{n}^{PB}(\hat{\boldsymbol{x}}_{N},\boldsymbol{\varphi}_{N}) &= \left[\boldsymbol{\mathcal{Y}}_{n,l,m}^{PB}(\hat{\boldsymbol{x}}_{N},\boldsymbol{\varphi}_{N})\right]_{L=0} \end{split}$$

Permutation properties

The coefficients of transformation are known

(Central)-Potential on "One Side"

(Central)-Potential on "One Side"

$$V(r_{12}) = \sum_{n} V_{n}(\rho) \mathcal{Y}_{n}^{PB}(\Omega_{12})$$
$$V(r_{24}) = \sum_{n} V_{n}(\rho) \mathcal{Y}_{n}^{PB}(\Omega_{24})$$

(Central)-Potential on "One Side"

(Central)-Potential on "One Side"

(Central)-Potential on "One Side"

V

$$V(r_{12}) = \sum_{n} V_{n}(\rho) \mathcal{Y}_{n}^{PB}(\Omega_{12})$$

$$= \sum_{i < j}^{A} V(r_{ij}) = \sum_{i < j}^{A} \sum_{n} V_{n}(\rho) \mathcal{Y}_{n}^{PB}(\Omega_{ij})$$

$$= \sum_{i < j}^{A} \sum_{n} V_{n}(\rho) \sum_{[K'=2n]} {}^{(N)} \mathcal{C}_{[K']}^{n}(\psi^{ij}) \left[\mathcal{Y}_{[K']}(\Omega_{12}) \right]_{L=0}$$

$$= \sum_{n} V_{n}(\rho) \mathcal{G}_{n}(\Omega_{12})$$

(Central)-Potential on "One Side"

$$\mathcal{H} = -rac{\hbar^2}{m}\sum_{i=1}^N
abla^2_{oldsymbol{x}_i} + \sum_{i < j}^A V(r_{ij}) + \mathcal{H}_{CM}$$

$$H = -\frac{\hbar^2}{m} \sum_{i=1}^{N} \nabla_{\mathbf{x}_i}^2 + \sum_{i < j}^{A} V(r_{ij})$$

Basis Set (L = 0)

$$\langle \rho \,\Omega \mid m \,[K] \rangle = \left(\beta^{3N/2} \sqrt{\frac{m!}{(3N-1+m)!}} \,L_m^{(3N-1)}(\beta \rho) \,e^{-\beta \rho/2} \right) \\ \left[\mathcal{Y}_{[K]}(\Omega_N) \right]_{\mathbf{L}=0}$$

$$H = -\frac{\hbar^2}{m} \sum_{i=1}^{N} \nabla_{\mathbf{x}_i}^2 + \sum_{i < j}^{A} V(r_{ij})$$

Basis Set (L = 0)

$$\langle \rho \Omega \mid m [K] \rangle = \left(\beta^{3N/2} \sqrt{\frac{m!}{(3N-1+m)!}} L_m^{(3N-1)}(\beta \rho) e^{-\beta \rho/2} \right) \\ \left[\mathcal{Y}_{[K]}(\Omega_N) \right]_{\mathbf{L}=0}$$

Matrix Elements

$$H_{m'[K']; m[K]} = \langle m'[K'] | H|m[K] \rangle = -\frac{\hbar^2 \beta^2}{m} \delta_{[K], [K']} T_{m', m}^{K} + V_{m'[K']; m[K]}$$

$$H = -\frac{\hbar^2}{m} \sum_{i=1}^{N} \nabla_{\mathbf{x}_i}^2 + \sum_{i < j}^{A} V(r_{ij})$$

Basis Set (L = 0)

$$\langle \rho \Omega \mid m [K] \rangle = \left(\beta^{3N/2} \sqrt{\frac{m!}{(3N-1+m)!}} L_m^{(3N-1)}(\beta \rho) e^{-\beta \rho/2} \right) \\ \left[\mathcal{Y}_{[K]}(\Omega_N) \right]_{\mathbf{L}=0}$$

Matrix Elements

$$H_{m'[K']; m[K]} = \langle m'[K'] | H|m[K] \rangle = -\frac{\hbar^2 \beta^2}{m} \delta_{[K], [K']} T_{m', m}^{K} + V_{m'[K']; m[K]}$$

$$T_{m',m}^{K} = {}^{(1)}T_{m',m}$$
 - $K(K + 3N$ - 2) ${}^{(2)}T_{m',m}$

$$V_{m'[K']; m[K]} = \langle m'[K'] \mid \sum_{i < j}^{A} V(r_{ij}) \mid m[K] \rangle$$

$$V_{m'[K']:m[K]} = \langle m'[K'] \mid \sum_{i < j}^{A} V(r_{ij}) \mid m[K] \rangle$$
$$= \sum_{n} \langle m' \mid V_{n}(\rho) \mid m \rangle \langle [K'] \mid \mathcal{G}_{n}(\Omega_{12}) \mid [K] \rangle$$

$$V_{m'[K']: m[K]} = \langle m'[K'] | \sum_{i < j}^{A} V(r_{ij}) | m[K] \rangle$$

= $\sum_{n} \langle m' | V_{n}(\rho) | m \rangle \langle [K'] | \mathcal{G}_{n}(\Omega_{12}) | [K] \rangle$
= $\sum_{n} \langle m' | V_{n}(\rho) | m \rangle \langle [K'] | \left(\sum_{i < j}^{A} {}^{(N)} \mathcal{C}_{[K'']}^{n}(\varphi^{ij}) \right) \left[\mathcal{Y}_{[K''=2n]}(\Omega_{12}) \right]_{L=0} | [K] \rangle$

Potential

$$V_{m'[K']: m[K]} = \langle m'[K'] | \sum_{i < j}^{A} V(r_{ij}) | m[K] \rangle$$

= $\sum_{n} \langle m' | V_{n}(\rho) | m \rangle \langle [K'] | \mathcal{G}_{n}(\Omega_{12}) | [K] \rangle$
= $\sum_{n} \langle m' | V_{n}(\rho) | m \rangle \langle [K'] | \left(\sum_{i < j}^{A} {}^{(N)} \mathcal{C}_{[K'']}^{n}(\varphi^{ij}) \right) \left[\mathcal{Y}_{[K''=2n]}(\Omega_{12}) \right]_{L=0} | [K] \rangle$

• Potential independent

=

$$V_{m'[K']; m[K]} = \langle m'[K'] | \sum_{i < j}^{A} V(r_{ij}) | m[K] \rangle$$

= $\sum_{n} \langle m' | V_{n}(\rho) | m \rangle \langle [K'] | \mathcal{G}_{n}(\Omega_{12}) | [K] \rangle$
 $\sum_{n} \langle m' | V_{n}(\rho) | m \rangle \langle [K'] | \left(\sum_{i < j}^{A} {}^{(N)} \mathcal{C}_{[K'']}^{n}(\varphi^{ij}) \right) \left[\mathcal{Y}_{[K''=2n]}(\Omega_{12}) \right]_{L=0} | [K] \rangle$

- Potential independent
- Simple-way dependency from A

$$V_{m'[K']; m[K]} = \langle m'[K'] | \sum_{i < j}^{A} V(r_{ij}) | m[K] \rangle$$

= $\sum_{n} \langle m' | V_{n}(\rho) | m \rangle \langle [K'] | \mathcal{G}_{n}(\Omega_{12}) | [K] \rangle$
 $\sum_{n} \langle m' | V_{n}(\rho) | m \rangle \langle [K'] | \left(\sum_{i < j}^{A} {}^{(N)} \mathcal{C}_{[K'']}^{n}(\varphi^{ij}) \right) \left[\mathcal{Y}_{[K''=2n]}(\Omega_{12}) \right]_{L=0} | [K] \rangle$

- Potential independent
- Simple-way dependency from A
- Triangular relation K, K', K'' = 2n

Drawback Large basis set

Drawback

Large basis set

• Large matrix to storage

Drawback

Large basis set

- Large matrix to storage
- Diagonalization of large matrix

Drawback

Large basis set

- Large matrix to storage
- Diagonalization of large matrix

Solution

Iterative Eigensolver Methods (ex. Lanczos)

Drawback

Large basis set

- Large matrix to storage
- Diagonalization of large matrix

Solution

Iterative Eigensolver Methods (ex. Lanczos)

Only Hamiltonian action on a vector is required

Drawback

Large basis set

- Large matrix to storage
- Diagonalization of large matrix

Solution

Iterative Eigensolver Methods (ex. Lanczos)

- Only Hamiltonian action on a vector is required
- Exploitation of the tensor-product structure of the Hamiltonian

$$H = {}^{(1)}T \otimes I + {}^{(2)}T \otimes D + \sum_{n} \mathcal{G}_{n} \otimes V_{n}$$

Drawback

Large basis set

- Large matrix to storage
- Diagonalization of large matrix

Solution

Iterative Eigensolver Methods (ex. Lanczos)

- Only Hamiltonian action on a vector is required
- Exploitation of the tensor-product structure of the Hamiltonian

$$\mathcal{H} = {}^{(1)}\mathcal{T}\otimes\mathcal{I} + {}^{(2)}\mathcal{T}\otimes\mathcal{D} + \sum_{n}\mathcal{G}_{n}\otimes\mathcal{V}_{n}$$

• Ready for parallel implementation

Volkov's Potential testbed

Implementation of our strategy to the A = 4 case

Mass parameter

$$\hbar^2/m = 41.47 \text{ Mev fm}^{-2}$$

Potential

$$V(r) = E_1 e^{-r^2/R_1^2} + E_2 e^{-r^2/R_2^2}$$

• $E_1 = 144.86$ Mev, $R_1 = 0.82$ fm, $E_2 = -83.34$ Mev, $R_2 = 1.6$ fm

Permutation Symmetries S4

$$m = 0, K = 6, \beta = 2$$

Irreps		Eigen's (MeV)	Sym(1-2)	AntiSym(1-2)
[4]	1 2 3 4	-25.794	-25.794	
[2 ²]	1 2 3 4	27.680	27.680	
		27.680		27.680
[3 1]		28.430	28.430	
		28.430	28.430	
		28.430		28.430
[21 ²]	1 2 3 4	102.85	102.85	
		102.85		102.85
		102.85		102.85
:	:	:	•	:
[1 ⁴]	1 2 3 4	199.56		199.56

Results N = 4

Using 25 Laguerre's polynomials, and $\beta=2$

K _{max}	N _{HH}	<i>E</i> ₀ (MeV)	<i>E</i> ₁ (MeV)
0	1	28.580	3.238
2	6	28.580	3.238
4	21	29.283	5.428
6	56	29.812	6.583
8	126	30.162	7.148
10	252	30.278	7.509
12	462	30.365	7.749
14	792	30.392	7.910
16	1287	30.407	8.040
18	2002	30.413	8.141
20	3003	30.416	8.223
22	4368	30.417	8.288

Results N = 4 with Coulomb interaction

Using 25 Laguerre's polynomials, and $\beta=2$

K _{max}	N _{HH}	<i>E</i> ₀ (MeV)	<i>E</i> ₁ (MeV)
0	1	27.748	2.787
2	6	27.750	2.790
4	21	28.455	4.947
6	56	28.986	6.102
8	126	29.338	6.672
10	252	29.456	7.039
12	462	29.544	7.285
14	792	29.572	7.452
16	1287	29.587	7.587
18	2002	29.593	7.692
20	3003	29.596	7.778
22	4368	29.597	7.847

• Hyperspherical Harmonics convenient basis for few-body calculation

- Hyperspherical Harmonics convenient basis for few-body calculation
- Symmetric (Anti-Symmetric) basis using Hyperspherical Harmonics

- Hyperspherical Harmonics convenient basis for few-body calculation
- Symmetric (Anti-Symmetric) basis using Hyperspherical Harmonics
 - Results for 3-4 bodies

- Hyperspherical Harmonics convenient basis for few-body calculation
- Symmetric (Anti-Symmetric) basis using Hyperspherical Harmonics
 - Results for 3-4 bodies
 - Problem to systematically create (anti)-symmetric wave function

- Hyperspherical Harmonics convenient basis for few-body calculation
- Symmetric (Anti-Symmetric) basis using Hyperspherical Harmonics
 - Results for 3-4 bodies
 - Problem to systematically create (anti)-symmetric wave function
- Using the Potential Basis for potential expansion

- Hyperspherical Harmonics convenient basis for few-body calculation
- Symmetric (Anti-Symmetric) basis using Hyperspherical Harmonics
 - Results for 3-4 bodies
 - Problem to systematically create (anti)-symmetric wave function
- Using the Potential Basis for potential expansion
- Simple introduction of permutation-symmetry-breaking terms

- Hyperspherical Harmonics convenient basis for few-body calculation
- Symmetric (Anti-Symmetric) basis using Hyperspherical Harmonics
 - Results for 3-4 bodies
 - Problem to systematically create (anti)-symmetric wave function
- Using the Potential Basis for potential expansion
- Simple introduction of permutation-symmetry-breaking terms
 - Coulomb interaction between pairs

- Hyperspherical Harmonics convenient basis for few-body calculation
- Symmetric (Anti-Symmetric) basis using Hyperspherical Harmonics
 - Results for 3-4 bodies
 - Problem to systematically create (anti)-symmetric wave function
- Using the Potential Basis for potential expansion
- Simple introduction of permutation-symmetry-breaking terms
 - Coulomb interaction between pairs
 - Different masses

- Hyperspherical Harmonics convenient basis for few-body calculation
- Symmetric (Anti-Symmetric) basis using Hyperspherical Harmonics
 - Results for 3-4 bodies
 - Problem to systematically create (anti)-symmetric wave function
- Using the Potential Basis for potential expansion
- Simple introduction of permutation-symmetry-breaking terms
 - Coulomb interaction between pairs
 - Different masses
- Iterative Eigensolvers to deal with large matrices

- Hyperspherical Harmonics convenient basis for few-body calculation
- Symmetric (Anti-Symmetric) basis using Hyperspherical Harmonics
 - Results for 3-4 bodies
 - Problem to systematically create (anti)-symmetric wave function
- Using the Potential Basis for potential expansion
- Simple introduction of permutation-symmetry-breaking terms
 - Coulomb interaction between pairs
 - Different masses
- Iterative Eigensolvers to deal with large matrices
- Simple parallelization