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Plan of the Talk

‘Patterns of near-threshold behavior and examples
‘Basic definitions

A short review of the Klaus and Simon method
Examples of halo formation

‘Bounds on the Green’s functions with repulsion
‘Bound states at threshold in negative ions

*The case of N 2 4 and open problems.
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Exotic structures at the drip line

The nucleus ''Li lies on the drip line. Two neutrons form a halo
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Table of Inonization energy for the first electron
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Electron Affinities in kd / Mol

Small compared to ionization energies
(near-threshold behavior)
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Stability diagram for three charges (-1, q, , g, ) with masses (1, m, , m, )

H(Q17Q2) - chr + p_; + W(T7 )7
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Stability diagram for three charges (-1, q, , g, ) with masses (1, m, , m, )
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Halo Structure in the Stability Diagram

Proof of the halo structure

Suppose that the Hamiltonian

pr ;1
H(q1,1) = Hypp + — +W(r,€), where Eu, =—-1, Hy, = L
2 4 ¢
and
W(ré)=-——n 4 2

(1 =s8)§—r]  [s€+ 7|

has a bound state at threshold  H(q1,1)¢g = —¢yg

Then (g|W|do) <0 and the Hamiltonian H (g1 +¢€,1)

must be stable for € > ()
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Stability of Exotic Molecules

The map of stable systems for three unit charges

= area of stable systems

Halo formation

pe*e

of SJVESA pee

G G

FIAS Frankfurt Institute

%{ for Advanced Stud'\es@ D. Gridnev, ERICE 18.10.2008



Method of Klaus and Simon

How does E(A) behave near A = Acr?

For a negative short-range potential W one has
(A + MWy, = =K%y,
Through a substitution uy = W24, one gets
Kuy, = —X7' (k)ug,
where we define the integral operator

e_klx_yl

K(z,y) = W2 ()W (y)

dr|z —y|
Performing perturbation theory near k& = 0 gives
AHE) =2+ atk + agk? + ...

%( o Adhanced Svudoe A5 D. Gridnev, ERICE 18.10.2008



Method of Klaus and Simon

There are two possibilities for some c¢>0

E\) = —c(A = Aer)? + O((X = Aer)®) (analytic)
E\) = —c¢(A = Aep) + O((A = A)??) (non — analytic)

By the Feynmann-Helman theorem (¢|W|v) = dE/dA

X 0 >
O)\a\ A )\\A
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Formation of halo in the two-body system.

Corollary. If there exist A,a > 0 such that |[W| < Ae~®l and at A = )\,
there is no zero-energy bound state then the following upper bound holds for

the normalized bound state 1 having the energy E()) in the neighborhood of
E(Mer) =0

C|E|1/46_‘/|E|T
r
where C' > 0 is some constant independent of E. A

Proof.

e—VEllz—yly17
() = _A/dy W (y)¢¥(y)

|z —y|
Using |[W| < Ae~%*| and applying the Schwarz inequality gives

1/2
12 Ae—alvlg=2v/Elle—y| 12 C'e—VEIr
¥l < Al Wil) [ [ = <Xl
On the other hand (i||[W||) /|E|Y/? = O(1) O
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Behavior of the ground state near the drip-line

WY(R)
& 3
S|YR) SN~ > 1/R
+
ol —— 0 ~
R _
- c
R R

*For the Coulomb tail there is a bound state with E =0

*Only S-states can spread

*For rigorous results see D. Bolle, F. Gesztesy and W.Schweiger, J. Math.
Phys 26, 1661 (1985); M Ho®mann-Ostenhof, T Hoffmann-Ostenhof and B
Simon, J. Phys. A 16, 1125 (1983); D. Gridnev and M. Garcia J. Phys. A 40
9003-9016 (2007) .
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Connections between bound states at threshold and spreading

The Hamiltonian H(Z) describes the system of N particles
H(Z) =Hy+V(Z,z)

V(Zz)= D Vij(Zzi— ),
1<i<j<N

where Z takes the values from the parameter sequence Z, — Z.. One
defines the threshold as Eyp,-(Z) := inf 0.5 (H(Z)).

Hamiltonian must satisfy the requirements
R1 |Vij(Z;y)| < F(y) for all Z € Z, where F(y) € L*(R3).
[V(Zk) - V(Zcr)]fH = 0.

R3 for all Z there are E(Z) € R, y(Zx) € D(Hp) such that H(Zy )y (Zx) =
E(Zp)Y(Z), where ||¢(Zg)|| = 1 and E(Z) < Ewne(Zk).

R2 Vf(CU) c CSO(R?’N_?’): limzkﬂzcr

R4 limg, 7. F(Zy) =limg, .z, Ehr(Zk) = Ethe (Zer).

i%( o Adhanced Svudoe A5 D. Gridnev, ERICE 18.10.2008



Connections between bound states at threshold and spreading

Theorem (essentially Zhislin). Let (H(Z),Z) be a Hamiltonian satisfying
R1-4. If the sequence ¥ (Zy) defined in RS does not fully spread then H(Z,)
has a bound state at the threshold

H(Z)bo = Esny(Zer)tbo, where 1y € D(Hp) C L*(R3VN™3)

The following theorems are helpful

Theorem. Suppose f, € D(Hy), fn — ¢o and ||Hofn|| are uniformly norm-
bounded. Then || f, — ¢o|| — 0.

Theorem. Let f, € L?(R™) be a normalized sequence of functions, with the
property that every weakly converging subsequence converges also in norm.
Then f, does not spread.

Theorem. Suppose that the sequence of functions f, € L*(R™) is uniformly
norm-bounded and |f,| is non-decreasing |fn| < |fnt1]|- Then f, does not
spread.
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Upper Bounds for the Green’s functions (two-body case)

The Schrédinger equation Hy + AWW¥ = —k2¥ can be rewritten as
U= (Hy+ MW, 'W_¥, where W=W,—-W_; W, =max(0,|W)
If AW > n this gives the upper bound
0| < (Ho+n) "' W_|¥|

One looks for the upper bound on the integral kernel of G = (Hy +n)™*
for some special form of n

0 ifr<R
1(4, Ro;z) = { A2 ifr> R

Note that if G = [Ho +m]~! and Go = [Ho + n2] ™! then
Gi1(z,y) < Ga(x,y) pointwise when 1; > 1o
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Upper Bounds for the Green’s functions (two-body case)

Use the trick to find A(s) and Ry(s) such that

(A, Ro;z) > n(A(s), Ro(s); z — s)

Then

~

G(A, Ry;z,y) < G(A(s),Ry(s);z — s,y —s) forall s

Simply setting s = y one gets the upper bound
G(A, Ro;z,y) < G(A(y), Ro(y); = — ,0)
And G(A, Ry;x,0) is easy to find because it is spherically symmetric

[Ho +n]G(4, Ro; z,0) = 6(x)
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Examples of the Bounds

If G, is defined as

3+ —1
Gy, [p + 1z |2X{x| |x|>n}+k] )

Then one can write the bound

Xillylsn}y [ 1 ~iflz—y| < Ro
4|z — 9 Csnle —y|™® if|lz—y|>Ry ’

Gr(T, Y) X {y| lyl<n} <

where @ and Ry are defined through

- _ 1 N min(1, )
2 20

~ 20

Ho = min(l,(S)n
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Examples of the Bounds

The case of a Coulomb-like potential

~ a? a. . -1
Gr(a) = [—A + (ZW bt Z\ﬂ?| 3/2) X{z| |z|>1} + kz]

s 1 1 for |x —y| < 2n
X
It|x — y|

Gr(a; T, ¥)X{jy|<n} < exp {‘2—‘(\/% — |z — y\)} for |z — y| > 2n,

This makes the wave functions fall off as exp(—/r)
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Absence of spreading for the two-cluster break up.

The Hamiltonian for the case of a two-cluster break up

2

H = Hy, (£, 2) + % +W(r,&, Z)

where Hyp, is the Hamiltonian of internal motion in the clusters €; 5. One
needs additional requirements (H, denotes various two-cluster partitions)

R5 For all Z € Z there exist a normalized bound state ¢y, (€, Z) €
D(Hp,) and a constant |Ae| > 0 independent of Z such that

chr(Z)¢thr(§’ Z) — Ethr(Z)¢thr(€7 Z) and
(1 - Pthr(Z)) [chr(Z) - Eth'r(Z)] > |A6|(1 - Pthr(Z))

Haxs(Z) — Bnr(2)] 2 | A,

where Py (Z) = 1 ® ¢eny(Penr, -) is a projection operator.

R6 For all Z € Z there are A, q > 0 independent of Z such that the
bound state ¢4, defined in R5 satisfies the following inequality
[ Bnr (€, Z)] < Aem 2.
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Absence of spreading for the two-cluster break up.

Theorem. Suppose that (H(Z),Z) satisfies R1-6 and for oll Z € Z the
potentials satisfy the following inequality

3+9
2 > —— if > p
ww = 512 it > G+ cule
where 6,Cp1,p are fixed positive constants. Then: (a) for Z, — Z. the
sequence Y(Zy) defined by R3 does not spread. (b) H(Z.-) has at least one

bound state at the bottom of the continuous spectrum.

Consider the Hamiltonian of an infinitely heavy atomic nucleus charge
Z containing N electrons

HN(Z):HO—Zj—i— > % (1)

The total number of particles is N + 1 (the electrons are numbered from 1
to N and the nucleus is the particle number N + 1).

Theorem. Suppose that Z,, € (N —2,N —1). Then Hyn(Z.)Pn has a

bound state at the bottom of the continuous spectrum.
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New Results and open problems

> Neither halos nor the Efimov effect exist for the number of

clusters larger than 4 (the proof to be presented on the next

conference).

Some Open Problems
»Prove rigorously that halos are formed in the ground

state of 3 particles.

»>|s a retardation possible in the three cluster break up? In

other words, could it be that <W,,>/<W.,,> goes to zero?
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