Behavior of Wave Functions near the Thresholds

D. Gridnev, Ettore Majorana Center for Scientific Culture, Erice, October 17, 2008

Plan of the Talk

- Patterns of near-threshold behavior and examples
- Basic definitions
- A short review of the Klaus and Simon method
- Examples of halo formation
- Bounds on the Green's functions with repulsion
- Bound states at threshold in negative ions
- •The case of $N \ge 4$ and open problems.

Nuclear Chart

Exotic structures at the drip line

The nucleus ¹¹Li lies on the drip line. Two neutrons form a halo

Table of Inonization energy for the first electron

Electron Affinities in kJ / Mol

Small compared to ionization energies (near-threshold behavior)

Stability diagram for three charges (-1, q_1 , q_2) with masses (1, m_1 , m_2)

$$H(q_1, q_2) = H_{thr} + \frac{p_r^2}{2\mu} + W(r, \xi),$$

where

$$\begin{split} W(r,\xi) &= -\frac{q_1}{q_2|(1-s)\xi-r|} + \frac{q_1}{|s\xi+r|} \\ H_{thr} &= \frac{p_\xi^2}{4} - \frac{1}{|\xi|} \end{split}$$

The line of equal thresholds:

$$\mu_{23}q_2^2 = \mu_{13}q_1^2$$

Stability diagram for three charges (-1, q_1 , q_2) with masses (1, m_1 , m_2)

Halo Structure in the Stability Diagram

Proof of the halo structure

Suppose that the Hamiltonian

$$\begin{split} H(q_1,1) &= H_{thr} + \frac{p_r^2}{2\mu} + W(r,\xi), \quad \text{where} \quad E_{thr} = -1, \quad H_{thr} = \frac{p_\xi^2}{4} - \frac{1}{|\xi|} \\ &\text{and} \\ W(r,\xi) = -\frac{q_1}{|(1-s)\xi - r|} + \frac{q_1}{|s\xi + r|} \\ &\text{has a bound state at threshold} \quad H(q_1,1)\phi_0 = -\phi_0 \\ \end{split}$$
Then $\langle \phi_0 | W | \phi_0 \rangle < 0$ and the Hamiltonian $H(q_1 + \epsilon, 1)$
must be stable for $\epsilon > 0$

Stability of Exotic Molecules

The map of stable systems for three unit charges

Method of Klaus and Simon

How does $E(\lambda)$ behave near $\lambda = \lambda_{cr}$?

For a negative short-range potential W one has

 $(-\Delta + \lambda W)\psi_k = -k^2\psi_k$

Through a substitution $u_k = W^{1/2} \psi_k$ one gets

$$Ku_k = -\lambda^{-1}(k)u_k,$$

where we define the integral operator

$$K(x,y) = \frac{e^{-k|x-y|}}{4\pi|x-y|} W^{1/2}(x) W^{1/2}(y)$$

Performing perturbation theory near k = 0 gives

$$\lambda^{-1}(k) = \lambda_{cr}^{-1} + a_1k + a_2k^2 + \dots$$

Method of Klaus and Simon

There are two possibilities for some c>0

$$E(\lambda) = -c(\lambda - \lambda_{cr})^2 + O((\lambda - \lambda_{cr})^3) \quad (analytic)$$
$$E(\lambda) = -c(\lambda - \lambda_{cr}) + O((\lambda - \lambda_{cr})^{3/2}) \quad (non - analytic)$$

By the Feynmann-Helman theorem $\langle \psi | W | \psi \rangle = dE/d\lambda$

Formation of halo in the two-body system.

Corollary. If there exist A, a > 0 such that $|W| \leq Ae^{-a|x|}$ and at $\lambda = \lambda_{cr}$ there is no zero-energy bound state then the following upper bound holds for the normalized bound state ψ having the energy $E(\lambda)$ in the neighborhood of $E(\lambda_{cr}) = 0$

$$\psi| \leq \frac{C|E|^{1/4}e^{-\sqrt{|E|}r}}{r},$$

where C > 0 is some constant independent of E.

Proof.

$$\psi(x) = -\lambda \int dy \; \frac{e^{-\sqrt{|E|}|x-y|}W(y)\psi(y)}{4\pi|x-y|}$$

Using $|W| \leq Ae^{-a|x|}$ and applying the Schwarz inequality gives

$$|\psi| \leq \lambda \left\langle \psi ||W||\psi \right\rangle^{1/2} \left[\int dy \; \frac{A e^{-a|y|} e^{-2\sqrt{|E|}|x-y|}}{|x-y|^2} \right]^{1/2} \leq \lambda \left\langle \psi ||W||\psi \right\rangle^{1/2} \frac{C' e^{-\sqrt{|E|}r}}{r}$$

Behavior of the ground state near the drip-line

•For the Coulomb tail there is a bound state with E = 0

•Only S-states can spread

•For rigorous results see D. Bolle, F. Gesztesy and W.Schweiger, J. Math. Phys 26, 1661 (1985); M Ho®mann-Ostenhof, T Hoffmann-Ostenhof and B Simon, J. Phys. A 16, 1125 (1983); D. Gridnev and M. Garcia J. Phys. A 40 9003–9016 (2007).

Connections between bound states at threshold and spreading

The Hamiltonian H(Z) describes the system of N particles

$$H(Z) = H_0 + V(Z, x)$$
$$V(Z, x) = \sum_{1 \le i < j \le N} V_{ij}(Z; x_i - x_j),$$

where Z takes the values from the parameter sequence $Z_k \to Z_{cr}$. One defines the threshold as $E_{thr}(Z) := \inf \sigma_{ess}(H(Z))$.

Hamiltonian must satisfy the requirements

- R1 $|V_{ij}(Z;y)| \leq F(y)$ for all $Z \in \mathbb{Z}$, where $F(y) \in L^2(\mathbb{R}^3)$.
- R2 $\forall f(x) \in C_0^{\infty}(\mathbb{R}^{3N-3}): \lim_{Z_k \to Z_{cr}} \left\| \left[V(Z_k) V(Z_{cr}) \right] f \right\| = 0.$
- R3 for all Z_k there are $E(Z_k) \in \mathbb{R}, \psi(Z_k) \in D(H_0)$ such that $H(Z_k)\psi(Z_k) = E(Z_k)\psi(Z_k)$, where $\|\psi(Z_k)\| = 1$ and $E(Z_k) < E_{thr}(Z_k)$.

R4 $\lim_{Z_k \to Z_{cr}} E(Z_k) = \lim_{Z_k \to Z_{cr}} E_{thr}(Z_k) = E_{thr}(Z_{cr}).$

FIAS Frankfurt Institute **Studies**

Connections between bound states at threshold and spreading

Theorem (essentially Zhislin). Let $(H(Z), \mathcal{Z})$ be a Hamiltonian satisfying R1-4. If the sequence $\psi(Z_k)$ defined in R3 does not fully spread then $H(Z_{cr})$ has a bound state at the threshold

 $H(Z_{cr})\psi_0 = E_{thr}(Z_{cr})\psi_0, \quad where \quad \psi_0 \in D(H_0) \subset L^2(\mathbb{R}^{3N-3})$

The following theorems are helpful

Theorem. Suppose $f_n \in D(H_0)$, $f_n \xrightarrow{w} \phi_0$ and $||H_0f_n||$ are uniformly normbounded. Then $||f_n - \phi_0|| \to 0$.

Theorem. Let $f_n \in L^2(\mathbb{R}^n)$ be a normalized sequence of functions, with the property that every weakly converging subsequence converges also in norm. Then f_n does not spread.

Theorem. Suppose that the sequence of functions $f_n \in L^2(\mathbb{R}^n)$ is uniformly norm-bounded and $|f_n|$ is non-decreasing $|f_n| \leq |f_{n+1}|$. Then f_n does not spread.

Upper Bounds for the Green's functions (two-body case)

The Schrödinger equation $H_0 + \lambda W \Psi = -k^2 \Psi$ can be rewritten as

 $\Psi = (H_0 + \lambda W_+)^{-1} W_- \Psi$, where $W = W_+ - W_-$; $W_+ = \max(0, W)$

If $\lambda W_+ \geq \eta$ this gives the upper bound

$$|\Psi| \le (H_0 + \eta)^{-1} W_- |\Psi|$$

One looks for the upper bound on the integral kernel of $G = (H_0 + \eta)^{-1}$ for some special form of η

$$\eta(A, R_0; x) = \begin{cases} 0 & \text{if } r < R_0\\ Ar^{-2} & \text{if } r \ge R_0, \end{cases}$$

Note that if $G_1 = [H_0 + \eta_1]^{-1}$ and $G_2 = [H_0 + \eta_2]^{-1}$ then $G_1(x, y) \leq G_2(x, y)$ pointwise when $\eta_1 \geq \eta_2$

Upper Bounds for the Green's functions (two-body case)

Use the trick to find $\tilde{A}(s)$ and $\tilde{R}_0(s)$ such that

$$\eta(A, R_0; x) \ge \eta(\tilde{A}(s), \tilde{R}_0(s); x - s)$$

Then

$$G(A,R_0;x,y) \leq G(ilde{A}(s), ilde{R}_0(s);x-s,y-s) \quad ext{for all} \quad s$$

Simply setting s = y one gets the upper bound

$$G(A, R_0; x, y) \leq G(\tilde{A}(y), \tilde{R}_0(y); x - y, 0)$$

And $G(A, R_0; x, 0)$ is easy to find because it is spherically symmetric

$$[H_0 + \eta]G(A, R_0; x, 0) = \delta(x)$$

Examples of the Bounds

If G_k is defined as

$$G_k = \left[p^2 + \frac{3+\delta}{4|x|^2} \chi_{\{x \mid |x| \ge n\}} + k^2 \right]^{-1},$$

Then one can write the bound

$$G_k(x,y)\chi_{\{y||y|\le n\}} \le \frac{\chi_{\{y||y|\le n\}}}{4\pi|x-y|} \times \begin{cases} 1 & \text{if } |x-y| \le \tilde{R}_0 \\ C_\delta n^{\tilde{a}}|x-y|^{-\tilde{a}} & \text{if } |x-y| \ge \tilde{R}_0 \end{cases},$$

where \tilde{a} and \tilde{R}_0 are defined through

$$\tilde{a} = \frac{1}{2} + \frac{\min(1,\delta)}{20}$$
$$\tilde{R}_0 = \frac{20}{\min(1,\delta)}n$$

Examples of the Bounds

The case of a Coulomb-like potential

$$\tilde{G}_k(a) = \left[-\Delta + \left(\frac{a^2}{4} |x|^{-1} + \frac{a}{4} |x|^{-3/2} \right) \chi_{\{x \mid |x| \ge 1\}} + k^2 \right]^{-1}$$

$$\tilde{G}_k(a;x,y)\chi_{\{|y|\leq n\}} \leq \frac{1}{4\pi|x-y|} \times \begin{cases} 1 & \text{for } |x-y| \leq 2n\\ \exp\left\{\frac{a}{2}\left(\sqrt{2n} - \sqrt{|x-y|}\right)\right\} & \text{for } |x-y| > 2n, \end{cases}$$

This makes the wave functions fall off as $exp(-\sqrt{r})$

Absence of spreading for the two-cluster break up.

The Hamiltonian for the case of a two-cluster break up

$$H = H_{thr}(\xi, Z) + \frac{p_r^2}{2\mu} + W(r, \xi, Z)$$

where H_{thr} is the Hamiltonian of internal motion in the clusters $\mathfrak{C}_{1,2}$. One needs additional requirements (H_a denotes various two-cluster partitions)

R5 For all $Z \in \mathcal{Z}$ there exist a normalized bound state $\phi_{thr}(\xi, Z) \in D(H_{thr})$ and a constant $|\Delta \epsilon| > 0$ independent of Z such that $H_{thr}(Z)\phi_{thr}(\xi, Z) = E_{thr}(Z)\phi_{thr}(\xi, Z)$ and

$$(1 - P_{thr}(Z)) \Big[H_{thr}(Z) - E_{thr}(Z) \Big] \ge |\Delta \epsilon| (1 - P_{thr}(Z)) \\ \Big[H_{a \ge 2}(Z) - E_{thr}(Z) \Big] \ge |\Delta \epsilon|,$$

where $P_{thr}(Z) = 1 \otimes \phi_{thr}(\phi_{thr}, \cdot)$ is a projection operator.

R6 For all $Z \in \mathbb{Z}$ there are A, q > 0 independent of Z such that the bound state ϕ_{thr} defined in R5 satisfies the following inequality $|\phi_{thr}(\xi, Z)| \leq Ae^{-q|\xi|}.$

Absence of spreading for the two-cluster break up.

Theorem. Suppose that $(H(Z), \mathcal{Z})$ satisfies R1-6 and for all $Z \in \mathcal{Z}$ the potentials satisfy the following inequality

$$2\mu W \ge \frac{3+\delta}{4|r|^2}$$
 if $|r| \ge C_0 + C_1 |\xi|^p$

where $\delta, C_{0,1}, p$ are fixed positive constants. Then: (a) for $Z_k \to Z_{cr}$ the sequence $\psi(Z_k)$ defined by R3 does not spread. (b) $H(Z_{cr})$ has at least one bound state at the bottom of the continuous spectrum.

Consider the Hamiltonian of an infinitely heavy atomic nucleus charge Z containing N electrons

$$H_N(Z) = H_0 - \sum_{i=1}^N \frac{Z}{|x_i|} + \sum_{1 \le i < j \le N} \frac{1}{|x_i - x_j|}$$
(1)

The total number of particles is N + 1 (the electrons are numbered from 1 to N and the nucleus is the particle number N + 1).

Theorem. Suppose that $Z_{cr} \in (N-2, N-1)$. Then $H_N(Z_{cr})\mathcal{P}_N$ has a bound state at the bottom of the continuous spectrum.

FIAS Frankfurt Institute for Advanced Studies

New Results and open problems

➢ Neither halos nor the Efimov effect exist for the number of clusters larger than 4 (the proof to be presented on the next conference).

Some Open Problems

Prove rigorously that halos are formed in the ground state of 3 particles.

>Is a retardation possible in the three cluster break up? In other words, could it be that $\langle W_{12} \rangle / \langle W_{13} \rangle$ goes to zero?

