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The interactions of three He atoms is a
prototype for the interactions of three bosons

when there is a loosely bound dimer.

In this case over much of the energy range the
impulse approximation is accurate and gives

the expression

  b r e a k u p ( E ) = 2  ( 2 )
el as ( E )

Very close to threshold it is necessary to go beyond the 
impulse approximation.  One choice is to use zero-

range pseudo-potentials. 

The interaction of three He atoms is

the prototype for the interaction of

three bosons when there is a loosely

bound He2 dimer. In this case

the impulse approximation is accurate

over a large energy range and gives

the expression

σbreakup = 2σ(2)
elastic
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Two-body zero-range (or contact) pseudopotentials are defined as

v(r) = 2π
(`+ 1)[(2`− 1)!!]

[(2`)!!]
a2`+1δ

3(r)
r`

∂2`+1

∂r2`+1
r`+1

Alternatively one can use ZRP boundary conditions

limr→0

[
(2`+1)!!
(2`−1)!!

d2`+1(r`+1Ψ)

dr2`+1 − r`+1

a2`+1
`

Ψ
]

= 0,

i
jr ij

r ij,k

k

The Schrödinger equation is separable in standard independent particle
coordinates rij, rij,k, but the boundary conditions are not. Writing the
solution as a contour integral over separable solutions in these coordinates
and matching the boundary conditions gives the STM (Skorniakov and Ter-
Martirosian) integral equation for ` = 0 bosons. The boundary conditions
separate in the limit as a0 →∞ and an analytic solutions gives the Efimov
states. For finite a0 numerical methods are employed.



8

Hyperspherical coordinates

N particle coordinates (mass scaled): {r1, r2, . . . rN−1} →
{
R, R̂

}
R̂ = unit vector in 3(N−1) dimensions. R2 =

∑N−1
i r2

i = hyper-radius
in 3(N − 1) dimensions.

H = TR +
Λ2

R̂

2R2

Define basis functions S(ν; R̂) according to(
Λ2

R̂

2R2

)
S(ν; R̂) =

(λ+ 3N − 5)λ
2R2

S(ν; R̂)

For three particles one may find S(ν, R̂) in closed form.



In hyperspherical coordinates there are cross derivatives between x =
r/R = sinα and R

∂

∂r
=

1− x2

R

∂

∂x
+ x

∂

∂R
even in the limit as x→ 0 for general `. For ` = 0 and ` = 1, however the

boundary conditions become

(2`+ 1)!!
(2`− 1)!!

∂2`+1(x`+1
k Ψ)

∂x2`+1
k

=
(
R

a`

)2`+1

x`+1
k Ψ, k = 1, 2, 3.

In the limit that a → ∞ the equations separate and one can find the
Thomas solutions Ψ ≈ Rνj−2 as R→ 0 where νj is a root of

lim
x→0

(2`+ 1)!!
(2`− 1)!!

d2`+1(x`+1
k Ψ)

dx2`+1
k

= 0



9

ZRP continued

Set limR→0 Ψ(R)→ Rν−2S(ν, R̂) where S(ν, R̂) is a solution of

Λ2
R̂
S(ν, R̂) = ν(ν + 4)S(ν, R̂)

For ` = 0 bosons one has

S(ν, R̂) =
3∑
k=1

sin ν(π/2− αk)
sin 2αk

and the boundary conditions become

ν cos ν
π

2
− 8√

3
sin ν

π

6
= −R

a0
sin ν

π

2

For a0 → ∞ or R → 0 only allowed values of ν = νj are roots of the
equation

ν cos ν
π

2
− 8√

3
sin ν

π

6
= 0

.



10 For a0 → ∞ the Schrödinger equation and the boundary conditions

separate thus the effective hyper-radial potential Veff(R) =
ν2
j−1/4

2R2 holds for
all R and is given by

Ψj(R) = S(νj, R̂)R−2Zν(KR)

where Zν(KR) is a Bessel function.

Issues: The roots ν0 = ±it0, t0 = 1.0062... are complex and the solutions
diverge as R → 0. Discard solutions? Efimov’s answer: no. Separable
solutions for large R hold for finite range potentials if a0 → ∞. The
complex root implies an attractive effective potential

Veff(R) = −t
2
0 + 1/4
2R2

.

There are an infinite number of three-body bound states for such potentials.
Exact solutions confirm that the oscillatory solutions cannot be discarded.

What about ` 6= 0 and spin s = 1/2 fermions?
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Fermions
To treat fermions we must include spin in the angular function S(ν, R̂)

S(ν, R̂, σ) =
3∑
k=1

flxly(αk)Y`x`yLM(x̂k, ŷk)χSMS
(ijk)

The boundary conditions must now be satisfied for every possible spin
coupling. For s− wave psuedopotentials χ(ijk) has the coupling ((1

2
1
2)0, 1

2)1
2

and one finds that νj is a root of

ν cos ν
π

2
− 4√

3
sin ν

π

6
= 0

All of the roots of this equation are real so there is neither an Efimov
nor Thomas effect. All three-body threshold dynamics are determined
by the two-body scattering length a0. When a0 → ∞ then Ψ(R) =
S(ν, R̂, σ)Zνj(KR) is an exact solution. There are an infinite number of
such solutions corresponding to the infinite number of separation constants
(genaralized angular momenta) νj. There are no three-body bound states.
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For ` = 1+ the angular factor is xk × yk which is unchanged under
cyclic permutations of ijk and therefore factors out of the boundary
conditions. Since the space part is antisymmetric under interchange of
any two coordinates, the spin coupling must be ((1/2,1/2)1,1/2),1/2 or
((1/2,1/2)1, 1/2),3/2. The latter coupling corresponds to spin polarized
fermions and in this case one finds that the boundary conditions for a` →∞
become

cos ν
π

2
+ 22F1

(
−ν

2
+ 2,

ν

2
+ 2;

5
2

;
1
4

)
= 0

This equation has only real roots so that there neither an Efimov nor a
Thomas effect. For the first coupling scheme with total spin equal to1/2,
the boundary condition gives the equation

cos ν
π

2
− 2F1

(
−ν

2
+ 2,

ν

2
+ 2;

5
2

;
1
4

)
= 0

This equation has complex roots it0 with t0 = ±0.6668 . . .. Accordingly
there is both a Thomas effect and (possibly) an Efimov effect.
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Exact solution for a0 > 0
We have seen that Efimov states correspond to exact separable solutions

of the three-body Schrödinger equation with ZRPs where the scattering
length a` →∞.

Ψ(R) = S(ν, R̂)R−2Zν(KR)

When the a` is finite (not infinite) then the boundary conditions require a
superposition of separable functions

Ψ(R) = R−2

∫
c

A(ν)S(ν, R̂)Zν(KR)νdν

. It follows from the boundary conditions that A(ν) is given by the
three-term recurrence relation (TTR)[PRA, 72, 032709 (2005)]:

X(ν + 1)A(ν + 1) +X(ν − 1)A(ν − 1) = 2ν sin ν
π

2
1
Ka

A(ν)

with

X(ν) = ν cosπ
ν

2
− 8√

3
sin ν

π

2
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Exact solution for a0 > 0 and E 6= 0

The magnitude of the S00 is

|S00(E)| =
∣∣∣∣1 + 2iA0

ei∆(R0) sin ∆(R0)
1 + e−2πt0e2i∆(R0)

∣∣∣∣ =
∣∣∣1 + 2iPei∆r(R0) sin ∆r(R0)

∣∣∣
where P = A0/(2 sinh t0). The three-body recombination rate is

K3 = C3 sin2 ∆r
h̄

m
a4

with C3 = 27π2(4π − 3
√

3)/ sinh2 t0 = 67.1177 . . .. The approximate
hidden crossing theory gets

K3(HC) = 68.4 sin2(t0 ln(R/a) + 1.572)
h̄

m
a4

in surprisingly good agreement with the exact result where ∆r ≈
t0 ln(R0/a) + 1.588



Approximate solution (Hyperspherical closed-coupling)

H = TR +
Λ2

R̂

2R2
+ V (R)

Define basis functions Φ(R; R̂) according to(
Λ2

R̂

2R2
+ V (R)

)
Φ(R; R̂) =

ν(R)2 − (3N − 5)
2R2

Φ(R; R̂)

For ZRP ν(R) is determined by the boundary conditions which give an
equation of the form

f`(ν(R)) = R2`+1M

where M = k2`+1 cot δ ≈ − 1
a2`+1. The hidden crossing theory uses the

effective potential (ν(R)2 − 1/4)/2R2 to find approximate bound states
and S−matrix elements. We have seen that the approximate solutions are
fairly accurate. Use the adiabatic picture to analyze various generalizations
of the ZRP’s.



Generalizations of the ZRP’s

1. Use a multichannel ZRP (Oleg Kartavtsev, Few-Body Systems,31,
249 (2002)) M becomes a matrix. Results are promising but one quickly
finds that a large number of channels are involved.

2. Include energy dependence. Why? When the first term in the
effective range expansion −1/a2`+1 vanishes then the higher order terms
are important. We can use the adiabatic theory to see if these terms make
a significant difference to our conclusions about threshold effects.

To include energy dependence in the adiabatic picture we use the

replacement k2 → ν(R)2−`x(`x+1)/3−`y(`y+1)

R2 and consider

f(ν(R)) = R2`+1M(k2) = −
(
R
a

)2`+1
+O(R2`−1)

For ` = 0 the effective range term in RM(k2) is of the order of 1/R so
it has little effect on threshold quantities.

For ` = 1, the effective range term in R3M(k2) is of the order of R
and cannot be ignored. If this term is not zero, there are no ` = 1 Efimov
states. In order to have Efimov states for ` = 1 the p-wave M(k2) must be



of the order of k4 for small k. Not possible for local short-range potentials.

3. Energy dependence allows one to model resonances

M = k2`+1 cot δ = (Er − E)/γ

Veff(R)
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Problems with energy-dependent potentials

First problem: Solutions of the S-equation are not orthogonal.

Second problem: Multiparticle S− matrix is not defined.

Solution: Introduce energy dependence naturally. (e.g. Oleg
Kartavstev’s multichannel model)
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Conclusions

1. Contact interactions are usefully treated in hyperspherical coordinates.

2. Exact solutions and good approximate solutions are available.

3. p-wave states [unnatural parity] are interesting, but need a correct
way to handle energy dependence.

4. Contact interactions for ` > 0 are not actually contact interactions
since the limit r → 0 cannot be taken everywhere (e. g. in evaluating
normalization constants).

5. Multichannel ZRP’s appear to be the only way to correctly treat
energy dependence with contact interactions.




