Theoretical investigation of the spectra of rotating trimers by means of a variational quantum method based in distributed Gaussian functions

Tomás González Lezana

Departamento de Física Atómica, Molecular y de Agregados Instituto de Física Fundamental (CSIC) MADRID (ESPAÑA)

Structure

- The DGF method.
- Vibrational spectrum.
- Geometrical structure.
- Rovibrational spectrum for $J>0$.

Franco A. Gianturco

Isabella Baccarelli

Instituto Superior y de Tecnologías y Ciencias Aplicadas

Jesús Rubayo Soneira

Maykel Márquez Mijares

1. The DGF method

Wave function

Hamiltonian

The centers of the DGF satisfy the triangular condition:

$$
\left|R_{1}-R_{m}\right| \leq R_{n} \leq R_{1}+R_{m}
$$

Some points of the DGF might not satisfy the triangular condition:

$$
\left|R_{1}-R_{2}\right| \leq R_{3} \leq R_{1}+R_{2}
$$

Definition of a badness function: $\mathcal{W}\left(R_{1}, R_{2}, R_{3}\right)= \begin{cases}0, & \left|R_{1}-R_{2}\right| \leqslant R_{3} \leqslant R_{1}+R_{2} \text { holds } \\ 1, & \text { otherwise } .\end{cases}$

Evaluation in terms of the DGF basis set:

$$
\begin{aligned}
\mathcal{I}\left(l l^{\prime}, m m^{\prime}, n n^{\prime}\right) \approx & \frac{1}{2} s_{l^{\prime}} s_{m m^{\prime}} s_{n n^{\prime}}\left\{2+\operatorname{erf}\left[\sqrt { A _ { n n ^ { \prime } } } \left(\mid R_{l l^{\prime}}^{\dagger}\right.\right.\right. \\
& \left.\left.-R_{m m^{\prime}}^{\dagger} \mid-R_{n n^{\prime}}^{\dagger}\right)\right]-\operatorname{erf}\left[\sqrt { A _ { n n ^ { \prime } } } \left(R_{l l^{\prime}}^{\dagger}\right.\right. \\
& \left.\left.\left.+R_{m m^{\prime}}^{\dagger}-R_{n n^{\prime}}^{\dagger}\right)\right]\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{erf}\left[\sqrt{A_{n n^{\prime}}}\left(\left|R_{1}-R_{2}\right|-R_{n n^{\prime}}^{*}\right)\right] \\
& \left.\left.\sqrt{A_{n n^{\prime}}}\left(R_{1}+R_{2}-R_{n n^{\prime}}^{\dagger}\right)\right]\right\}
\end{aligned}
$$

	$k=2$	
E_{k}	$\left\langle\Phi_{k} \mid \Phi_{k}\right\rangle^{\text {TIR }}$	E_{5}

$$
s_{p p^{\prime}}=\left\langle\varphi_{p} \mid \varphi_{p^{\prime}}\right\rangle=\int d R_{i} \varphi_{p}\left(R_{i}\right) \varphi_{p^{\prime}}\left(R_{i}\right)
$$

30.25	0.9982	-28.60
30.25	0.9991	-28.42
30.25	0.9996	-28.26

$$
R_{i}^{\dagger}=\frac{A_{p} R_{p}+A_{p^{\prime}} R_{p^{\prime}}}{A_{p}+A_{p^{\prime}}}
$$

2. Vibrational spectrum

Barrier to linearity	k	Morse	
		Lanczos ${ }^{\text {d }}$	DGF ${ }^{\text {c }}$
	0	-50.09	-50.09
	1	-34.21	-34.21
	2	-32.57	-32.73
	3	-29.71	-29.92
	4	-25.95	-26.12
	5	-21.74	-21.77
	6	-20.26	-20.33
	7	-19.27	-19.35

c) I. Baccarelli et al. JCP 122, 144319 (2005)
d) P. N. Roy JCP 119, 5437 (2003)
c) I. Baccarelli et al. JCP 122, 84313 (2005)
d) P. N. Roy JCP 119, 5437 (2003)

Efimov states

For 3B systems formed with 2B systems which do not support bound states but zero energy resonances, it is possible to observe an ∞ number of bound states when $\lambda=\lambda_{2 B}$, being $V_{3 B}(r)=\lambda V_{2 B}(r)$.

Moreover, if λ keeps on increasing, those bound states gradually disappear.

Candidates in Molecular Physics

${ }^{4} \mathrm{He}_{3} \quad$ Barletta, Kievsky (2001)
Motovilov, Sofianos, Kolganova $(1997,1998)$
Blume, Esry, Greene, Esry $(1999,2000)$
Nielsen, Fedorov, Jensen (1998)
Bressanini, Zavaglia, Mella, Morosi (2000)
González-Lezana, Rubayo-Soneira, Miret-Artés, DelgadoBarrio, Gianturco, Villarreal $(1999,2000)$
${ }^{4} \mathrm{He}_{2} \mathrm{Li} \quad$ Yuan, Lin (1998)
Delfino, Frederico, Tomio (2000)
Baccarelli, González-Lezana, Miret-Artés, Delgado-Barrio, Gianturco, Villarreal (2000)
${ }^{4} \mathrm{He}_{2} \mathrm{H}^{-}$
Casalegno, Mella, Morosi, Bressanini (2000)
González-Lezana, Miret-Artés, Delgado-Barrio, Gianturco,
Villarreal (2000)
He_{3}

Efimov state!
3. Geometrical structure

Probability density functions

Significant differences between the geometrical features of the extremely floppy He_{3} system and the more localised Ar and Ne trimers.

Pseudo-weights

Definition: $\quad 1=\left\langle\Phi_{k} \mid \Phi_{k}\right\rangle=\sum_{j} a_{j}^{(k)}\left\langle\Phi_{k} \mid \phi_{j}\right\rangle=\sum_{j} P_{j}^{(k)}$

1. Alternative way to calculate of geometrical magnitudes such as average values for the area, distances ...

$$
\left\langle x^{n}\right\rangle_{k}=\sum_{j} a_{j}^{(k)}\left\langle\Phi_{k}\right| x^{n}\left|\phi_{j}\right\rangle \approx \sum_{j} P_{j}^{(k)} x_{j}^{n}
$$

2. Analysis of the participation of different triangular arrangements on the average geometry of the system:

Collinear

Equilateral

Isosceles

Scalene

Pseudo-weights

$U_{D D D}(1,2,3)=\frac{3 C_{D D D}}{R_{1}^{3} R_{2}^{3} R_{3}^{3}}\left(1+3 \cos \phi_{1} \cos \phi_{2} \cos \phi_{3}\right)$.

Flat Isosceles

Tall Isosceles

Collinear

Equilateral

Scalene

Pseudo-weights

$\mathrm{He}_{2} \mathrm{H}^{-}$
M. Casalegno et al. JCP 112, 69 (2000)

of H^{-}decreases in a fairly monotonic fashion. The only exception to this behavior is the smallest cluster ${ }^{4} \mathrm{He}_{2} \mathrm{H}^{-}$; its distribution shows a rise beyond statistical fluctuation for a distance from the center less than the minimum located around 4.1 bohr. This result indicates that in the ${ }^{4} \mathrm{He}_{2} \mathrm{H}$ cluster the linear geometry where H^{-}lies between the He atoms plays a significant role although H^{-}has a larger probability to lie 10 bohr away from the center of the cluster.

Configurations in our basis set with the larger values of $P^{(k)}{ }_{j}$

$$
\begin{aligned}
& r\left(H^{-}-G C\right)=13.2 \mathrm{bohr} \\
& r\left(H^{-}-G C\right)=2.7-4.8 \mathrm{bohr} \\
& r\left(H^{-}-G C\right)=10.1 \mathrm{bohr}
\end{aligned}
$$

$$
r\left(H^{-}-G C\right)=10.7 \text { bohr }
$$

Pseudo-weights

$\mathrm{He}_{2} \mathrm{H}^{-}$
M. Casalegno et al. JCP 112, 69 (2000)

three-body cluster, i.e., ${ }^{4} \mathrm{He}_{2} \mathrm{H}^{-}$. The He density distribution for this cluster shows a maximum around 5.30 bohr, but there is no trace of the rise of the density for small distances from the center that can be seen in the case of ${ }^{4} \mathrm{He}_{3}$. Nevertheless, the plot of Fig. 4 shows that He can occupy the geometrical center position, i.e., ${ }^{4} \mathrm{He}_{2} \mathrm{H}^{-}$in its ground state can be found in the linear geometry where the H^{-}ion is external to the ${ }^{4} \mathrm{He}_{2}$ moiety. Increasing the number of He

Configurations in our basis set with the larger values of $P^{(k)}{ }_{j}$

4. Rovibrational spectrum for $J>0$

General procedure

We assume:

$$
H_{t o t}=H_{v i b}+H_{r o t} .
$$

For an asymmetric rotor: $\quad H_{\text {rot }}=\frac{1}{2}(A+C) \mathbf{J}^{2}+\frac{1}{2}(A-C) H(\kappa)$

$$
H(\kappa)=J_{A}^{2}+\kappa J_{B}^{2}-J_{C}^{2} \quad \kappa=(2 B-A-C) /(A-C)
$$

With the symmetry-adapted rovibrational basis:

$$
\begin{gathered}
|k ; s J| \Omega|M\rangle=\frac{1}{\sqrt{2}}\left\{|k ; J \Omega M\rangle+(-1)^{s}|k ; J-\Omega M\rangle\right\} \\
\Phi_{k}=\sum_{j} a_{j}^{(k)} \phi_{j}=\sum_{j} a_{j}^{(k)} N_{l m n}^{-1 / 2} \sum_{P \in S_{3}} P\left[\varphi_{l}\left(R_{1}\right) \varphi_{m}\left(R_{2}\right) \varphi_{n}\left(R_{3}\right)\right]
\end{gathered}
$$

we construct the Hamiltonian matrix:

$$
\langle k ; J \Omega M| H_{r o t}\left|k^{\prime} ; J^{\prime} \Omega^{\prime} M^{\prime}\right\rangle=\sum_{j j^{\prime}} a_{j}^{(k)} a_{j^{\prime}}^{(k)}\left\langle\phi_{j} ; J \Omega M\right| H_{r o t}\left|\phi_{j^{\prime}} ; J^{\prime} \Omega^{\prime} M^{\prime}\right\rangle
$$

General procedure

$$
\begin{aligned}
& \begin{aligned}
&\langle J \Omega M| H_{\text {rot }}\left(R_{1}^{\dagger}, R_{2}^{\dagger}, R_{3}^{\dagger}\right)\left|J^{\prime} \Omega^{\prime} M^{\prime}\right\rangle=\frac{1}{2}\left(A^{\dagger}+C^{\dagger}\right) J(J+1) \delta_{J, J^{\prime}} \delta_{\Omega, \Omega^{\prime}} \delta_{M, M^{\prime}} \\
&+\frac{1}{2}\left(A^{\dagger}-C^{\dagger}\right)\langle J \Omega M| H(\kappa)\left|J^{\prime} \Omega^{\prime} M^{\prime}\right\rangle \delta_{J, J^{\prime}} \delta_{M, M^{\prime}} \\
&
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
&\langle J \Omega M| H(\kappa)\left|J \Omega^{\prime} M\right\rangle=\left[\mathcal{F}^{\dagger} J(J+1)+\left(\mathcal{G}^{\dagger}-\mathcal{F}^{\dagger}\right) \Omega^{2}\right] \delta_{\Omega, \Omega^{\prime}} \\
&+\mathcal{H}^{\dagger} \sqrt{f(J, \Omega \pm 1)} \delta_{\Omega+2, \Omega^{\prime}}, \\
& f(J, \Omega \pm 1)=\frac{1}{4}[J(J+1)-\Omega(\Omega \pm 1)][J(J+1)-(\Omega \pm 1)(\Omega \pm 2)] \\
& \mathcal{F}=(\kappa+1) / 2, \mathcal{G}=-1 \mathcal{H}=(\kappa-1) / 2
\end{aligned}
$$

$R_{1}^{\dagger}, R_{2}^{\dagger}, R_{3}^{\dagger} \longmapsto A^{\dagger} B^{\dagger} C^{\dagger} \mathcal{F}^{\dagger} \mathcal{G}^{\dagger} \mathcal{H}^{\dagger} \longmapsto H_{\text {rot }}\left(R_{1}^{\dagger}, R_{2}^{\dagger}, R_{3}^{\dagger}\right)$

Let's suppose $J=1, \Omega=-1,0,1$ and three vibrational states $k=0,1,2$

Ar_{3}
$J=0$

HC [1]		HC (this work)		DGF	
$\left(v_{1}, v_{2}{ }^{l}\right)$	$\mathrm{E}\left[\mathrm{cm}^{-1}\right]$	$\left(v_{1}, v_{2}{ }^{l}\right)(\Omega) \Gamma$	$\mathrm{E}\left[\mathrm{cm}^{-1}\right]$	($\mathrm{k}, ~ \Omega, \Gamma$)	$E\left[\mathrm{~cm}^{-1}\right]$
$\begin{aligned} & \left.\left(0,0_{0}\right)(0,0), 0\right) \end{aligned}$	-252.24	$\left(0,0^{\circ}\right)(0) A_{1}^{\prime}$	-252.23	(1,0,III)	-252.23
		$\left(0,1^{11}\right)(0) \mathrm{E}^{\prime}$	-229.78	(2-3,0,II-I)	-229.79
$\left(1,0^{\circ}\right)(0,0)$	-221.80	$\left(1,0^{\circ}\right)(0) \mathrm{A}_{1}^{\prime}$	-221.79	(4,0, III)	-221.79
$\left(0,2^{0}\right)(0,0)$	-209.48	$\left(0,2^{0}\right)(0) A_{1}^{\prime}$	-209.48	(5,0, III)	-209.48
		$\left(0,2^{2}\right)(0) E^{\prime}$	-209.32	(6-7,0,II-I)	-209.33
		$\left(1,1^{1}\right)(0) \mathrm{E}^{\prime}$	-202.58	(8-9,0,II-I)	-202.58
$\left(2,0^{\circ}\right)(0,0)$	-195.99	$\left(2,0^{\circ}\right)(0) A_{1}^{\prime}$	-195.97	(10,0, III)	-195.98
		$\left(1,1^{1}\right)(0) \mathrm{E}^{\prime}$	-193.21	(11-12,0,II-I)	-193.22
	-191.29	$\left(2,1^{0}\right)(0) A_{1}^{\prime}$	-191.29	(13,0, III)	-191.28
		$\left(0,3^{3}\right)(0) A_{2}{ }^{\prime}$	-187.76	(14,0, I)	-187.76

[1] F. Karlický et al. JCP 126, 74305 (2007)

Total symmetry as a product: $\quad \Gamma=\Gamma_{\mathrm{v}}^{\Omega \ell} \times \Gamma_{\mathrm{R}}$
Symmetry-adapted vibrational functions:

$$
f_{n}^{\Gamma_{v}^{Q \ell}}\left(\phi_{\tau}\right)=A_{n}^{\Gamma_{v}^{\Omega \ell}} \mathrm{e}^{-i n \phi_{\tau}}+B_{n}^{\Gamma_{v}^{\Omega \ell}} \mathrm{e}^{i n \phi_{\tau}} \quad n=| \pm 2 \ell-\Omega|
$$

Coefficients after symmetry operations of $D_{3 h}$ group:

$$
\begin{aligned}
& A_{n}^{\Gamma_{v}^{Q Q}}=\chi^{\Gamma_{v}^{\Omega Q}}(E)+\chi^{\Gamma_{v}^{\Omega Q}}\left(C_{3}\right) 2 \cos \frac{4 \pi}{3} n \\
& B_{n}^{\Gamma_{v}^{\Omega}}=\chi^{\Gamma_{v}^{\Omega \ell}}\left(C_{2}\right)\left(1+2 \cos \frac{2 \pi}{3} n\right) .
\end{aligned}
$$

Practical rules:
(i) For $n=0, \quad \Gamma_{\mathrm{v}}^{\Omega \ell}=A_{1}$
(ii) for n multiple of $3, \Gamma_{\mathrm{v}}^{\Omega \ell} \sim A_{1}$ and A_{2}
(iii) for n not multiple of $3, \Gamma_{\mathrm{v}}^{\Omega \ell}=E$

Rotational symmetry: $\quad \Gamma=\Gamma_{\mathrm{v}}^{\Omega \ell} \times \Gamma_{\mathrm{R}}$

Symmetry-adapted vibrational functions:

$$
D_{M \Omega}^{I \Gamma_{\mathrm{R}}}(\alpha, \beta, \gamma)=A_{M \Omega}^{I I_{\mathrm{R}}} D_{M \Omega}^{\|^{*}}(\alpha, \beta, \gamma)+B_{M \Omega}^{I \Gamma_{\mathrm{R}}} D_{M-\Omega}^{*}(\alpha, \beta, \gamma)
$$

Coefficients after symmetry operations of $D_{3 h}$ group:

$$
\begin{aligned}
& A_{M \Omega}^{\Gamma_{\mathrm{R}}}= \begin{cases}\chi^{\Gamma_{\mathrm{R}}}(E)+2 \chi^{\Gamma_{\mathrm{R}}}\left(C_{3}\right), & \Omega \neq 0, \\
\chi^{\Gamma_{\mathrm{R}}}(E)+2 \chi^{\Gamma_{\mathrm{R}}}\left(C_{3}\right)+3(-1)^{J} \chi^{\Gamma_{\mathrm{R}}}\left(C_{2}\right), & \Omega=0,\end{cases} \\
& B_{M \Omega}^{I_{\mathrm{R}}}= \begin{cases}3(-1)^{J-\Omega} \chi^{\Gamma_{\mathrm{R}}}\left(C_{2}\right), & \Omega \neq 0, \\
0, & \Omega=0,\end{cases}
\end{aligned}
$$

Practical rules:
(i) for $\Omega=0, \Gamma_{\mathrm{R}}=A_{1}$ for even values of J and $\Gamma_{\mathrm{R}}=A_{2}$ for odd J,
(ii) for $\Omega \neq 0$, both A_{1} and A_{2} representations are possible

In summary:

$$
\Gamma=\Gamma_{\mathrm{v}}^{\Omega \ell} \times \Gamma_{\mathrm{R}}
$$

For each value of k and Ω (and therefore l): $n=| \pm 2 \ell-\Omega|$
The symmetry for the vibrational part $\Gamma_{\mathrm{v}}^{\Omega \ell}$:
(i) For $n=0, \quad \Gamma_{\mathrm{v}}^{\Omega \ell}=A_{1}$
(ii) for n multiple of $3, \Gamma_{\mathrm{v}}^{\Omega \ell} \sim A_{1}$ and A_{2}
(iii) for n not multiple of $3, \Gamma_{\mathrm{v}}^{\Omega \ell}=E$

The symmetry for the rotational part Γ_{R} :
(i) for $\Omega=0, \Gamma_{\mathrm{R}}=A_{1}$ for even values of J and $\Gamma_{\mathrm{R}}=A_{2}$ for odd J,
(ii) for $\Omega \neq 0$, both A_{1} and A_{2} representations are possible

Ar_{3}

$J=6$

$\bar{\Gamma}$	HC		DGF				
	$\left(v_{1}, v_{2}^{\prime}\right)$	$E\left(\mathrm{~cm}^{-1}\right)$	k	Ω	$I_{*}^{a l}$	Γ_{R}	$E\left(\mathrm{~cm}^{-1}\right)$
A_{2}^{\prime}				6		A_{2}, A_{1}	-250.85
	$\left(0,1^{1}\right)$	-227.68	$2,3$	4	A_{1}, A_{2}	A_{2}, A_{1}	-227.86
	(0,1)	-227.56	2,3	2	A_{1}, A_{2}	A_{2}, A_{1}	-227.54
	(1.0 ${ }^{\circ}$)	-220.46	4	6	A_{1}, A_{2}	A_{2}, A_{1}	-220.46
A_{2}^{\prime}				3			
	$\left(0,1^{1}\right)$	-228.35	$2,3$	5	A_{1}, A_{2}	A_{2}, A_{1}	-228.12
	$\left(0,1^{1}\right)$	-227.29	$2,3$	1	A_{1}, A_{2}	A_{2}, A_{1}	-227.36
	(1, 0°)	-219.68	4	3	A_{1}, A_{2}	A_{2}, A_{1}	-219.69
E				4			
	$\left(0,0^{\circ}\right)$	-249.91	1	2	E	A_{1}, A_{2}	-249.92
	$\left(0,1^{1}\right)$	-228.13	2,3	6	E	A_{1}, A_{2}	-228.44
	$\left(0,1^{1}\right)$	-228.03	2,3	4	E	A_{1}, A_{2}	-227.86
	$\left(0,1^{1}\right)$	-227.46	2,3	2	E	A_{1}, A_{2}	-227.50
	(0,1)	-227.32	2,3	0	E	A_{1}	-227.36
$E^{\prime \prime}$			1	5	E		-250.53
	$\left(0,0^{\circ}\right)$	-249.83	1	1	E	A_{1}, A_{2}	-249.83
	$\left(0,1^{1}\right)$	-227.88	2,3	5	E	A_{1}, A_{2}	-228.12
	(0,1 ${ }^{1}$)	-227.77	2,3	3	E	A_{1}, A_{2}	-227.66
	$\left(0,1^{1}\right)^{3}$	-227.54	2,3	3	E	A_{1}, A_{2}	-227.66
	$\left(0,1^{1}\right)^{3}$	-227.41	2,3	1	E	A_{1}, A_{2}	-227.46
	$\left(1,0^{0}\right)^{2}$	-220.14	4	5	E	A_{1}, A_{2}	-220.14
	$\left(1,0^{\circ}\right)$	-219.46	4	1	E	A_{1}, A_{2}	-219.49

$\bar{\Gamma}$	HC		DGF				
	$\left(v_{1}, v_{2}^{\prime}\right)$	$E\left(\mathrm{~cm}^{-1}\right)$	k	Ω	$I_{\mathrm{v}}^{a t}$	Γ_{R}	$E\left(\mathrm{~cm}^{-1}\right)$
A_{1}^{\prime}	(0, 0°)	-250.85	1	6	A_{1}, A_{2}	A_{1}, A_{2}	-250.85
	(0, 0°)	-249.80	1	0	A_{1}	A_{1}	-249.80
	$\left(0,1^{1}\right)$	-227.68	2,3	4	A_{1}, A_{2}	A_{1}, A_{2}	-227.86
	(0,1)	-227.56	2,3	2	A_{1}	A_{1}, A_{2}	-227.54
	(1,0 ${ }^{\circ}$)	-220.46	4	6	A_{1}, A_{2}	A_{1}, A_{2}	-220.46
	(1,0 ${ }^{\circ}$)	-219.43	4	0	A_{1}	A_{1}	-219.40
	$\left(0,2^{\circ}\right.$)	-208.17	5	6	A_{1}, A_{2}	A_{1}, A_{2}	-208.17
	$\left(0,2^{2}\right)$	-207.69	6.7	4	A_{1}, A_{2}	A_{1}, A_{2}	-207.48
	$\left(0,2^{\circ}\right)$	-207.22	5	0	A_{1}	A_{1}	-206.94
	(0, 2^{2})	-206.84	6,7	2	A_{1}, A_{2}	A_{1}, A_{2}	-207.05
$A_{1}^{N \prime}$		-250.06	1	3	A_{1}, A_{2}	A_{1}, A_{2}	-250.06
	$\left(0,1^{1}\right)$	-228.35	2,3	5	A_{1}, A_{2}	A_{1}, A_{2}	-228.12
	(0.1)	-227.43	2.3	1	A_{1}, A_{2}	A_{1}, A_{2}	-227.36
	(1, 0°)	-219.68	4	3	A_{1}, A_{2}	A_{1}, A_{2}	-219.69
	(0,2 ${ }^{\text {a }}$)	-207.48	5	3	A_{1}, A_{2}	A_{1}, A_{2}	-207.48
	$\left(0,2^{2}\right)$	-207.33	6.7	5	A_{1}, A_{2}	A_{1}, A_{2}	-207.72
	$\left(0,2^{2}\right)$	-207.09	6.7	1	A_{1}, A_{2}	A_{1}, A_{2}	-207.05
	(1,1 ${ }^{1}$)	-201.00	8,9	5	A_{1}, A_{2}	A_{1}, A_{2}	-200.97
	$\left(1,1^{1}\right)$	-200.28	8,9	1	A_{1}, A_{2}	A_{1}, A_{2}	-200.14
	(2,0 ${ }^{\circ}$)	-193.93	10	3	A_{1}, A_{2}	A_{1}, A_{2}	-193.95

Largest HC-DGF energy difference: $\leq 0.4 \mathrm{~cm}^{-1}$
Ar_{3}

$\mathrm{HC}($ this work $)$		DGF	
$\left(v_{1}, v_{2}^{\ell}\right)(\Omega) \Gamma$	$E\left(\mathrm{~cm}^{-1}\right)$	$(k, \Omega, s, \bar{\Gamma})$	$E\left(\mathrm{~cm}^{-1}\right)$
$\left(0,0^{0}\right)(15) A_{1}^{\prime \prime}$	-244.89	$(1,15, I I I)$	-244.91
$\left(0,0^{0}\right)(13) A_{1}^{\prime}$	-242.53	$(1,13, I I I)$	-242.55
$\left(0,0^{0}\right)(9) A_{1}^{\prime \prime}$	-240.71	$(1,9, I I I)$	-240.71
$\left(0,0^{0}\right)(6) A_{1}^{\prime}$	-239.41	$(1,6, I I I)$	-239.40
$\left(0,0^{0}\right)(3) A_{1}^{\prime \prime}$	-238.63	$(1,3, I I I)$	-238.62
$\left(0,1^{1}\right)(14) A_{1}^{\prime}$	-222.47	$(2 / 3,14, I I / I)$	-221.81
$\left(0,1^{1}\right)(13) A_{1}^{\prime \prime}$	-220.44	$(2 / 3,13, I I / I)$	-221.03
$\left(0,1^{1}\right)(11) A_{1}^{\prime \prime}$	-220.06	$(2 / 3,11, I I / I)$	-219.64
$\left(0,1^{1}\right)(10) A_{1}^{\prime}$	-218.72	$(2 / 3,10, I I / I)$	-219.04
$\left(0,1^{1}\right)(8) A_{1}^{\prime}$	-218.16	$(2 / 3,8, I I / I)$	-218.00
$\left(0,1^{1}\right)(7) A_{1}^{\prime \prime}$	-217.50	$(2 / 3,7, I I / I)$	-217.58
$\left(0,1^{1}\right)(5) A_{1}^{\prime \prime}$	-216.80	$(2 / 3,5, I I / I)$	-216.91
$\left(0,1^{1}\right)(4) A_{1}^{\prime}$	-216.76	$(2 / 3,4, I I / I)$	-216.63
$\left(0,1^{1}\right)(2) A_{1}^{\prime}$	-215.97	$(2 / 3,2, I I / I)$	-216.06
$\left(0,1^{1}\right)(1) A_{1}^{\prime \prime}$	-215.72	$(2 / 3,1, I I / I)$	-215.72
$\left(1,0^{0}\right)(15) A_{1}^{\prime \prime}$	-214.69	$(4,15, I I I)$	-214.71

Largest HC-DGF energy difference: $\leq 0.6 \mathrm{~cm}^{-1}$

Rotational constants

k	DGF			C [MHz]	$\left(v_{1}, v_{2}{ }^{l}\right)$	HC[1]		rms
	A [MHz]	B [MHz]	B^{\prime} [MHz]			B [MHz]	C [MHz]	
1	1739.26	1739.17	1739.21	861.32	$\left(0,0^{\circ}\right)$	$\underline{1738.35}$	863.32	2×10^{-4}
2-3	1713.43	1712.97	1713.20	837.77	$\left(0,1^{1}\right)$	1697.59	785.88	3×10^{-2}
4	1692.88	1692.07	1692.48	831.62	$\left(1,0^{\circ}\right)$	1691.92	834.58	1×10^{-4}
5	1688.91	1688.22	1688.57	812.15	$\left(0,2^{\circ}\right)$	1596.78	809.92	1×10^{-2}
6-7	1688.16	1686.76	1687.46	809.40	$\left(0,2^{2}\right)$	1694.31	627.73	7×10^{-2}
8-9	1672.23	1666.65	1669.44	806.15	$\left(1,1^{1}\right)$	1630.11	644.37	1×10^{-1}
10	1672.66	1660.20	1666.43	782.32	$\left(2,0^{\circ}\right)$	1653.20	782.53	2×10^{-3}
11-12	1688.71	1660.45	1674.46	771.56	$\left(0,3^{1}\right)$	1601.10	541.76	1×10^{-1}

[1] F. Karlický et al. JCP 126, 74305 (2007)

state energies. For each set of the three quantum numbers $\left(v_{1}, v_{2}^{\ell}\right)$, we treat Eq. (16) as a linear equation with two variables, $J(J+1)-K^{2}$ and $L K$, and adjust the three remaining constants, $\epsilon_{v_{1} v_{2} \ell}^{00 L=2 \ell}, B_{v_{1} v_{2} \ell}$, and $C_{v_{1} v_{2} \ell}$, to minimize the root mean square deviation between the sets of exact eigenvalues and the approximate ones given by Eq. (16). The results are

$$
E(T)=\frac{\sum_{k \Omega} \exp \left(-E_{k \Omega} / K T\right) E_{k \Omega}}{\sum_{k \Omega} \exp \left(-E_{k \Omega} / K T\right)}
$$

Need of a large number of J-partial waves to ensure convergence in terms of T

$$
D(R ; T)=\frac{\sum_{k \Omega} \exp \left(-E_{k \Omega} / K T\right) D_{k \Omega}^{J=0}(R)}{\sum_{k \Omega} \exp \left(-E_{k \Omega} / K T\right)}
$$

PHYSICS REPORTS

Physics Reports 452 (2007) 1-32
www.elsevier.com/locate/physrep

Vibrational and rotational bound states in floppy triatomic systems: The distributed Gaussian functions approach
I. Baccarellia ${ }^{\text {a }}$ F.A. Gianturco ${ }^{\text {b,* }}$, T. González-Lezana ${ }^{\text {c }}$, G. Delgado-Barrio ${ }^{\text {c }}$,

$$
\text { S. Miret-Artés }{ }^{\mathrm{c}}, \text { P. Villarreal }{ }^{\mathrm{c}}
$$

${ }^{\text {a }}$ Supenomputing Consortium for University and Research, CASPUR, via dei Tizii 6, 00185 Rome, Italy
${ }^{\mathrm{b}}$ Department of Chemistry, University of Rome La Sapienza, Piazzale A. Moro 5,00185 Rome, Italy
${ }^{c}$ Instituto de Matemáticas y Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain

Chemical Physics letters 460 (2008) 417-42.2

Symmetry assignment in the distributed Gaussian functions method to study homonuclear rotating trimers
M. Márquez-Mijares ${ }^{\text {ab }}$, T. González-Lezana ${ }^{\text {a.* }}$, O. Roncero ${ }^{\text {a }}$, S. Miret-Artés ${ }^{\text {a }}$, G. Delgado-Barrio ${ }^{\text {a }}$, P. Villarreal ${ }^{3}$
${ }^{2}$ /nstituts de Fisca Fendenental (CSC), Serrano 123, 28006 Madrid, Spain
${ }^{\circ}$ Inct. Superior de Teconlogas y Ciencias Aplicadas, Ave. Salvador Allende y Luace Quinta de Les Molinos, Plam, La Hahana 10c00, Cuka

Conclusions

- The DGF method constitutes a reliable approach to study the vibrational spectrum and geometrical structure of different three body molecular systems.
- An approximate procedure based on the DGF method has been proposed to study the rovibrational spectrum of rotating trimers. Energy levels predicted by means of this method for the Ar_{3} system are in a fairly good accord with results of exact hyperspherical coordinate calculations even for large values of the total angular momentum ($J=20$).
- Future applications to other trimers will enable to test its possible limitations.

