40-Multiparticle Interactions of ZeroRange Potentials

by

Joseph Macek

University of Tennessee and

5 SRIMK RIDGE
Oak Ridge National Laboratory

Presented at the workshop on Critical Stability, Ettore Majorama Centre for Scientific Culture 12-18 October 2008

The interaction of three He atoms is the prototype for the interaction of three bosons when there is a loosely bound He_{2} dimer. In this case the impulse approximation is accurate over a large energy range and gives the expression

$$
\sigma_{\text {breakup }}=2 \sigma_{\text {elastic }}^{(2)}
$$

FIGURE 1. Cross section for the process $\mathrm{He}+\mathrm{He}_{2} \rightarrow \mathrm{He}+$ $\mathrm{He}+\mathrm{He}$ in the impulse approximation. The horizontal line corresponds to the limit cross section for the hard core of the $\mathrm{He}-\mathrm{He}$ potential with $r_{0}=4.5 \mathrm{au}$.

Two-body zero-range (or contact) pseudopotentials are defined as

$$
v(r)=2 \pi \frac{(\ell+1)[(2 \ell-1)!!]}{[(2 \ell)!!]} a^{2 \ell+1} \frac{\delta^{3}(\boldsymbol{r})}{r^{\ell}} \frac{\partial^{2 \ell+1}}{\partial r^{2 \ell+1}} r^{\ell+1}
$$

Alternatively one can use ZRP boundary conditions

$$
\lim _{r \rightarrow 0}\left[\frac{(2 \ell+1)!!}{(2 \ell-1)!!} \frac{d^{2 \ell+1}\left(r^{\ell+1} \Psi\right)}{d r^{2 \ell+1}}-\frac{r^{\ell+1}}{a_{\ell}^{2 \ell+1}} \Psi\right]=0
$$

The Schrödinger equation is separable in standard independent particle coordinates $\boldsymbol{r}_{i j}, \boldsymbol{r}_{i j, k}$, but the boundary conditions are not. Writing the solution as a contour integral over separable solutions in these coordinates and matching the boundary conditions gives the STM (Skorniakov and TerMartirosian) integral equation for $\ell=0$ bosons. The boundary conditions separate in the limit as $a_{0} \rightarrow \infty$ and an analytic solutions gives the Efimov states. For finite a_{0} numerical methods are employed.

Hyperspherical coordinates
N particle coordinates (mass scaled): $\left\{\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots \boldsymbol{r}_{N-1}\right\} \rightarrow\{R, \hat{\boldsymbol{R}}\}$
$\hat{\boldsymbol{R}}=$ unit vector in $3(N-1)$ dimensions. $R^{2}=\sum_{i}^{N-1} r_{i}^{2}=$ hyper-radius in $3(N-1)$ dimensions.

$$
H=T_{R}+\frac{\Lambda_{\hat{R}}^{2}}{2 R^{2}}
$$

Define basis functions $S(\nu ; \hat{\boldsymbol{R}})$ according to

$$
\left(\frac{\Lambda_{\hat{\boldsymbol{R}}}^{2}}{2 R^{2}}\right) S(\nu ; \hat{\boldsymbol{R}})=\frac{(\lambda+3 N-5) \lambda}{2 R^{2}} S(\nu ; \hat{\boldsymbol{R}})
$$

For three particles one may find $S(\nu, \hat{\boldsymbol{R}})$ in closed form.

In hyperspherical coordinates there are cross derivatives between $x=$ $r / R=\sin \alpha$ and R

$$
\frac{\partial}{\partial r}=\frac{1-x^{2}}{R} \frac{\partial}{\partial x}+x \frac{\partial}{\partial R}
$$

even in the limit as $x \rightarrow 0$ for general ℓ. For $\ell=0$ and $\ell=1$, however the boundary conditions become

$$
\frac{(2 \ell+1)!!}{(2 \ell-1)!!} \frac{\partial^{2 \ell+1}\left(x_{k}^{\ell+1} \Psi\right)}{\partial x_{k}^{2 \ell+1}}=\left(\frac{R}{a_{\ell}}\right)^{2 \ell+1} x_{k}^{\ell+1} \Psi, \quad k=1,2,3
$$

In the limit that $a \rightarrow \infty$ the equations separate and one can find the Thomas solutions $\Psi \approx R^{\nu_{j}-2}$ as $R \rightarrow 0$ where ν_{j} is a root of

$$
\lim _{x \rightarrow 0} \frac{(2 \ell+1)!!}{(2 \ell-1)!!} \frac{d^{2 \ell+1}\left(x_{k}^{\ell+1} \Psi\right)}{d x_{k}^{2 \ell+1}}=0
$$

ZRP continued

Set $\lim _{R \rightarrow 0} \Psi(\boldsymbol{R}) \rightarrow R^{\nu-2} S(\nu, \hat{\boldsymbol{R}})$ where $S(\nu, \hat{\boldsymbol{R}})$ is a solution of

$$
\Lambda_{\hat{\boldsymbol{R}}}^{2} S(\nu, \hat{\boldsymbol{R}})=\nu(\nu+4) S(\nu, \hat{\boldsymbol{R}})
$$

For $\ell=0$ bosons one has

$$
S(\nu, \hat{\boldsymbol{R}})=\sum_{k=1}^{3} \frac{\sin \nu\left(\pi / 2-\alpha_{k}\right)}{\sin 2 \alpha_{k}}
$$

and the boundary conditions become

$$
\nu \cos \nu \frac{\pi}{2}-\frac{8}{\sqrt{3}} \sin \nu \frac{\pi}{6}=-\frac{R}{a_{0}} \sin \nu \frac{\pi}{2}
$$

For $a_{0} \rightarrow \infty$ or $R \rightarrow 0$ only allowed values of $\nu=\nu_{j}$ are roots of the equation

$$
\nu \cos \nu \frac{\pi}{2}-\frac{8}{\sqrt{3}} \sin \nu \frac{\pi}{6}=0
$$

For $a_{0} \rightarrow \infty$ the Schrödinger equation and the boundary conditions separate thus the effective hyper-radial potential $V_{\text {eff }}(R)=\frac{\nu_{j}^{2}-1 / 4}{2 R^{2}}$ holds for all R and is given by

$$
\Psi_{j}(\boldsymbol{R})=S\left(\nu_{j}, \hat{\boldsymbol{R}}\right) R^{-2} Z_{\nu}(K R)
$$

where $Z_{\nu}(K R)$ is a Bessel function.
Issues: The roots $\nu_{0}= \pm i t_{0}, t_{0}=1.0062 \ldots$ are complex and the solutions diverge as $R \rightarrow 0$. Discard solutions? Efimov's answer: no. Separable solutions for large R hold for finite range potentials if $a_{0} \rightarrow \infty$. The complex root implies an attractive effective potential

$$
V_{\mathrm{eff}}(R)=-\frac{t_{0}^{2}+1 / 4}{2 R^{2}}
$$

There are an infinite number of three-body bound states for such potentials. Exact solutions confirm that the oscillatory solutions cannot be discarded.

What about $\ell \neq 0$ and spin $s=1 / 2$ fermions?

Fermions
To treat fermions we must include spin in the angular function $S(\nu, \hat{\boldsymbol{R}})$

$$
S(\nu, \hat{\boldsymbol{R}}, \sigma)=\sum_{k=1}^{3} f_{l_{x} l_{y}}\left(\alpha_{k}\right) Y_{\ell_{x} \ell_{y} L M}\left(\hat{\boldsymbol{x}}_{k}, \hat{\boldsymbol{y}}_{k}\right) \chi_{M_{S}}^{S}(i j k)
$$

The boundary conditions must now be satisfied for every possible spin coupling. For s - wave psuedopotentials $\chi(i j k)$ has the coupling $\left(\left(\frac{1}{2} \frac{1}{2}\right) 0, \frac{1}{2}\right) \frac{1}{2}$ and one finds that ν_{j} is a root of

$$
\nu \cos \nu \frac{\pi}{2}-\frac{4}{\sqrt{3}} \sin \nu \frac{\pi}{6}=0
$$

All of the roots of this equation are real so there is neither an Efimov nor Thomas effect. All three-body threshold dynamics are determined by the two-body scattering length a_{0}. When $a_{0} \rightarrow \infty$ then $\Psi(\boldsymbol{R})=$ $S(\nu, \hat{\boldsymbol{R}}, \sigma) Z_{\nu_{j}}(K R)$ is an exact solution. There are an infinite number of such solutions corresponding to the infinite number of separation constants (genaralized angular momenta) ν_{j}. There are no three-body bound states.

For $\ell=1^{+}$the angular factor is $\boldsymbol{x}_{k} \times \boldsymbol{y}_{k}$ which is unchanged under cyclic permutations of $i j k$ and therefore factors out of the boundary conditions. Since the space part is antisymmetric under interchange of any two coordinates, the spin coupling must be $((1 / 2,1 / 2) 1,1 / 2), 1 / 2$ or $((1 / 2,1 / 2) 1,1 / 2), 3 / 2$. The latter coupling corresponds to spin polarized fermions and in this case one finds that the boundary conditions for $a_{\ell} \rightarrow \infty$ become

$$
\cos \nu \frac{\pi}{2}+2_{2} F_{1}\left(-\frac{\nu}{2}+2, \frac{\nu}{2}+2 ; \frac{5}{2} ; \frac{1}{4}\right)=0
$$

This equation has only real roots so that there neither an Efimov nor a Thomas effect. For the first coupling scheme with total spin equal to $1 / 2$, the boundary condition gives the equation

$$
\cos \nu \frac{\pi}{2}-{ }_{2} F_{1}\left(-\frac{\nu}{2}+2, \frac{\nu}{2}+2 ; \frac{5}{2} ; \frac{1}{4}\right)=0
$$

This equation has complex roots $i t_{0}$ with $t_{0}= \pm 0.6668 \ldots$. Accordingly there is both a Thomas effect and (possibly) an Efimov effect.

Exact solution for $a_{0}>0$
We have seen that Efimov states correspond to exact separable solutions of the three-body Schrödinger equation with ZRPs where the scattering length $a_{\ell} \rightarrow \infty$.

$$
\Psi(\boldsymbol{R})=S(\nu, \hat{\boldsymbol{R}}) R^{-2} Z_{\nu}(K R)
$$

When the a_{ℓ} is finite (not infinite) then the boundary conditions require a superposition of separable functions

$$
\Psi(\boldsymbol{R})=R^{-2} \int_{c} A(\nu) S(\nu, \hat{\boldsymbol{R}}) Z_{\nu}(K R) \nu d \nu
$$

. It follows from the boundary conditions that $A(\nu)$ is given by the three-term recurrence relation (TTR)[PRA, 72, 032709 (2005)]:

$$
X(\nu+1) A(\nu+1)+X(\nu-1) A(\nu-1)=2 \nu \sin \nu \frac{\pi}{2} \frac{1}{K a} A(\nu)
$$

with

$$
X(\nu)=\nu \cos \pi \frac{\nu}{2}-\frac{8}{\sqrt{3}} \sin \nu \frac{\pi}{2}
$$

$$
\text { Exact solution for } a_{0}>0 \text { and } E \neq 0
$$

The magnitude of the S_{00} is

$$
\left|S_{00}(E)\right|=\left|1+2 i A_{0} \frac{e^{i \Delta\left(R_{0}\right)} \sin \Delta\left(R_{0}\right)}{1+e^{-2 \pi t_{0}} e^{2 i \Delta\left(R_{0}\right)}}\right|=\left|1+2 i P e^{i \Delta_{r}\left(R_{0}\right)} \sin \Delta_{r}\left(R_{0}\right)\right|
$$

where $P=A_{0} /\left(2 \sinh t_{0}\right)$. The three-body recombination rate is

$$
K_{3}=C_{3} \sin ^{2} \Delta_{r} \frac{\hbar}{m} a^{4}
$$

with $C_{3}=2^{7} \pi^{2}(4 \pi-3 \sqrt{3}) / \sinh ^{2} t_{0}=67.1177 \ldots$ The approximate hidden crossing theory gets

$$
K_{3}(H C)=68.4 \sin ^{2}\left(t_{0} \ln (R / a)+1.572\right) \frac{\hbar}{m} a^{4}
$$

in surprisingly good agreement with the exact result where $\Delta_{r} \approx$ $t_{0} \ln \left(R_{0} / a\right)+1.588$

Approximate solution (Hyperspherical closed-coupling)

$$
H=T_{R}+\frac{\Lambda_{\hat{\boldsymbol{R}}}^{2}}{2 R^{2}}+V(\boldsymbol{R})
$$

Define basis functions $\Phi(R ; \hat{\boldsymbol{R}})$ according to

$$
\left(\frac{\Lambda_{\hat{\boldsymbol{R}}}^{2}}{2 R^{2}}+V(\boldsymbol{R})\right) \Phi(R ; \hat{\boldsymbol{R}})=\frac{\nu(R)^{2}-(3 N-5)}{2 R^{2}} \Phi(R ; \hat{\boldsymbol{R}})
$$

For ZRP $\nu(R)$ is determined by the boundary conditions which give an equation of the form

$$
f_{\ell}(\nu(R))=R^{2 \ell+1} M
$$

where $M=k^{2 \ell+1} \cot \delta \approx-\frac{1}{a^{2 \ell+1}}$. The hidden crossing theory uses the effective potential $\left(\nu(R)^{2}-1 / 4\right) / 2 R^{2}$ to find approximate bound states and S-matrix elements. We have seen that the approximate solutions are fairly accurate. Use the adiabatic picture to analyze various generalizations of the ZRP's.

Generalizations of the ZRP's

1. Use a multichannel ZRP (Oleg Kartavtsev, Few-Body Systems,31, 249 (2002)) M becomes a matrix. Results are promising but one quickly finds that a large number of channels are involved.
2. Include energy dependence. Why? When the first term in the effective range expansion $-1 / a^{2 \ell+1}$ vanishes then the higher order terms are important. We can use the adiabatic theory to see if these terms make a significant difference to our conclusions about threshold effects.

To include energy dependence in the adiabatic picture we use the replacement $k^{2} \rightarrow \frac{\nu(R)^{2}-\ell_{x}\left(\ell_{x}+1\right) / 3-\ell_{y}\left(\ell_{y}+1\right)}{R^{2}}$ and consider

$$
f(\nu(R))=R^{2 \ell+1} M\left(k^{2}\right)=-\left(\frac{R}{a}\right)^{2 \ell+1}+O\left(R^{2 \ell-1}\right)
$$

For $\ell=0$ the effective range term in $R M\left(k^{2}\right)$ is of the order of $1 / R$ so it has little effect on threshold quantities.

For $\ell=1$, the effective range term in $R^{3} M\left(k^{2}\right)$ is of the order of R and cannot be ignored. If this term is not zero, there are no $\ell=1$ Efimov states. In order to have Efimov states for $\ell=1$ the p -wave $M\left(k^{2}\right)$ must be
of the order of k^{4} for small k. Not possible for local short-range potentials.
3. Energy dependence allows one to model resonances

$$
M=k^{2 \ell+1} \cot \delta=\left(E_{r}-E\right) / \gamma
$$

Problems with energy-dependent potentials

First problem: Solutions of the S-equation are not orthogonal.
Second problem: Multiparticle S - matrix is not defined.
Solution: Introduce energy dependence naturally. (e.g. Oleg Kartavstev's multichannel model)

Conclusions

1. Contact interactions are usefully treated in hyperspherical coordinates.
2. Exact solutions and good approximate solutions are available.
3. p-wave states [unnatural parity] are interesting, but need a correct way to handle energy dependence.
4. Contact interactions for $\ell>0$ are not actually contact interactions since the limit $r \rightarrow 0$ cannot be taken everywhere (e. g. in evaluating normalization constants).
5. Multichannel ZRP's appear to be the only way to correctly treat energy dependence with contact interactions.
