
Binding in some few-body systems containing antimatter

E A G Armour

School of Mathematical Sciences

University of Nottingham

University Park

Nottingham NG7 2RD

UK

edward.armour@nottingham.ac.uk

1



Fixed proton and antiproton + an electron or a positron

R

p p−

e−

or

R

p p−

e+

Internuclear distance = R

This is a very well-known system – a charge in a dipole field.

Many calculations have been carried out on this system.

2



First determination of the critical distance, Rc, below which the

dipole cannot bind an electron (or a positron).

Fermi and Teller, Phys. Rev. 72, 399 (1947).

They considered binding of an electron by a dipole made up of a

negative meson and a proton in connection with the capture of

negative mesons in matter.

They stated that Rc = 0.639a0.

No detail given of the calculation.

This system was considered shortly afterwards by

Wightman, Phys. Rev. 77, 521 (1950).

He used the separability of the Schrödinger equation in prolate

spheroidal coordinates to deduce that Rc has this value by

considering the state of zero energy.

A detailed mathematical treatment of electron binding by a dipole

was carried out by

Wallis, Herman and Milnes, J. Molec. Spectoscopy 4, 51 (1960).

Calculation of energies for R ≥ 0.84a0 using the separability of the

Schrödinger equation in prolate spheroidal coordinates.
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Prolate Spheroidal Coordinates (λ, µ, φ)

A

P

Y

X

A B

p

r
B

O Z

r

p−

A has coordinates

(

0, 0,−R
2

)

B has coordinates

(

0, 0,
R

2

)

R = internuclear distance

λ =
rA + rB

R

µ =
rA − rB

R

φ is the usual azimuthal angle of spherical polar coordinates.
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The separability is due to the existence of the complete commuting

set of observables:

Ĥ, the Hamiltonian,

Λ̂ = 1
2(L̂p · L̂p̄ + L̂p̄ · L̂p) +

2Rµ(λ2 − 1)

λ2 − µ2

and L̂z, the component of angular momentum in the z-direction.

L̂p and L̂p̄ are the angular momenta of the electron or the positron

about p and p̄, respectively. Units are atomic units.

Wallis et al. obtained energies for the electron or the positron for

the ground state and several excited states.

The system seems to have been rediscovered around 1965. Several

authors obtained the critical value Rc = 0.639a0 obtained by Fermi

and Teller in 1947.
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Calculations were carried out by:

Mittleman and Myerscough, Phys. Letts. 23, 545 (1966);

Turner and Fox, Phys. Letts. 23, 547 (1966);

Crawford and Dalgarno, Chem. Phys. Letts. 1, 23 (1967);

Coulson and Walmsley, Proc. Phys. Soc. (London) 91, 31 (1967);

Lévy-Leblond, Phys. Rev. 153, 1 (1967);

Byers Brown and Roberts, J. Chem. Phys. 46, 2006 (1967);

Crawford, Proc. Phys. Soc. (London) 91, 279 (1967).

Turner, J. Am. Phys. Soc. 45, 758 (1977), gives a good overall

review of the calculations, starting with Fermi and Teller.

Crawford was able to show that if R > Rc, a countable infinity of

bound states exists.
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Behaviour of the expectation value of z as R→ Rc+

This will be of interest in what follows.

Separable solutions of Schrödinger’s equation are of the form:

ψ(λ, µ, φ) = L(λ)M(µ)P (φ).

R > Rc

Ground state P (φ) =
1√
2π

.

L(λ) = e−
x
2

∞
∑

n=0

cn

n!
Ln(x)

M(µ) = e−pµ
∞

∑

l=0

flPl(µ)

where

x = 2p(λ− 1),

p2 = −R
2

2
E (E < 0)

and E is the energy of the electron or the positron. Ln(x) is the

Laguerre polynomial of degree n. Pl(µ) is the Legendre polynomial

of degree l. The coefficients {cn} and {fl} are determined by

three-coefficient recurrence relations.
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z =
R

2
λµ

∴ The expectation value of z,

〈z〉 =
R

2

∫ ∞
1

∫ 1

−1 |L(λ)|2|M(µ)|2λµ(λ2 − µ2) dµ dλ
∫ ∞

1

∫ 1

−1 |L(λ)|2|M(µ)|2(λ2 − µ2) dµ dλ
.

By straightforward manipulation it can be shown that

〈z〉 =
R

4p

[

A3B1 − 4p2A1B3

A2B0 − 4p2A0B2

]

,

where

Aq =

∫ ∞

0

|L(λ)|2(x + 2p)q dx

and

Bs =

∫ 1

−1

|M(µ)|2µs dµ.

lim
p→0+

[

A3B1 − 4p2A1B3

A2B0 − 4p2A0B2

]

= k,

where k is a non-zero constant. Thus

lim
p→0+

〈z〉 = ±∞.

As

p→ 0+,

E → 0−
and

Rc → Rc + .
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Electron

e− R = R  + c

p p−

δ

Thus 〈z〉 → −∞ in this case.

Positron

R = R  + c

p p−
+

e
δ

Thus 〈z〉 → ∞ in this case.

For small w = R− Rc > 0, Jonsell (private communication) finds

that

p = 9.8178 exp(−3.6953w−1
2).

Now

E = −2p2

R2
.

Thus E → 0− as R → Rc+, more slowly than any power of

w = R−Rc.

9



Hydrogen-Antihydrogen (HH̄) with fixed nuclei

R

p p−

e− e+

When both the electron and the positron are present, the threshold

for binding moves down from zero to −1
4

a.u., the ground state

energy of positronium (Ps).

Clearly, there is no binding if R = 0.

It is reasonable to assume that there exists a critical value of R,

Rcp, below which the nuclei are unable to bind the electron and the

positron.
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Upper bounds to Rcp

Armour, Zeman and Carr, J. Phys. B 31, L679 (1998).

Variational calculation with trial function with 32 basis functions in

terms of prolate spheroidal coordinates, some of them

Hylleraas-type functions, and one basis function of the form,

ψPs =

(

e−κρ

ρ

)

g(ρ)ΦPs(r12),

where ρ is the distance of the centre of mass of the Ps from the

centre of mass of the nuclei. r12 is the distance between the

electron (particle 1) and the positron (particle 2)

g(ρ) =
(

1 − e−γρ
)3

(Shielding function).

ΦPs(r12) is the wave function of ground-state Ps.
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ψPs =

(

e−κρ

ρ

)

(

1 − e−γρ
)3

ΦPs(r12)

represents weakly bound Ps.

Optimum value of κ ≈ 0.06 a.u.

Binding energy of the electron and the positron at R = 0.8a0 is

0.00065 a.u.

Thus the critical value, Rcp ≤ 0.8a0.

Strasburger, J. Phys. B 35, L435 (2002).

Variational calculation with 64 to 256 explicitly correlated Gaussian

basis functions:

ψℓ = exp

[

−
2

∑

i=1

α
(ℓ)
i (ri − R

(ℓ)
i )2 − β

(ℓ)
12 (r1 − r2)

2

]

,

where r1 is the position vector of the electron, r2 is the position

vector of the positron and α
(ℓ)
i , β

(ℓ)
12 and R

(ℓ)
i are independent,

non-linear parameters.

Strasburger showed that Rcp ≤ 0.744a0.
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The existence of the critical radius, Rcp, below which the electron

and the positron become unbound results in a breakdown of the

Born–Oppenheimer approximation for R < Rcp.

Any calculation of HH̄ scattering must take account of the inelastic

channel

H + H̄ −→ pp̄ + Ps.

Kohn method:

Armour and Chamberlain, J. Phys. B 35, L489 (2002).

Optical potential method:

Zygelman, Saenz, Froelich and Jonsell, Phys. Rev. A 69, 042715

(2004).
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Towards a lower bound on Rcp

R = 0.744a0 is an upper bound on the value of the critical R value,

Rcp, for HH̄. Can we obtain a lower bound? For example, can we

show that Rcp ≥ Rc = 0.639a0, the critical value for pp̄e− and

pp̄e+, when only the electron or the positron present?

One way of proving this would be to show that

A bound state of HH̄ at R < Rc =⇒ A bound state of

pp̄e− and pp̄e+ at R < Rc. (1)

For we know that no such bound state of pp̄e− and pp̄e+ exists.

Thus taking the contrapositive of (1) ⇒ no bound state of HH̄ at

R < Rc.
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Alternatively, we can conclude from (1) that the existence of a

bound state of pp̄e− and pp̄e+ at R < Rc is a necessary condition

for the existence of bound state of HH̄ at R < Rc. If this condition

is not satisfied, no bound state of HH̄ exists at R < Rc.

Can we prove proposition (1)?

The Hamiltonian, Ĥf , for the system is of the form

Ĥf = −1
2∇

2
1 − 1

2∇
2
2 + V − 1

r12
, (2)

where V is the dipole potential,

V = − 1

rp1
+

1

rp̄1
+

1

rp2
− 1

rp̄2
(3)

and rpi and rp̄i are the distances of particle i from the proton and

antiproton, respectively.
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Ĥf = −1
2
∇2

1 − 1
2
∇2

2 + V − 1

r12
, (2)

Ĥf can also be expressed in the form

Ĥf = −1
4
∇2

ρ −∇2
r12

+ V − 1

r12
, (4)

where ρ is the position vector of the centre of mass of the

positronium w.r.t. the centre of mass of the nuclei. r12 is the

position vector of the positron (particle 2) w.r.t. the electron

(particle 1).

Suppose that a bound state of the full system does exist for some

value of R, i.e. there exists some square-integrable function

φ(r1, r2), within the domain of Ĥf , for which

Ĥfφ = Eφ (5)

where

E = −1
4 − ǫ (ǫ > 0). (6)

If more than one exists, we shall assume that φ is the lowest in

energy.

It follows from (5) that

(CĤfC
−1)Cφ = ECφ (7)

i.e. Ĥfcφc = Eφc, (8)

where

Ĥfc = CĤfC
−1 (9)
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and

φc = Cφ. (10)

If C† = C−1, this would be a unitary transformation. However, this

will not be the case. (9) is a similarity transformation. As C is not

unitary, it follows that Ĥfc is not Hermitian.

Take

C = exp

[

ar12

1 + δr12

]

, (11)

where a and δ are positive constants. Note that C is non-singular

as r12 ≥ 0 and δ > 0.

Since

lim
r12→∞

C = exp
[a

δ

]

, (12)

as φ is square-integrable, so is φc.
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Two-particle correlation functions were included in wave functions

by Jastrow, Phys. Rev. 98, 1479 (1955) in calculations on

many-particle systems interacting through the strong interaction.

Correlation functions of the form of C are used in Monte Carlo

calculations of wave functions for atoms and molecules.

See, for example, Umrigar, Wilson and Wilkins, Phys. Rev. Lett. 60,

1719 (1988).

Correlation functions of this form are also used in the

transcorrelated method of Boys and Handy, Proc. Roy. Soc.

(London) A 310, 43 (1969) – an ingenious attempt to take a very

accurate account of electron correlation. See also, Armour, Molec.

Phys. 24, 181 (1972).

18



However, the use to which C be will be put here is quite different.

As δ → 0+, φc becomes more and more diffuse, and the effect of

the Coulombic interaction becomes less and less. The aim is to use

this to uncover the role in binding of the dipole potential V in Ĥf .

It follows from equation (6) and (8) that

〈φc | Ĥfc | φc〉
〈φc | φc〉

= E = −1
4
− ǫ (ǫ > 0). (13)

Now

Ĥfcφc = CĤfC
−1φc

= C

{

−
[

φc
∂2C−1

∂r2
12

+ 2
∂C−1

∂r12

∂φc

∂r12
+ C−1∂

2φc

∂r2
12

+
2

r12

(

φc
∂C−1

∂r12
+ C−1 ∂φc

∂r12

)

− C−1L̂
2(θ12, φ12)

r2
12

φc

]}

− 1
4∇

2
ρφc + V φc −

φc

r12
, (14)

where L̂2(θ12, φ12) is the operator for the square of the angular

momentum.

Using expression (11) for C, it can be shown that

Ĥfcφc = −{a2 + 2aδ(1 + δr12)}
(1 + δr12)4

φc +
2a

(1 + δr12)2

(

∂

∂r12
+

1

r12

)

φc

+

(

−∇2
r12

− 1
4
∇2

ρ + V − 1

r12

)

φc. (15)
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Thus from (2), (4), (13) and (15),

〈φc | Ĥfc | φc〉
〈φc | φc〉

=

[

−〈φc | {a2 + 2aδ(1 + δr12)} | φc〉
(1 + δr12)4

+2a〈φc |
1

(1 + δr12)2

(

∂

∂r12
+

1

r12

)

| φc〉

−〈φc |
1

r12
| φc〉 + 〈φc | Ĥdip | φc〉

]

[〈φc | φc〉]−1

= −1
4
− ǫ (ǫ > 0), (16)

where

Ĥdip = −1
2∇

2
1 − 1

2∇
2
2 + V (17)

is the Hamiltonian for the non-interacting particles in the field of

the nuclei.

20



From which it follows that

〈φc | Ĥdip | φc〉
〈φc | φc〉

= −1
4

+ a2
〈φc | 1

(1+δr12)4
| φc〉

〈φc | φc〉
+ 2aδ

〈φc | 1
(1+δr12)3

| φc〉
〈φc | φc〉

−
〈φc | 2a

(1+δr12)2

(

∂
∂r12

+ 1
r12

)

| φc〉
〈φc | φc〉

+
〈φc | 1

r12
| φc〉

〈φc | φc〉
− ǫ

(ǫ > 0). (18)

As

〈φc | 1
(1+δr12)n

| φc〉
〈φc | φc〉

< 1 ∀ δ > 0 (n > 0) (19)

it follows that

〈φc | Ĥdip | φc〉
〈φc | φc〉

≤ −1
4 + a2 + 2aδ

〈φc | 1
(1+δr12)3

| φc〉
〈φc | φc〉

−2a
〈φc | 1

(1+δr12)2

(

∂
∂r12

+ 1
r12

)

| φc〉
〈φc | φc〉

+
〈φc | 1

r12
| φc〉

〈φc | φc〉
− ǫ. (20)
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Now

Â =
∂

∂r12
+

1

r12
(21)

is an anti-Hermitian operator. This can be seen by integrating a

given integral involving Â, using integration by parts, or by noting

that

−iÂ = −i
(

∂

∂r12
+

1

r12

)

(22)

is the Hermitian operator for radial momentum. See, for example,

Messiah, Quantum Mechanics, Vol I, p 346. It is not an observable,

but this is not relevant to the present analysis.

As all quantities being considered are real,

〈φc |
1

(1 + δr12)2

(

∂

∂r12
+

1

r12

)

| φc〉

= −〈φc |
(

∂

∂r12
+

1

r12

)

1

(1 + δr12)2
| φc〉

= −〈φc |
(

1

1 + δr12

)2 (

∂

∂r12
+

1

r12

)

| φc〉

+ 2δ〈φc |
1

(1 + δr12)3
| φc〉 (23)

∴ 〈φc |
1

(1 + δr12)2

(

∂

∂r12
+

1

r12

)

| φc〉

= δ〈φc |
1

(1 + δr12)3
| φc〉.

It follows from (18) that

〈φc | Ĥdip | φc〉
〈φc | φc〉

≤ −1
4 + a2 +

〈φc | 1
r12

| φc〉
〈φc | φc〉

− ǫ (ǫ > 0). (24)
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I have obtained this result by evaluating

〈φc|Ĥfc|φc〉
〈φc|φc〉

,

where Ĥfc is the non-Hermitian operator

Ĥfc = CĤfC
−1 (9)

where

C = exp

[

ar12

1 + δr12

]

. (11)

This is not necessary. It can also be obtained by evaluating

〈φc|Ĥf |φc〉
〈φc|φc〉

.
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A more precise bound on
〈φc|Ĥdip|φc〉

〈φc|φc〉
As

〈φc | Ĥdip | φc〉
〈φc | φc〉

≤ −1
4 + a2 +

〈φc | 1
r12

| φc〉
〈φc | φc〉

− ǫ (ǫ > 0), (24)

to obtain a more precise bound, we need to consider the behaviour

of

I(δ) =
〈φc| 1

r12
|φc〉

〈φc|φc〉
(25)

as a function of δ.

Now

φc = exp

[

ar12

1 + δr12

]

φ, (11)

where

Ĥfφ = Eφf . (5)

Thus we need to consider

M(r) = 〈φ|δ(r12 − r)|φ〉.

As r → ∞, M(r) will show a behaviour intermediate between

ground-state positronium and the behaviour of M(r) if the Coulomb

attraction between the electron and the positron is set to zero.
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M(r) will tend to zero no faster than in the case of the

ground-state positronium wave function, i.e. no faster than r2e−r.

Earlier inclusion of basis function

ψPs =

(

e−κρ

ρ

)

(1 − e−γρ)3ΦPs(r12)

where ΦPs(r12) =
1√
8π
e−

1
2
r12 = (normalized) Ps ground-state

wave function in a variational calculation of the energy, E, of the

electron and the positron.

Very beneficial effect.

It is to be expected that for small ǫ, ψPs will be a large component

of φ.

However, φ 6= ψPs.

As the dipole potential V is antisymmetric w.r.t. interchange of the

electron and the positron, no binding can occur if φ is symmetric,

as in the case of ψPs, or antisymmetric w.r.t. this interchange.
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Let us begin by considering the case when M(r) behaves like r2e−r

as r → ∞. Let
∫

. . .

∫

|φc|2 sin θ12 dθ12 dφ12 dρ = f(r12)e
2ar12

1+δr12e−r12r2
12. (26)

It follows that

〈φc | φc〉 = lim
A→∞

∫ A

0

f(r12)e
2ar12

1+δr12e−r12r2
12 dr12,

〈φc |
1

r12
| φc〉 = lim

A→∞

∫ A

0

f(r12)e
2ar12

1+δr12e−r12r12 dr12

and

f(r12)r
2
12 ∼

r12→∞
Nr2

12,

where N is a positive constant.

∴

〈φc | 1
r12

| φc〉
〈φc | φc〉

=
lim
A→∞

∫ A

0 f(r12)e
2ar12

1+δr12e−r12r12 dr12

lim
A→∞

∫ A

0 f(r12)e
2ar12

1+δr12e−r12r2
12 dr12

. (27)
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Let us consider the factor

e
2ar12

1+δr12e−r12 = exp

[

2ar12 − r12 − δr2
12

1 + δr12

]

. (28)

Recall that

〈φc | Ĥdip | φc〉
〈φc | φc〉

≤ −1
4

+ a2 +
〈φc | 1

r12
| φc〉

〈φc | φc〉
− ǫ (ǫ > 0), (24)

If a > 1
2
, the RHS of (24) > 0 for sufficiently small ǫ > 0. Thus not

a suitable choice of a.

If a < 1
2,

2ar12 − r12 − δr2
12

1 + δr12
=

−br12 − δr2
12

1 + δr12

where b = 1 − 2a > 0. Thus the RHS of (28) declines

exponentially. Thus not a suitable choice.

Therefore, choose a = 1
2
.
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If a = 1
2,

2ar12 − r12 − δr2
12

1 + δr12
=

−δr2
12

1 + δr12
.

Also

0 <
δr2

12

1 + δr12
< δr2

12.

In view of this, it is instructive to evaluate
〈φc | 1

r12
| φc〉

〈φc | φc〉
with

φc = rn12e
−δr2

12 (n ∈ N),

〈φc | 1
r12

| φc〉
〈φc | φc〉

=

∫ ∞
0 rn−1

12 e−δr
2
12r2

12 dr12
∫ ∞

0 rn12e
−δr2

12r2
12 dr12

.

If n is even, so that m = n
2 ∈ N,

=
2m+1m!

1.3 . . . (2m + 1)
√
π
δ

1
2 .

If n is odd, so that p = n+1
2

∈ N

=
1.3 . . . (2p− 1)

√
π

2pp!
δ

1
2 .

Thus, in this case,

〈φc | 1
r12

| φc〉
〈φc | φc〉

−→ 0+

like δ
1
2 as δ → 0+.
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Conjecture: In the more general case when M(r) behaves like

r2e−r as r → ∞
〈φc | 1

r12
| φc〉

〈φc | φc〉
−→ 0+ like δ

1
2 as δ → 0+.

Tentative proof. It follows from (27) that

I(δ) =
〈φc | 1

r12
| φc〉

〈φc | φc〉

=

∫ α

0 f(r12)e
− δr2

12
1+δr12r12 dr12 + lim

A→∞

∫ A

α
f(r12)e

− δr2
12

1+δr12r12 dr12

∫ α

0 f(r12)e
− δr2

12
1+δr12r2

12 dr12 + lim
A→∞

∫ A

α
f(r12)e

− δr2
12

1+δr12r2
12 dr12

,

where α is any positive number. As f(r12) ≥ 0, we can apply the

mean value theorem of the integral calculus to the first term in the

numerator and both terms in the denominator on the right-hand

side of this equation to obtain the inequality.

I(δ) ≤

∫ α

0 f(r12)r12 dr12 + lim
A→∞

∫ A

α
f(r12)e

− δr2
12

1+δr12r12 dr12

e−δα2
∫ α

0 f(r12)r2
12 dr12 + α lim

A→∞

∫ A

α
f(r12)e

− δr2
12

1+δr12r12 dr12

.

(29)
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Now
∫ α

0

f(r12)r
p
12 dr12 = [gp(r12)]

α
0 ,

where gp(r12) is an indefinite integral of f(r12)r
p
12. For sufficiently

large but finite values of α, we can take gp(α) to be of the form

gp(α) =
Nαp+1

p + 1
+ sp(α),

where sp(α) is of O(αp). Thus for such α values,
∫ α

0

f(r12)r
p
12 dr12 =

Nαp+1

p + 1
+ sp(α) − gp(0).

Let α =
1

δ
1
2

. Thus for sufficiently small positive values of δ,

∫ 1

δ
1
2

0

f(r12)r
p
12 dr12 =

(

N

p + 1

)

1

δ
p+1

2

+ sp

(

1

δ
1
2

)

− gp(0),

where sp

(

1

δ
1
2

)

is of order
1

δ
p
2

.
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It follows that for such values of
1

δ
1
2

,

I(δ) ≤
N
2δ

+ s1

(

1

δ
1
2

)

− g1(0) +W (δ)

e−1

(

N

3δ
3
2

+ s2

(

1

δ
1
2

)

− g2(0)

)

+
1

δ
1
2

W (δ)

,

where

W (δ) = lim
A→∞

∫ A

1

δ
1
2

f(r12)e
− δr2

12
1+δr12r12 dr12 > 0.

Thus

I(δ) ≤ 3
2eδ

1
2







N + 2δs1

(

1

δ
1
2

)

− 2δg1(0) + 2δW (δ)

N + 3δ
3
2s2

(

1

δ
1
2

)

− 3δ
3
2g2(0) + 3eδW (δ)







= 3
2
eδ

1
2







N + 3δ
3
2s2

(

1

δ
1
2

)

− 3δ
3
2g2(0) + 2δW (δ)

N + 3δ
3
2s2

(

1

δ
1
2

)

− 3δ
3
2g2(0) + 3eδW (δ)

+
2δs1

(

1

δ
1
2

)

− 2δg1(0) − 3δ
3
2s2

(

1

δ
1
2

)

+ 3δ
3
2g2(0)

N + 3δ
3
2s2

(

1

δ
1
2

)

− 3δ
3
2g2(0) + 3eδW (δ)







= 3
2eδ

1
2 [B +O(δ

1
2)] (0 < B < 1).

It follows that

I(δ) ≤ ωδ
1
2 +O(δ), (30)

where 0 < ω < 3
2e.
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Thus in the case where

M(r) = 〈φ | δ(r12 − r) | φ〉

tends to zero like r2e−r asymptotically, it follows from the relation

〈φc | Ĥdip | φc〉
〈φc | φc〉

≤ −1
4 + a2 +

〈φc | 1
r12

| φc〉
〈φc | φc〉

− ǫ (ǫ > 0) (24)

with a = 1
2
, that

〈φc | Ĥdip | φc〉
〈φc | φc〉

≤ ωδ
1
2 + O(δ) − ǫ (ǫ > 0) (31)

where 0 < ω < 3
2e.

M(r) will tend to zero more slowly asymptotically than r2e−r.

Proof can be extended to this case, though some features still need

clarification.

32



〈φc | Ĥdip | φc〉
〈φc | φc〉

≤ ωδ
1
2 + 0(δ)− ǫ (ǫ > 0) (31)

implies that, for sufficiently small δ, there exists a square-integrable

function, φc, such that

〈φc | Ĥdip | φc〉
〈φc | φc〉

< 0. (32)

It follows from the variational theorem that a bound state of the

system exists when the interaction between the electron and the

positron is set to zero.

This implies that a bound state of the dipole system made up of the

proton and the antiproton and the electron or the positron exists.
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This is close to the desired result.

Qualifications

I(δ) =
〈φc | 1

r12
| φc〉

〈φc | φc〉
involves infinite integrals containing

lim
A→∞

∫ A

0

. . . dr12. Thus if we take the limit, lim
δ→0+

a double limit is

involved. Further analysis is necessary to clarify this.

This would be a problem if we wished to consider binding energies,

ǫ, as small as we please.

However, we know from Strasburger’s variational calculation that

for R = 0.8a0,

ǫ ≥ 0.0013148 a.u. (33)

Also we know from Wallis et al.’s exact solution for the system

made up of a proton, an antiproton and an electron or a positron,

that in the case of the binding energy, ǫni, for the two

non-interacting particles, if R = 0.8a0,

ǫni < 0.0000464 a.u. (34)
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Consider the relation obtained earlier

〈φc | Ĥdip | φc〉
〈φc | φc〉

≤ ωδ
1
2 +O(δ)− ǫ (ǫ > 0) (31)

where 0 < ω < 3
2e.

Take

ǫ > 0.0013148. (33)

The inequality (31) implies that it should be possible to find a δ

such that

〈φc | Ĥdip | φc〉
〈φc | φc〉

< −ǫni = −0.0000464,

without taking the limit δ → 0+.

This is a contradiction.

Further investigation is necessary.
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What does the existence of a bound state of the

non-interacting system imply about the existence of a

bound state of the interacting system?

Suppose that the electron and the positron interact through a

potential, − γ

r12
, where γ > 0.

Suppose Ĥdip has a bound state, φd, of energy −η, where η > 0.

Then

〈φd | Ĥf(γ) | φd〉
〈φd | φd〉

=
〈φd | Ĥdip | φd〉 − γ〈φd | 1

r12
| φd〉

〈φd | φd〉

= −η − γ
〈φd | 1

r12
| φd〉

〈φd | φd〉
(η > 0).
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The threshold below which states are bound is −1
4γ

2. Thus there

must exist a region 0 < γ < γc, in which

〈φd | Ĥf(γ) | φd〉
〈φd | φd〉

= −η − γ
〈φd | 1

r12
| φd〉

〈φd | φd〉
< −1

4
γ2 (γ > 0)

i.e. −η − γA < −1
4γ

2 (γ > 0)

where A =
〈φd | 1

r12
| φd〉

〈φc | φc〉
.

It is easy to show that

γc = 2A + 2
√

A2 + η.

Recall that there are a countable infinity of bound states of the

non-interacting system if R > Rc. Thus, for sufficiently small γ,

〈φd | Ĥf(γ) | φd〉
〈φd | φd〉

< −1
4γ

2

for as many of these states as we please.
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Take {φdi}Ni=1 to be an orthonormal set of such eigenfunctions.

If we diagonalise the matrix representation, Hf(γ), of Ĥf (γ) over

these eigenfunctions, the trace of the matrix will be invariant.

∴

N
∑

i=1

〈ψdi | Ĥf(γ) | ψdi〉 =

N
∑

i=1

〈φdi | Ĥf(γ) | φdi〉 < −N
4 γ

2

where {ψdi}Ni=1 are orthonormal wave functions in terms of which

Hf(γ) is diagonal.

Thus for M of these wave functions, 1 ≤M ≤ N ,

〈ψdi | Ĥf(γ) | ψdi〉 < −1
4
γ2
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〈ψdi | Ĥf(γ) | ψdi〉 < −1
4
γ2

for M of the wave functions, {ψdi}Ni=1, where 1 ≤M ≤ N .

It follows from the Hylleraas–Undheim theorem that M bound

states exist of the system with interaction − γ

r12
.

M can be expected to increase as N increases.

Strasburger has shown that a bound state of Ĥf(γ) exists for γ = 1

if R ≥ 0.744a0.

It would thus seem likely that γc > 1 if R ≥ 0.744a0.
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Critical mass at which a ‘positron’ would form a bound

state with a hydrogen molecule

Connection with the very large positron annihilation rates that have

been observed in low-energy positron scattering by some larger

molecules.

I am willing to discuss this with anyone who is interested.
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