Theoretical investigation of the spectra of rotating trimers by means of a variational quantum method based in distributed Gaussian functions

Tomás González Lezana

Departamento de Física Atómica, Molecular y de Agregados Instituto de Física Fundamental (CSIC) MADRID (ESPAÑA)

<u>Structure</u>

- The DGF method.
- Vibrational spectrum.
- Geometrical structure.
- Rovibrational spectrum for J>0.

Instituto de Física **Fundamental**

Pablo Villarreal

S. Miret Artés

G. Delgado Barrio

Octavio Roncero

Tomás González Lezana

Ricardo Pérez de Tudela

Franco A. Gianturco

Isabella Baccarelli

Instituto Superior y de **Tecnologías y Ciencias Aplicadas**

Jesús Rubayo Soneira

Maykel Márquez Mijares

1. The DGF method

Wave function

Hamiltonian

$$\begin{split} H &= \sum_{i=1}^{3} \left\{ \frac{-\hbar^2}{m} \left[\frac{\partial^2}{\partial R_i^2} + t_i \right] + V(R_i) \right\} \\ t_i &= \frac{1}{R_i \partial R_i} - \frac{1}{4R_i^2} + \underbrace{\cos \gamma_i}_{OS} \left(\frac{\partial^2}{\partial R_j \partial R_k} - \frac{1}{2R_j} \frac{\partial}{\partial R_k} - \frac{1}{2R_k} \frac{\partial}{\partial R_j} + \frac{1}{4R_j R_k} \right) \\ cos \gamma_i &= \frac{R_j^2 + R_k^2 - R_i^2}{2R_j R_k} \end{split}$$

Special care for specific situations

The centers of the DGF satisfy the triangular condition:

$$|\mathbf{R}_{1} - \mathbf{R}_{m}| \leq \mathbf{R}_{n} \leq \mathbf{R}_{1} + \mathbf{R}_{m}$$

Some points of the DGF might not satisfy the triangular condition:

 $|\mathsf{R}_1 - \mathsf{R}_2| \leq \mathsf{R}_3 \leq \mathsf{R}_1 + \mathsf{R}_2$

Definition of a badness function: $W(R_1, R_2, R_3) = \begin{cases} 0, & |R_1 - R_2| \le R_3 \le R_1 + R_2 \text{ holds} \\ 1, & \text{otherwise.} \end{cases}$

2. Vibrational spectrum

Δr						
AI_3		Morse				
	k	Lanczos ^d	DGF ^c			
63	0	-252.45	-252.45			
	1	-220.94	-220.94			
	2	-208.24	-208.24			
	3	-193.75	-193.74			
	4	-189.07	-189.06			
	5 6	-181.41	-181.40			
Barrier to		-177.28	-177.27			
linearity	7	-171.72	-171.72			
· · · · · · · · · · · · · · · · · · ·	8	-168.90	-168.90			
	9	-168.00	-168.00			
	10	-167.34	-167.33			
	11	-165.53	-165.48			
	12	-163.16	-163.04			
	13	-161.83	-161.68			

Ne₃

		Morse				
Barrier to	k	Lanczos ^d	DGF ^c			
inearity	0	-50.09	-50.09			
•	> 1	-34.21	-34.21			
	2	-32.57	-32.73			
	3	-29.71	-29.92			
	4	-25.95	-26.12			
	5	-21.74	-21.77			
	6	-20.26	-20.33			
	7	-19.27	-19.35			

c) I. Baccarelli et al. JCP **122**, 144319 (2005)

d) P. N. Roy JCP **119**, 5437 (2003)

c) I. Baccarelli et al. JCP **122**, 84313 (2005)

d) P. N. Roy JCP 119, 5437 (2003)

Efimov states

For **3B** systems formed with **2B** systems which do not support bound states but zero energy resonances, it is possible to observe an ∞ number of bound states when $\lambda = \lambda_{2B}$ being $V_{3B}(r) = \lambda V_{2B}(r)$.

Moreover, if λ keeps on increasing, those bound states gradually disappear.

$$V_{3B}(r) = \Sigma \lambda V_{2B}(r)$$

3B bound states appear through the **2B** threshold as λ increases

3B bound states disappear through the **2B** threshold as λ increases:

$$N = \frac{1}{\pi} \ln \frac{|a|}{r_0}$$

For He_3 , for example,

$$a = 100.13 \text{ Å}$$

 $r_0 = 7.35 \text{ Å}$ $N \approx 0.8$

Candidates in Molecular Physics

Barletta, Kievsky (2001) Motovilov, Sofianos, Kolganova (1997, 1998) Blume, Esry, Greene, Esry (1999, 2000) Nielsen, Fedorov, Jensen (1998) Bressanini, Zavaglia, Mella, Morosi (2000) González-Lezana, Rubayo-Soneira, Miret-Artés, Delgado-Barrio, Gianturco, Villarreal (1999, 2000)

Yuan, Lin (1998) Delfino, Frederico, Tomio (2000) Baccarelli, González-Lezana, Miret-Artés, Delgado-Barrio, Gianturco, Villarreal (2000)

 ${}^{4}\text{He}_{2}\text{H}^{-}$

Casalegno, Mella, Morosi, Bressanini (2000) González-Lezana, Miret-Artés, Delgado-Barrio, Gianturco, Villarreal (2000)

He₃

T. González-Lezana et al. PRL 82, 1648 (1999)

3. Geometrical structure

Probability density functions

Significant differences between the geometrical features of the extremely floppy He_3 system and the more localised Ar and Ne trimers.

T. González-Lezana et al. JCP 110, 9000 (1999)

Definition:
$$1 = \langle \Phi_k | \Phi_k \rangle = \sum_j a_j^{(k)} \langle \Phi_k | \phi_j \rangle = \sum_j P_j^{(k)}$$

1. Alternative way to calculate of geometrical magnitudes such as average values for the area, distances ...

$$\langle x^n \rangle_k = \sum_j a_j^{(k)} \langle \Phi_k | x^n | \phi_j \rangle \approx \sum_j P_j^{(k)} x_j^n$$

2. Analysis of the participation of different triangular arrangements on the average geometry of the system:

Ar₃

$$U_{DDD}(1,2,3) = \frac{3C_{DDD}}{R_1^3 R_2^3 R_3^3} (1+3\cos\phi_1\cos\phi_2\cos\phi_3),$$

of H⁻ decreases in a fairly monotonic fashion. The only exception to this behavior is the smallest cluster ⁴He₂H⁻; its

He₂H⁻

He₂H⁻

M. Casalegno et al. JCP 112, 69 (2000)

three-body cluster, i.e., ${}^{4}\text{He}_{2}\text{H}^{-}$. The He density distribution for this cluster shows a maximum around 5.30 bohr, but there is no trace of the rise of the density for small distances from the center that can be seen in the case of ${}^{4}\text{He}_{3}$. Nevertheless, the plot of Fig. 4 shows that He can occupy the geometrical center position, i.e., ${}^{4}\text{He}_{2}\text{H}^{-}$ in its ground state can be found in the linear geometry where the H⁻ ion is external to the ${}^{4}\text{He}_{2}$ moiety. Increasing the number of He

Configurations in our basis set with the larger values of $\mathsf{P}^{(k)}_{,i}$

4. Rovibrational spectrum for J>0

General procedure

We assume:

$$H_{tot} = H_{vib} + H_{rot}.$$

For an asymmetric rotor:

$$H_{rot} = \frac{1}{2}(A+C)\mathbf{J}^2 + \frac{1}{2}(A-C)H(\kappa)$$

$$H(\kappa) = J_A^2 + \kappa J_B^2 - J_C^2 \qquad \kappa = (2B - A - C)/(A - C)$$

With the symmetry-adapted rovibrational basis:

$$\begin{array}{c} | \ k; sJ \mid \Omega \mid M \rangle = \frac{1}{\sqrt{2}} \{ | \ k; J\Omega M \rangle + (-1)^s \mid k; J - \Omega M \rangle \} \\ \\ \Phi_k = \sum_j a_j^{(k)} \phi_j = \sum_j a_j^{(k)} N_{lmn}^{-1/2} \sum_{P \in S_3} P[\varphi_l(R_1) \varphi_m(R_2) \varphi_n(R_3)] \end{array}$$

we construct the Hamiltonian matrix:

$$\langle k; J\Omega M \mid H_{rot} \mid k'; J'\Omega' M' \rangle = \sum_{jj'} a_j^{(k)} a_{j'}^{(k)} \langle \phi_j; J\Omega M \mid H_{rot} \mid \phi_{j'}; J'\Omega' M' \rangle$$

General procedure

Let's suppose J = 1, $\Omega = -1,0,1$ and three vibrational states k = 0, 1, 2

J=0

Δ	r
1	1 3

1 1 3	HC [1]		HC (this	work)	DGF		
	$(v_1, v_2^{\ l}) \in [cm^{-1}]$		(ν ₁ ,ν ₂ ^ℓ)(Ω) Γ	E [cm ⁻¹]	(k , Ω, Γ)	E [cm ⁻¹]	
	(L,K) (0,0º)(0,0)	-252.24	(0,0°)(0)A ₁ '	-252.23	(1,0, <mark>III</mark>)	-252.23	
			(0,11)(0)E'	-229.78	(2-3,0, II-I)	-229.79	
	(1,0°)(0,0)	-221.80	(1,0°)(0)A ₁ '	-221.79	(4,0, III)	-221.79	
	(0,2º)(0,0)	-209.48	(0,2°)(0)A ₁ '	-209.48	(5,0, <mark>III</mark>)	-209.48	
			(0,2²)(0)E'	-209.32	(6-7,0, II-I)	-209.33	
			(1,1 ¹)(0)E'	-202.58	(8-9,0, II-I)	-202.58	
	(2,0°)(0,0)	-195.99	(2,0°)(0)A ₁ '	-195.97	(10,0, III)	-195.98	
			(1,1 ¹)(0)E'	-193.21	(11-12,0, II-I)	-193.22	
		-191.29	(2,1°)(0)A ₁ '	-191.29	(13,0, III)	-191.28	
[1] F. Karlický e	t al. JCP 126 , 74305	5 (2007)	(0,3 ³)(0) A ₂ '	-187.76	(14,0, I)	-187.76	

Total symmetry as a product: $\Gamma = \Gamma_{
m v}^{\Omega\ell} imes \Gamma_{
m R}$

Symmetry-adapted vibrational functions:

$$f_n^{\Gamma_v^{\Omega\ell}}(\phi_\tau) = A_n^{\Gamma_v^{\Omega\ell}} e^{-in\phi_\tau} + B_n^{\Gamma_v^{\Omega\ell}} e^{in\phi_\tau} \qquad n = |\pm 2\ell - \Omega|$$

Coefficients after symmetry operations of D_{3h} group:

$$A_n^{\Gamma_v^{\Omega\ell}} = \chi^{\Gamma_v^{\Omega\ell}}(E) + \chi^{\Gamma_v^{\Omega\ell}}(C_3) \ 2\cos\frac{4\pi}{3}n$$
$$B_n^{\Gamma_v^{\Omega\ell}} = \chi^{\Gamma_v^{\Omega\ell}}(C_2) \left(1 + 2\cos\frac{2\pi}{3}n\right).$$

Practical rules:

(i) For n = 0, $\Gamma_v^{\Omega \ell} = A_1$ (ii) for *n* multiple of 3, $\Gamma_v^{\Omega \ell} \sim A_1$ and A_2 (iii) for *n* not multiple of 3, $\Gamma_v^{\Omega \ell} = E$ Rotational symmetry: $\Gamma = \Gamma_{
m v}^{\Omega\ell} imes \Gamma_{
m R}$

Symmetry-adapted vibrational functions:

$$D_{M\Omega}^{J\Gamma_{R}}(\alpha,\beta,\gamma) = A_{M\Omega}^{J\Gamma_{R}} D_{M\Omega}^{J*}(\alpha,\beta,\gamma) + B_{M\Omega}^{J\Gamma_{R}} D_{M-\Omega}^{J*}(\alpha,\beta,\gamma)$$

Coefficients after symmetry operations of D_{3h} group:

$$\begin{split} A^{J\Gamma_{R}}_{M\Omega} &= \begin{cases} \chi^{\Gamma_{R}}(E) + 2\chi^{\Gamma_{R}}(C_{3}), & \Omega \neq 0, \\ \chi^{\Gamma_{R}}(E) + 2\chi^{\Gamma_{R}}(C_{3}) + 3(-1)^{J}\chi^{\Gamma_{R}}(C_{2}), & \Omega = 0, \end{cases} \\ B^{J\Gamma_{R}}_{M\Omega} &= \begin{cases} 3(-1)^{J-\Omega}\chi^{\Gamma_{R}}(C_{2}), & \Omega \neq 0, \\ 0, & \Omega = 0, \end{cases} \end{split}$$

Practical rules:

(i) for $\Omega = 0$, $\Gamma_R = A_1$ for even values of *J* and $\Gamma_R = A_2$ for odd *J*, (ii) for $\Omega \neq 0$, both A_1 and A_2 representations are possible In summary:

$$\Gamma = \Gamma_{\mathsf{v}}^{\Omega\ell} \times \Gamma_{\mathsf{R}}$$

For each value of k and Ω (and therefore l): $n = |\pm 2\ell - \Omega|$

The symmetry for the vibrational part $\Gamma_{
m v}^{\Omega\ell}$:

(i) For n = 0, $\Gamma_v^{\Omega \ell} = A_1$ (ii) for *n* multiple of 3, $\Gamma_v^{\Omega \ell} \sim A_1$ and A_2 (iii) for *n* not multiple of 3, $\Gamma_v^{\Omega \ell} = E$

The symmetry for the rotational part $\, \Gamma_{
m R} \,$:

(i) for $\Omega = 0$, $\Gamma_R = A_1$ for even values of *J* and $\Gamma_R = A_2$ for odd *J*, (ii) for $\Omega \neq 0$, both A_1 and A_2 representations are possible

Ar_3

J=6

Г	HC		DGF					$\overline{\Gamma}$	нс		DGE				
	(v_1, v_2')	$E(\mathrm{cm}^{-1})$	k	Ω	$\Gamma_{\mathbf{v}}^{\Omega \ell}$	ΓR	E (cm ⁻¹)	·	(v. v ^t)	$E(cm^{-1})$	v v	0	rat	Г.	E (cm-1)
A's	$(0,0^{\circ})$	-250.85	1	6	A1.A2	A2.A1	-250.85	-	(*1,*2)	r (ent)	^	26	4 V	1 R	r (cm)
-	$(0,1^1)$	-227.68	2,3	4	A1.A2	A2.A1	-227.86	A'_1	$(0,0^{0})$	-250.85	1	6	A_{1}, A_{2}	A_1, A_2	-250.85
	$(0,1^1)$	-227.56	2.3	2	A1.A2	A2.A1	-227.54		$(0,0^{0})$	-249.80	1	0	A1	A1	-249.80
	(1.0°)	-220.46	4	6	A1.A2	A2.A1	-220.46		$(0,1^{1})$	-227.68	2,3	4	A1.A2	A1.A2	-227.86
	(0.00)	252.00					250.00		$(0,1^{1})$	-227.56	2,3	2	A1	A1.A2	-227.54
A2	(0,0°)	-250.06	1	3	A1.A2	A2.A1	-250.06		(1.0°)	-220.46	4	6	A1. A2	A1. A2	-220.46
	(0,1)	-228.35	2,3	5	A1.A2	A2.A1	-228.12		(1.0°)	-219.43	4	0	Aı	Aı	-219.40
	(0,1)	-227.29	2,3	1	A1,A2	A2.A1	-227.30		(0.2°)	-208.17	5	6	A1. A2	AL AS	-208.17
	(1,0-)	-219.68	4	3	A1,A2	A2,A1	-219.69		$(0, 2^2)$	-207.69	6.7	4	A1 A2	A1 A2	-207.48
E	$(0,0^{0})$	-250.26	1	4	Ε	A_1, A_2	-250.27		(0.2%)	-207.22	5	0	A.	A.	-206.94
	$(0,0^{0})$	-249.91	1	2	Ε	A_1, A_2	-249.92		(0.22)	206.84	67	2	A A.	A A	-207.05
	$(0,1^{1})$	-228.13	2,3	6	Ε	A1.A2	-228.44		(0,2)	-200.04	0,7	4	/1,/12	11,12	-207.05
	$(0,1^{1})$	-228.03	2,3	4	Ε	A1,A2	-227.86	A_1''	$(0,0^{0})$	-250.06	1	3	A1.A2	$A_{1}.A_{2}$	-250.06
	$(0,1^{1})$	-227.46	2,3	2	Ε	A1,A2	-227.50		$(0,1^{1})$	-228.35	2,3	5	A_{1}, A_{2}	A1.A2	-228.12
	$(0,1^{1})$	-227.32	2,3	0	Ε	A ₁	-227.36		$(0,1^{1})$	-227.43	2,3	1	A1.A2	A1.A2	-227.36
D!!	(0.0%)	250.52	1	5	r	A. A.	250.52		$(1,0^{\circ})$	-219.68	4	3	A1. A2	A1. A2	-219.69
F	(0,0°)	-230.55		1	E E	A. A.	240.93		$(0,2^{\circ})$	-207.48	5	3	A1. A2	A1. A2	-207.48
	(0,0)	-249.65	22	5	F	A. A.	-249.03		(0.2^2)	-207.33	6.7	5	A1. A2	AL.A.	-207.72
	(0,1)	-227.00	2,5	2	E	A A	-220.12		(0.2^2)	-207.09	6.7	1	A1 A2	As As	-207.05
	(0,1)	-227.77	2,3	2	E F	A A	-227.00		(1,11)	201.00	8.0	5	A. A.	A. A.	200.07
	(0,1)	-227.34	2,2	3	E F	/11,/12 A A	-227.00		(1,1)	-201.00	0,9	1	A1, A2	A. A.	-200.97
	(1,0%)	-227.41	2,3	5	E	A A	-227.40		(1,1)	-200.28	0,9	1	/11,/12	A1, A2	-200.14
	(1,0)	-220.14	7	5	E	A A	-220.14		(2,0)	-193.93	10	3	A1, A2	A1, A2	-193.95
	(1,0-)	-219.40	**		E	n1, n2	-219.49								

Largest HC-DGF energy difference: ≤ 0.4 cm⁻¹

HC (this	work)	DGF				
$(v_1,v_2^\ell)(\Omega)\Gamma$	$E(cm^{-1})$	$(k,\!\Omega,\!s,\!\overline{\varGamma})$	$E(cm^{-1})$			
$(0,0^0)(15) A_1''$	-244.89	$(1,\!15,\!III)$	-244.91			
$(0,0^0)(13) A'_1$	-242.53	$(1,\!13,\!III)$	-242.55			
$(0{,}0^0)(9)\;A_1''$	-240.71	$(1,\!9,\!III)$	-240.71			
$(0,0^0)(6) \; A_1'$	-239.41	$(1,\!6,\!III)$	-239.40			
$(0,\!0^0)(3) \; A_1''$	-238.63	$(1,\!3,\!III)$	-238.62			
$(0,1^1)(14) A'_1$	-222.47	$(2/3,\!14,\!II/I)$	-221.81			
$(0,1^1)(13) A_1''$	-220.44	$(2/3,\!13,\!II/I)$	-221.03			
$(0,1^1)(11) A_1''$	-220.06	$(2/3,\!11,\!II/I)$	-219.64			
$(0,1^1)(10) A'_1$	-218.72	$(2/3,\!10,\!II/I)$	-219.04			
$(0,1^1)(8) \; A_1'$	-218.16	$(2/3,\!8,\!II/I)$	-218.00			
$(0,1^1)(7) A_1''$	-217.50	$\left(2/3,\!7,\!II/I ight)$	-217.58			
$(0,1^1)(5) A_1''$	-216.80	$(2/3,\!5,\!II/I)$	-216.91			
$(0,1^1)(4) A_1'$	-216.76	$(2/3,\!4,\!II/I)$	-216.63			
$(0,1^1)(2) A_1'$	-215.97	$(2/3,\!2,\!II/I)$	-216.06			
$(0,1^1)(1) A_1''$	-215.72	$\left(2/3,\!1,\!II/I ight)$	-215.72			
$(1,0^0)(15) A_1''$	-214.69	(4, 15, III)	-214.71			

J=15

Largest HC-DGF energy difference: ≤ 0.6 cm⁻¹

HC (this	work)	DGF				
$(v_1,v_2^\ell)(\Omega)\Gamma$	$E(cm^{-1})$	$(k,\!\Omega,\!s,\!\overline{T})$	$E(cm^{-1})$			
$(0,0^0)(18) A'_1$	-237.36	(1, 18, III)	-237.39			
$(0,0^0)(15) A_1''$	-234.50	$(1,\!15,\!III)$	-234.51			
$(0,\!0^0)(12)\;A_1'$	-232.17	$(1,\!12,\!III)$	-232.15			
$\scriptstyle (0,0^0)(9)\; A_1''$	-230.36	(1, 9, III)	-230.32			
$\scriptstyle (0,0^0)(6) \ A_1'$	-229.08	$(1,\!6,\!III)$	-229.01			
$\scriptstyle (0,0^0)(3)\; A_1''$	-228.31	(1,3,III)	-228.24			
$\scriptstyle (0,0^0)(0) \ A_1'$	-228.05	$(1,\!0,\!III)$	-227.91			
$(0,1^1)(20)\;A_1'$	-218.43	$(2/3,\!20,\!II/I)$	-217.49			
$(0,\!1^1)(19)\ A_1''$	-215.44	$\scriptstyle (2/3,19,II/I)$	-216.36			
$(0,1^1)(17) A_1''$	-215.00	$(2/3,\!17,\!II/I)$	-214.28			
$(0,1^1)(16) A_1'$	-212.73	$(2/3,\!16,\!II/I)$	-213.33			
$(0,1^1)(14) A'_1$	-212.02	$(2/3,\!14,\!II/I)$	-211.60			
$(0,1^1)(13) A_1''$	-210.55	$(2/3,\!13,\!II/I)$	-210.83			
$(0,1^1)(11) A_1''$	-209.59	$(2/3,\!11,\!II/I)$	-209.46			
$(0,1^1)(10) \; A_1'$	-208.87	$(2/3,\!10,\!II/I)$	-208.86			
$(0,\!1^1)(8)\ A_1'$	-207.71	$(2/3,\!8,\!II/I)$	-207.86			
$(0,1^1)(7) A_1''$	-207.68	(2/3, 7, II/I)	-207.44			
$(1,0^0)(18) A_1'$	-207.38	(4, 18, III)	-207.41			
$(0,\!1^1)(2)\ A_1'$	-206.99	$(2/3,\!2,\!II/I)$	-207.17			

Rotational constants

		D	GF		HC[1]			
ĸ	A [MHz]	B [MHz]	B' [MHz]	C [MHz]	(v ₁ ,v ₂ ^{<i>l</i>})	B [MHz]	C [MHz]	rms
1	1739.26	1739.17	1739.21	861.32	(0,0°)	1738.35	863.32	2x10-4
2-3	1713.43	1712.97	1713.20	837.77	(0,11)	1697.59	785.88	3×10-2
4	1692.88	1692.07	1692.48	831.62	(1,0°)	1691.92	834.58	1×10-4
5	1688.91	1688.22	1688.57	812.15	(0,2°)	1596.78	809.92	1×10-2
6-7	1688.16	1686.76	1687.46	809.40	(0,2²)	1694.31	627.73	7x10-2
8-9	1672.23	1666.65	1669.44	806.15	(1,11)	1630.11	644.37	1×10-1
10	1672.66	1660.20	1666.43	782.32	(2,0°)	1653.20	782.53	2x10-3
11-12	1688.71	1660.45	1674.46	771.56	(0,31)	1601.10	541.76	1×10-1

[1] F. Karlický et al. JCP 126, 74305 (2007)

state energies. For each set of the three quantum numbers (v_1, v_2^{ℓ}) , we treat Eq. (16) as a linear equation with two variables, $J(J+1)-K^2$ and LK, and adjust the three remaining constants, $\epsilon_{v_1v_2\ell}^{00L=2\ell}$, $B_{v_1v_2\ell}$, and $C_{v_1v_2\ell}$, to minimize the root mean square deviation between the sets of exact eigenvalues and the approximate ones given by Eq. (16). The results are

Need of a large number of J-partial waves to ensure convergence in terms of T

$$D(R;T) = \frac{\sum_{kJ\Omega} \exp(-E_{kJ\Omega} / KT) D_{k\Omega}^{J=0}(R)}{\sum_{kJ\Omega} \exp(-E_{kJ\Omega} / KT)}$$

PHYSICS REPORTS

Physics Reports 452 (2007) 1-32

www.elsevier.com/locate/physrep

Vibrational and rotational bound states in floppy triatomic systems: The distributed Gaussian functions approach

I. Baccarelli^a, F.A. Gianturco^{b,*}, T. González-Lezana^c, G. Delgado-Barrio^c, S. Miret-Artés^c, P. Villarreal^c

^a Supercomputing Consortium for University and Research, CASPUR, via dei Tizii 6, 00185 Rome, Italy ^bDepartment of Chemistry, University of Rome La Sapienza, Piazzale A. Moro 5,00185 Rome, Italy ^cInstituto de Matemáticas y Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain

Chemical Physics Letters 460 (2008) 417-422

Symmetry assignment in the distributed Gaussian functions method to study homonuclear rotating trimers

M. Márquez-Mijares^{a,b}, T. González-Lezana^{a,*}, O. Roncero^a, S. Miret-Artés^a, G. Delgado-Barrio^a, P. Villarreal^a

*Instituto de Fisica Fundamental (CSC), Serrano 123, 28006 Madrid, Spain

^b Inst. Superior de Tecnologías y Ciencias Aplicadas, Ave. Salvador Allende y Luaces Quinta de Los Molinos, Plaza, La Habana 10600, Cuba

<u>Conclusions</u>

- The DGF method constitutes a reliable approach to study the vibrational spectrum and geometrical structure of different three body molecular systems.
- An approximate procedure based on the DGF method has been proposed to study the rovibrational spectrum of rotating trimers. Energy levels predicted by means of this method for the Ar_3 system are in a fairly good accord with results of exact hyperspherical coordinate calculations even for large values of the total angular momentum (J = 20).
- Future applications to other trimers will enable to test its possible limitations.