#### **Universality and Beyond**

Lucas Platter Ohio State University Columbus, Ohio

Collaborators: Braaten, Hammer, Kang, Phillips, Ji , Meißner

Ohio State University

October 16, 2008

• Effective field theories (EFT) let us analyze the importance of different scales in a problem

- Effective field theories (EFT) let us analyze the importance of different scales in a problem
- at low energies the *NN* scattering length *a* determines the properties of nuclear systems and pion dynamics are irrelevant

- Effective field theories (EFT) let us analyze the importance of different scales in a problem
- at low energies the *NN* scattering length *a* determines the properties of nuclear systems and pion dynamics are irrelevant
- close to Feshbach resonances the scattering length *a* determines the properties of atomic systems

- Effective field theories (EFT) let us analyze the importance of different scales in a problem
- at low energies the *NN* scattering length *a* determines the properties of nuclear systems and pion dynamics are irrelevant
- close to Feshbach resonances the scattering length *a* determines the properties of atomic systems
- we analyze the properties of few-body systems with the minimal number of degrees of freedom
  - \* universality
    - $\longrightarrow$  identify similar physics at different length scales
  - \* precision
    - $\longrightarrow$  low-energy nuclear astrophysics

### The EFT with Contact Interactions alone

for a finite range potential the t-matrix can be written as

$$t(k) \sim \frac{1}{k \cot \delta - ik}$$

for sufficiently low energies  $k \cot \delta$  can be expanded in powers of  $k \longrightarrow$  effective range expansion

$$k\cot\delta = -\frac{1}{a} + \frac{r}{2}k^2 + \dots ,$$

or for a >0 expand around the two-body bound state pole  $\gamma=\sqrt{MB_2}$ 

$$k\cot\delta = -\gamma + \frac{r}{2}(\gamma^2 + k^2) + \dots$$

#### Consider systems where the scattering length $a \gg R$

• such systems have particular universal properties

 $\rightarrow$  For large positive scattering length we have a bound state at  $B_2\approx \frac{1}{Ma^2}$ 

 $\rightarrow$  in the nuclear sector this is the deuteron

 $\rightarrow$  example in the atomic sector is the <sup>4</sup>He dimer

#### Consider systems where the scattering length $a \gg R$

• such systems have particular universal properties

 $\rightarrow$  For large positive scattering length we have a bound state at  $B_2\approx \frac{1}{Ma^2}$ 

 $\rightarrow$  in the nuclear sector this is the deuteron

 $\rightarrow$  example in the atomic sector is the <sup>4</sup>He dimer

separation of scales

in the nuclear sector:

- ${}^{1}S_{0} a \sim -24 \text{ fm} \longrightarrow r \sim 3 \text{ fm}$
- ${}^{3}S_{1} a \sim 5 \text{ fm} \longrightarrow r \sim 2 \text{ fm}$

in the atomic <sup>4</sup>He few-body system:

•  $a \sim 100 \text{ Å} \longrightarrow r \sim 10 \text{ Å}$ 

#### In the regime where $k\ell \ll 1$ all interactions look pointlike!

- Use an appropriate EFT (expansion parameters  $\ell/a$ ,  $k\ell$ )
- Most general Lagrangian using only contact interactions:

$$\mathcal{L} = \psi^{\dagger} \left[ i \partial_t + \frac{\overrightarrow{\nabla}^2}{2M} \right] \psi - \frac{C_0}{2} (\psi^{\dagger} \psi)^2 - \frac{D_0}{6} (\psi^{\dagger} \psi)^3 + \dots ,$$

• Two-body system (S-waves):



 with correct ordering scheme for diagram topologies (power-counting), this EFT is an expansion in ℓ/|a| → suitable for systems with large a

## The 2-Body Sector

The most successful calculations in the short-range EFT have been performed in the 2-body sector:

- Form Factors of the Deuteron, Chen et al.
- radiative capture:  $n + p \longrightarrow d + \gamma$ , Rupak
- muon capture:  $\mu^- + d \longrightarrow \nu_{\mu} + n + n$ , Chen et al.
- Deuteron Electro-Disintegration, Christlmeier & Griesshammer
- and many more ...

### The Three-Body System



integral (STM) equation for atom-dimer scattering:

$$K(k,p;E) = \mathcal{Z}(k,p;E) + \int_0^{\Lambda} dq'' q''^2 \mathcal{Z}(k,q'';E) \tau(ME - \frac{3}{4}q''^2) K(q'',p;E)$$

Skorniakov & Ter-Martirosian '56

2-body propagator:

$$\tau(E) = \frac{2}{\pi M^2} \frac{\gamma + \sqrt{-ME}}{E + B_2}$$

single nucleon-exchange + 3-body interaction:

$$\mathcal{Z}(q,q',E) = -rac{M}{2qq'}\log(rac{q^2+qq'+q'^2-ME}{q^2-qq'+q'^2-ME}) + rac{MH(\Lambda)}{\Lambda^2}$$

#### Without three-body force

- $\longrightarrow$  strong cutoff dependence
- → number of bound states increases with cutoff
- → relation to Thomas and Efimov effect ⇒ include three-body information



#### Without three-body force

- $\longrightarrow$  strong cutoff dependence
- → number of bound states increases with cutoff
- → relation to Thomas and Efimov effect ⇒ include three-body information



Thus, perfom calculations with three-body force:

 $\longrightarrow$  use binding energy of weakest three-body state to fix  $H(\Lambda)$  $\longrightarrow$  **this is renormalization** 

- → need three-body force for consistent renormalization (Bedaque, Hammer, van Kolck, PRL 82 (1999) 463)
- → three-body system with large scattering length exhibits a limit cycle Wilson, PRD 3 (1971) 1818



#### Consequences of the Limit Cycle The Three-Body parameter

For large  $\Lambda$  the RG-flow of  $H(\Lambda)$  is described by:

 $H(\Lambda) = \frac{\sin(s_0 \ln(\Lambda/L_3) - \arctan(1/s_0))}{\sin(s_0 \ln(\Lambda/L_3) + \arctan(1/s_0))} \quad , \text{ with } s_0 \approx 1.0062$ 

Bedaque, Hammer, van Kolck, PRL 82 (1999) 463

• 
$$H(\Lambda)$$
 periodic:  $\Lambda \to \Lambda e^{n\pi/s_0} \approx \Lambda(22.7)^n$ 

• discrete scale invariance with consequences for observables, e.g.  $B_3^{(m)}/B_3^{(m+1)}\approx 515$ 

 $\longrightarrow$  this equation holds exactly for all bound states when

 $\ell \to 0 \text{ and } a \to \infty$ 

(Efimov, SJNP 29 (1979) 546)

• scaling relations in 3-body observables, e.g.  $a_3 - B_3$ ,  $B_3 - r_3$ 

# **1-Parameter Correlations**

- Keep the scattering length fixed
- Vary one of the three-body observables
- $\rightarrow$  See what the others are doing



- Keep the Three-Body parameter fixed
- Change the scattering length
- $\rightarrow$  see what three-body observables are doing

06

Hammer & LP 2006

# **3-Body Recombination**

• Include finite temperature and the effects of deep dimers



Braaten, Hammer, Kang, LP, PRA in press

# Include the Effective Range

Reconsider the integral equation for atom-dimer scattering:

$$K(k,p;E) = \mathcal{Z}(k,p;E) + \int_0^{\Lambda} dq'' q''^2 \mathcal{Z}(k,q'';E) \tau (ME - \frac{3}{4}q''^2) K(q'',p;E)$$

• Modify the two-body propagator Bedaque et al '03

$$au^{(n)}(E) = rac{1}{E+B_2}rac{2}{\pi M^2}\sum_{i=0}^n \left(rac{r_s}{2}
ight)^i [\gamma+\sqrt{-ME}]^{i+1}$$

- At which order does the next three-body force contribute?
   → Renormalization group analysis gives N3LO
   LP,Phillips FBS 40 (2006) 35
  - $\rightarrow$  perturbative analysis up to N2LO is on the way

# Some Results for the 3-Nucleon System

#### Range Corrections in the Three-Nucleon System



LP, PRC 74 (2006) 037001

• Note: Convergence pattern looks strange but in fact the NLO correction is actually smaller than expected

# Some Results for the Helium-Trimer System

- No experimental information about <sup>4</sup>He trimer but various calculations employing realistic potentials
- $\rightarrow$  Compare to results for the TTY potential by Roudnev, 2003

| Input         |      | $B_3^{(1)}[B_2]$ | $B_3^{(0)}[B_2]$ | $a_3[\gamma^{-1}]$ |
|---------------|------|------------------|------------------|--------------------|
| $B_{3}^{(1)}$ | LO   | 1.738            | 99.27            | 1.179              |
|               | NLO  | 1.738            | 84.87            | 1.199              |
|               | NNLO | 1.738            | 89.52            | 1.203              |
| TTY           |      | 1.738            | 96.33            | 1.205              |

• Excellent agreement for "low-energy" observables

# The Phillips line for Bosons



• EFT imposes low-energy constraints on calculations with realistic potentials

## Analysis of the Linear Correction

- Calculate the shift linear (NLO) in the effective range in the bound state spectrum
- Renormalize to the binding energy of a bound state  $n_*$  in the unitary limit with binding momentum  $\kappa_* = \sqrt{mB_*}$
- in the unitary limit we know the wavefunction of such a state, how about we try to do it analytically
- for finite scattering length we can go to momentum space and use the STM equation
- and parameterize this shift as

$$B_{n} = B_{n*} \left[ F_{n} \left( \frac{\gamma}{\kappa_{*}} \right) + \kappa_{*} r_{s} G_{n} \left( \frac{\gamma}{\kappa_{*}} \right) \right]$$

in the unitary Limit the  $(|a| \rightarrow \infty)$ :

$$F_n\left(rac{\gamma}{\kappa_*}
ight) = (e^{-2\pi/s_0})^{n-n_*}$$

## In the Unitary Limit

• in the unitary limit the relevant differential equation is

$$\frac{\hbar^2}{2M}\left(-\frac{\partial^2}{\partial R^2}-\frac{s_0^2+\frac{1}{4}}{R^2}\right)f_0(R)=E\,f_0(R)$$

which can be solved after renormalizing with a boundary condition or three-body force  $% \left( {{{\left[ {{{c_{\rm{s}}}} \right]}_{\rm{sol}}}} \right)$ 

then

$$f_0^{(0)}(R) = \sqrt{R} \, K_{is_0}(\sqrt{2}\kappa R)$$

 $\rightarrow\,$  Now we can do perturbation theory on the higher order and analyze the linear range correction to the bound state spectrum in the hyperradial formalism

 $\rightarrow \!$  in momentum space for nucleons Hammer & Mehen 2001

# The Linear Range Correction

Ji, Phillips, LP arXiv:0808.1230

 Obtain the perturbing potential by implementing the NLO Bethe-Peierls condition into the hyperangular equation (Efimov, 1991)

$$V_{\rm NLO} = -rac{s_0^2 \, \xi_0 \, r_s}{R^3} \quad {
m w}/ \quad \xi_0 = 0.480$$

compare to Nielsen, Fedorov, Jensen 1998

• We need to renormalize this integral with a three-body force

$$V_{SR}^{(1)}(R) = H_1(\Lambda)\Lambda^2\delta\left(R - rac{1}{\Lambda}
ight)$$

• use  $H_1$  to set the shift for state  $n_*$  to 0 by calculating

$$\frac{2M}{\hbar^2}\Delta B_n^{(1)} = s_0^2 r_s \xi_0 \left[ \int_{\frac{1}{\Lambda}}^{\infty} dR f_n^{(0)^2}(R) \frac{1}{R^3} - \frac{2H_1 M}{\hbar^2 s_0^2 r_s \xi_0} \Lambda^2 f_n^{(0)^2}\left(\frac{1}{\Lambda}\right) \right]$$

★ linear correction is suppressed due to discrete scale invariance of leading order wave function:  $\Delta B_n^{(1)} = 0$  for all *n* 

• Discrete Scale Invariance relates the range corrections to different states

$$G_n\left(\frac{\gamma}{\gamma_0}\right) = \exp\left(\frac{(n*-n)3\pi}{s_0}\right)\theta_n\left(\frac{\gamma}{\gamma_0}\right)G_{n*}\left(\frac{\gamma}{\gamma_0}e^{\frac{(n-n*)\pi}{s_0}}\right)$$

• Results obtained in Momentum Space



### Extended Efimov Plot

• Include the effective range into the Efimov Plot



# Summary

- The pionless EFT has been applied successfully to a wide range of observables in atomic, nuclear and particle physics (X3872)
- The pionless EFT is able to describe many well-known scaling properties in few-body systems

 $\longrightarrow$  all these are a result of a large scattering length in the two-body sector

- The pionless EFT is structurally simple and can help us to avoid pitfalls in non-perturbative renormalization
- The pionless EFT gives low-energy theorems for few- and many-body observables
- The impact of the effective range is suppressed in the unitary limit!

# Outlook

- Triton form factor up to NNLO (Phillips, LP in progress)
- $\bullet\,$  further electroweak properties of the triton up to NNLO  $\rightarrow\,$  nuclear astrophysics
  - \* tritium  $\beta$ -decay
  - \*  $pd \rightarrow ^{3}He \gamma$
- EFT for Halo Nuclei,  $\alpha$ -clusters, etc.
- scattering of bosons/fermions in the four-body sector
  - $\rightarrow$  scattering lengths (trimer-particle, dimer-dimer)
  - $\rightarrow$  four-body recombination
- Ay-Problem in Nuclear Physics