Poincaré Invariant Three-Body Scattering

Ch. Elster
T. Lin
W. Polyzou, W. Glöckle

A Few-Body Theorist's view of the Nuclear Chart

3 Nucleons

-Bound State: ${ }^{3} \mathrm{H}-{ }^{3} \mathrm{He}$
-Scattering: Elastic - Inelastic (Breakup)
-Energy Scale: $\mathrm{keV} \rightarrow \mathrm{MeV} \rightarrow \mathrm{GeV}$

Challenges in 3N Physics

- Test of nuclear forces in the simplest nuclear environment (over a large energy range!)
- Two-body forces
- Genuine three-body forces
- Reaction mechanisms
- Example: deuteron breakup, (p, n) charge exchange
- Higher Energy: Lorentz vs. Galilean Invariance
- Check of commonly used approximations (Glauber)
- Three-body decays of particles (e.g. η or η ')

Relativistic Effects at Higher Energies Computational Challenge:

3 N and 4 N systems:

- standard treatment based on pw projected momentum space successful (3N scattering up to $\approx 250 \mathrm{MeV}$) but rather tedious
- $2 \mathrm{~N}: \mathrm{j}_{\max }=5,3 \mathrm{~N}: \mathrm{J}_{\max }=25 / 2 \rightarrow 200$ `channels'
- Computational maximum today:
- $2 N: j_{\max }=7,3 N: J_{\max }=31 / 2$
\Rightarrow Solution:
\Rightarrow NO partial wave decomposition of basis states

Roadmap for 3N problem without PW Scalar NN model | Realistic NN Model

- NN scattering + bound state
- 3N bound state
- 3N bound state + 3NF
- 3N scattering:
- Full Faddeev Calculation

- Elastic scattering
- Below and above break-up
- Break-up
- Poincarè Invariant Faddeev Calculations
- NN scattering + deuteron
- Potentials AV18 and Bonn-B
- Break-up in first order:
- (p,n) charge exchange
- Max. Energy 500 MeV
- Lorentz kinematics
- Exact Faddeev Calculation
- NN interactions
- High energy limits

Variables for 3D Scattering Calculation

3 distinct vectors in the problem: $\mathbf{q}_{0} \mathbf{q} \mathbf{p}$

5 independent variables:

$$
\begin{aligned}
& p=|\mathrm{p}|, q=|\mathrm{q}| \\
& x_{p}=\hat{\mathrm{p}} \cdot \hat{\mathrm{q}}_{0}, x_{q}=\hat{\mathrm{q}} \cdot \hat{\mathrm{q}}_{0} \\
& x_{p q}^{q_{0}}=\left(\mathrm{q}_{0} \times \mathrm{q}\right) \cdot\left(\mathrm{q}_{0} \times \mathrm{p}\right)
\end{aligned}
$$

Numerical calculation:
q system: z || q
Three-body transition amplitude is a function of 5 variables

Relativistic Three-Body Problem

- Context: Poincarė Invariant Quantum Mechanics
- Poincaré invariance is exact symmetry, realized by a unitary representation of the Poincare group on a fewparticle Hilbert space
- Instant form
- Faddeev equations same operator form but different ingredients
- Kinematics
- Lorentz transformations between frames
- Dynamics
- Bakamjian-Thomas Scheme: Mass Operator $\mathrm{M}=\mathrm{M}_{0}+\mathrm{V}$ replaces Hamiltonian $\mathrm{H}=\mathrm{H}_{0}+\mathrm{v}$
- Connect Galilean two-body \mathbf{v} with Poincaré two-body v
- Construct V $:=\sqrt{M^{2}+q^{2}}-\sqrt{M_{0}^{2}+q^{2}}$

Three-Body Scattering

- Transition operator for elastic scattering

$$
U=P G_{0}^{-1}+P T
$$

- Transition operator for breakup scattering

$$
U_{0}=(1+P) T
$$

- Faddeev equation (Multiple Scattering Series)

$$
T=t P \left\lvert\,+\begin{gathered}
t G_{0} P t P+\cdots \\
1^{\text {st }} \text { Order in } \mathrm{tP}
\end{gathered}\right.
$$

$\mathrm{t}=\mathrm{v}+\mathrm{vg}_{0} \mathrm{t}=: \mathrm{NN}$ t-matrix
$\mathrm{P}=\mathrm{P}_{12} \mathrm{P}_{23}+\mathrm{P}_{13} \mathrm{P}_{23} \equiv$ Permutation Operator

Kinematic Relativistic Ingredients:

- Lorentz transformation Lab \rightarrow c.m. frame (3-body)
- Phase space factors in cross sections
- Poincaré-Jacobi momenta
- Permutations for identical particles

Kinematics: Poincaré-Jacobi momenta

- Nonrelativistic (Galilei)

$$
\begin{aligned}
& \mathrm{p}=\frac{1}{2}\left(\mathrm{k}_{2}-\mathrm{k}_{3}\right) \\
& \mathrm{q}=\frac{2}{3}\left(\mathrm{k}_{1}-\frac{1}{2}\left(\mathrm{k}_{2}+\mathrm{k}_{3}\right)\right)
\end{aligned}
$$

- Relativistic (Lorentz)

$$
\begin{aligned}
\mathrm{p} & =\frac{1}{2}\left(\mathbf{k}_{2}-\mathbf{k}_{3}\right)+\frac{\mathbf{k}_{2}+\mathbf{k}_{3}}{2 m_{23}}\left(\frac{\left(\mathbf{k}_{2}-\mathbf{k}_{3}\right) \cdot\left(\mathbf{k}_{2}+\mathbf{k}_{3}\right)}{\left(E_{2}+E_{3}\right)+m_{23}}-\left(E_{2}-E_{3}\right)\right) \\
\mathbf{q} & =\mathbf{k}_{1}+\frac{\mathbf{K}}{M}\left(\frac{\mathbf{k}_{1} \cdot \mathbf{K}}{E+M}-E_{1}\right)
\end{aligned}
$$

$$
\left|\mathrm{k}_{1} \mathrm{k}_{2} \mathrm{k}_{3}\right\rangle=\left|\frac{\partial(\mathrm{Kpq})}{\partial\left(\mathrm{k}_{2} \mathrm{k}_{3}\right)}\right|^{1 / 2}|\mathrm{Kpq}\rangle \neq 0
$$

$$
\begin{aligned}
E & =E_{1}+E_{2}+E_{3} \\
\mathbf{K} & =\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3} \\
M & =\sqrt{E^{2}-\mathrm{K}^{2}} \\
m_{23} & =\sqrt{\left(E_{2}+E_{3}\right)^{2}-\left(\mathbf{k}_{2}+\mathbf{k}_{3}\right)^{2}}
\end{aligned}
$$

Relativistic kinematics
IA ($1^{\text {st }}$ order)

$$
T=t P
$$

- Lorentz transformation Lab \rightarrow c.m. frame) (3-body)
- Phase space factors in cross sections
- Poincarė-Jacobi momenta
- Permutations

Quantum Mechanics

Galilei Invariant: $\quad H=\frac{\mathrm{K}^{2}}{2 M_{g}}+h \quad ; \quad h=h_{0}+v_{12}^{N R}+v_{13}^{N R}+v_{23}^{N R}$
Poincaré Invariant: $\quad H=\sqrt{\mathrm{K}^{2}+M^{2}} \quad ; \quad M=M_{0}+V_{12}+V_{23}+V_{31}$

$$
V_{i j}=M_{i j}-M_{0}=\sqrt{\left(m_{0, i j}+v_{i j}\right)^{2}+q_{k}^{2}}-\sqrt{m_{0, i j}^{2}+q_{k}^{2}}
$$

Two-body interaction embedded in the 3-particle Hilbert space

$$
\begin{aligned}
m_{0, i j} & =\sqrt{m_{i}^{2}+p_{i j}^{2}}+\sqrt{m_{j}^{2}+p_{i j}^{2}} \\
M_{0} & =\sqrt{m_{0, i j}^{2}+q_{k}^{2}}+\sqrt{m_{k}^{2}+q_{k}^{2}}
\end{aligned}
$$

$\mathbf{V}_{\mathbf{i j}}$ embedded in the 3-particle Hilbert space

$$
V_{i j}=M_{i j}-M_{0}=\sqrt{\left(m_{0, i j}+v_{i j}\right)^{2}+q_{k}^{2}}-\sqrt{m_{0, i j}^{2}+q_{k}^{2}}
$$

need matrix elements: $\quad\langle\vec{k}| V(\vec{p})\left|\vec{k}^{\prime}\right\rangle$

$$
\begin{aligned}
= & v\left(\vec{k}, \vec{k}^{\prime}\right)+\psi_{b}(\vec{k})\left(\sqrt{M_{b}^{2}+p^{2}}-M_{b}\right) \psi_{b}\left(\vec{k}^{\prime}\right)+\frac{1}{\omega-\omega^{\prime}}\left[\left(\sqrt{\omega^{2}+p^{2}}-\omega\right) \mathfrak{R}\left[t\left(\vec{k}^{\prime}, \vec{k} ; \omega\right)\right]\right. \\
& \left.-\left(\sqrt{\omega^{\prime 2}+p^{2}}-\omega^{\prime}\right) \mathfrak{R}\left[t\left(\vec{k}, \vec{k}^{\prime} ; \omega^{\prime}\right)\right]\right]+\frac{1}{\omega-\omega^{\prime}}\left[\mathcal{P} \int d^{3} k^{\prime \prime} \frac{\left(\sqrt{\omega^{\prime \prime 2}+p^{2}}-\omega^{\prime \prime}\right)}{\omega^{\prime \prime}-\omega} t\left(\vec{k}, \overrightarrow{k^{\prime \prime}} ; \omega^{\prime \prime}\right) t^{*}\left(\vec{k}^{\prime}, \vec{k}^{\prime \prime} ; \omega^{\prime \prime}\right)\right. \\
& \left.-\mathcal{P} \int d^{3} k^{\prime \prime} \frac{\left(\sqrt{\omega^{\prime \prime 2}+p^{2}}-\omega^{\prime \prime}\right)}{\omega^{\prime \prime}-\omega^{\prime}} t\left(\vec{k}, \vec{k}^{\prime \prime} ; \omega^{\prime \prime}\right) t^{*}\left(\vec{k}^{\prime}, \vec{k}^{\prime \prime} ; \omega^{\prime \prime}\right)\right] .
\end{aligned}
$$

H. Kamada, ${ }^{1, *}$ W. Glöckle, ${ }^{2, \dagger}$ J. Golak, ${ }^{2,3, \ddagger}$ and Ch. Elster ${ }^{4, \S}$ PHYSICAL REVIEW C 66, 044010 (2002)

Two-Body Input: T1-operator embedded in 3-body system

$T_{1}\left(\mathrm{p}^{\prime}, \mathrm{p} ; \mathrm{q}\right)=V\left(\mathrm{p}^{\prime}, \mathrm{p} ; \mathrm{q}\right)+\int d^{3} k^{\prime \prime} \frac{V\left(\mathrm{p}^{\prime}, \mathrm{k} " ; ~ \mathrm{q}\right) T_{1}\left(\mathrm{k}^{\prime \prime}, \mathrm{p} ; \mathrm{q}\right)}{\sqrt{\left(2 E\left(p^{\prime}\right)\right)^{2}+q^{2}}-\sqrt{\left(2 E\left(k^{\prime \prime}\right)\right)^{2}+q^{2}}+i \varepsilon}$

Do not solve for 2 :

- Obtain fully off-shell matrix elements $T_{1}\left(k, k^{\prime}, q\right)$ from half shell transition matrix elements by

Solving a $1^{\text {st }}$ resolvent type equation:

$$
T_{1}(q)=T_{1}\left(q^{\prime}\right)+T_{1}(q)\left[g_{0}(q)-g_{0}\left(q^{\prime}\right)\right] T_{1}\left(q^{\prime}\right)
$$

- For every single off-shell momentum point
- Proposed in
- Keister \& Polyzou, PRC 73, 014005 (2006)
- Carried out for the first time here [PRC 76, 1014010 (2007)]

Obtain embedded 2 N t-matrix $\mathrm{T}_{1}\left(\mathrm{k}, \mathrm{k}^{\prime}, \mathrm{z}^{\prime}\right)$ halfshell in 2-body c.m. frame first :

$$
\begin{aligned}
\langle\mathbf{k}| T_{1}\left(\mathbf{q} ; z^{\prime}\right)\left|\mathbf{k}^{\prime}\right\rangle & =\langle\mathbf{k}| V(\mathbf{q})\left|\mathbf{p}^{\prime(-)}\right\rangle \\
& =\frac{2\left(E_{k^{\prime}}+E_{k}\right)}{\sqrt{4 E_{k^{\prime}}^{2}+\mathbf{q}^{2}}+\sqrt{4 E_{k}^{2}+\mathbf{q}^{2}}} t\left(\mathbf{k}, \mathbf{k}^{\prime} ; 2 E_{k^{\prime}}\right)
\end{aligned}
$$

$t\left(\mathbf{k}, \mathbf{k}^{\prime} ; 2 E_{k^{\prime}}\right)=v\left(\mathbf{k}, \mathbf{k}^{\prime}\right)+\int d \mathbf{k}^{\prime \prime} \frac{v\left(\mathbf{k}, \mathbf{k}^{\prime \prime}\right) t\left(\mathbf{k}^{\prime \prime}, \mathbf{k}^{\prime} ; 2 E_{k^{\prime}}\right)}{E_{k^{\prime}}-2 \sqrt{m^{2}+k^{\prime 2}}+i \epsilon}$

Solution of the relativistic 2N LS equation with 2-body potential

Consideration for two-body t-matrix

- Relativistic and non-relativistic t-matrix should give identical observables for determining relativistic effects
- Or two-body t-matrices should be phase-shift equivalent
- Four options:
- Start from relativistic LS equation
- natural option - employed for NN interactions fit to $1 \mathrm{GeV}+$
- If non-relativistic LS equation is used:
- Refit of parameters (maybe time consuming in practice)
- Transformation of Kamada-Glöckle PRL 80, 2547 (1998)
- Transformation of Coester-Piper-Serduke as given in Polyzou PRC 58, 91 (1998)

Phase equivalent 2-body t-matrices:

Coester-Pieper-Serduke (CPS) (PRC11, 1 (1975))

- Add interaction to square of non-interacting mass operator

$$
\begin{aligned}
& M^{2}=M_{0}^{2}+u=4 m h \quad \text { with } h \equiv \frac{k^{2}}{m}+\frac{u}{4 m}+m \\
& u=v^{2}+\left\{M_{0}^{2}, v\right\}
\end{aligned}
$$

- NO need to evaluate v directly, since M, M^{2}, h have the same eigenstates
- Relation between half-shell t-matrices

$$
\left\langle k^{\prime}\right| t_{R}(e(k))|k\rangle=\frac{4 m}{e(k)+e\left(k^{\prime}\right)}\left\langle k^{\prime}\right| t_{N R}\left(k^{2} / m\right)|k\rangle
$$

- Relativistic and nonrelativistic cross sections are identical functions of the invariant momentum k

Total Cross Section for Elastic Scattering:

Faddeev Equation as Multiple Scattering Series

$$
\begin{aligned}
& T=t P+t G_{0} P T \\
& T=\left.t P\right|_{1^{s t} \text { Order or IA }}+t G_{0} P t P+\cdots
\end{aligned}
$$

Convergence of the Faddeev Multiple Scattering Series

Elastic Scattering: Differential Cross Section

Differential Cross Section:

 Convergence of the Faddeev Multiple Scattering Series
Breakup Scattering

Exclusive: Measure energy \& angles of two ejected particles
V.Punjabi et al. PRC 38, 2728 (1998) - TRIUMF p+d @ 508 MeV

Outgoing protons are measured in the scattering plane

Exclusive Breakup Scattering

(symmetric configuration)

$\mathrm{E}_{\text {lab }}=508 \mathrm{MeV}$
(V.Punjabi et al. PRC 38, 2728 (1998)

Exclusive Breakup Scattering

$$
\mathrm{E}_{\text {lab }}=508 \mathrm{MeV}
$$

(asymmetric configuration)

Exclusive Breakup Scattering $\quad \mathrm{E}_{\mathrm{lab}}=508 \mathrm{MeV}$

Exclusive Breakup Scattering Space-Star

$\mathrm{E}_{\text {lab }}=508 \mathrm{MeV}$

Poincaré Invariant Faddeev Calculations

- Kinematics
- Phase space factors
- Lorentz Transformation from Lab to c.m. frame
- Lorentz Transformation of Jacobi Coordinates
- Always reduces effects of phase-space factors
- Kinematics determines peak positions in break-up observables
- Dynamics
- Exact calculation of the two-body interaction embedded in the three-particle Hilbert space
- The dynamic effects act in general opposite kinematic effects

Poincaré Invariant Faddeev Calculations

- Carried out up to 2 GeV for elastic and breakup scattering
- Solved Faddeev equation in vector variables = NO partial waves
- Relativistic effects are important at 500 MeV and higher
- Relativistic total elastic cross section increases up to 10\% compared to the non-relativistic
- Relativistic kinematics determines QFS peak positions in inclusive and exclusive breakup
- Breakup: Relativistic effects very large dependent on configuration
- Above 800 MeV projectile energy:
- multiple scattering series converges after ~2 iterations
- Future
- Systematic studies of selected cross sections \& high energy limits
- Long term: include Spin

