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Classical and quantum reaction dynamics in multidimensional systems

Transformations (like chemical reactions) are mediated by phase space “bottlenecks”
(transition states)

Transition State Theory (Eyring, Polanyi, Wigner 1930s)

Compute reaction rate from directional flux through ‘dividing surface’ in the
transition state region

⇒ Computational benefits:

computation requires local information (flux through a dividing surface)
rather than global information (integrating trajectories)
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Key problems and interests

Dividing surface needs to have ‘no recrossing property’, i.e. it is to be crossed
exactly once by all reactive trajectories and not crossed at all by non-reactive
trajectories

How to construct a dividing surface with these properties for multidimensional
systems?

Experiments indicate

transition states are more than merely a formal concept, but of physical
significance

‘supermolecules’ poised between reactants and products
the dynamics of reactions is important

violation of ergodicity assumptions (non RRKM behaviour; IVR)

Understanding the mechanisms that govern reaction dynamics is a prerequisite
for the control of chemical reactions

How to formulate and realise a quantum version of transition state theory?
(see, e.g., E. Pollak & P. Talkner. (2005) Reaction rate theory: What it was, where it is today, and where is it going? Chaos 15

026116)
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Classical Reaction Dynamics in Multidimensional Systems

Phase Space Conduits for Reaction
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Phase Space Structures near a Saddle

Setup

Consider f -degree-of-freedom Hamiltonian system
(R2f (p1, . . . , pf , q1, . . . , qf ), ω =

Pf
k=1 dpk ∧ dqk ) and Hamilton function H.

Assume that the Hamiltonian vector field„
ṗ
q̇

«
=

 
− ∂H

∂q
∂H
∂p

!
≡ J DH , J =

„
0 −1
1 0

«
has saddle-centre-. . .-centre equilibrium point (‘saddle’ for short) at the origin, i.e.

J D2H has eigenvalues ± λ, ±iω2, . . . , ±iωf , λ, ωk > 0
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

Simplest case

Consider Hamilton function

H = 1
2 p2

x − 1
2λ

2x2 + 1
2 p2

y + 1
2ω

2
y y2

=: Hx + Hy

corresponding vector field is

0B@ṗx
ṗy
ẋ
ẏ

1CA = J DH =

0B@0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

1CA
0BBBBB@

∂H
∂px
∂H
∂py
∂H
∂x
∂H
∂y

1CCCCCA =

0BB@
λ2x

−ω2
y y

px
py

1CCA

Hx and Hy are conserved individually,

Hx = Ex ∈ R , Hy = Ey ∈ [0,∞) , H = E = Ex + Ey ∈ R
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

E < 0 :

Rewrite energy equation H = E as

E +
1
2
λ2x2 =

1
2

p2
x +

1
2

p2
y +

1
2
ω2

y y2| {z }
' S2 for x ∈ (−∞,−

√
−2E
λ

)

or x ∈ (

√
−2E
λ

,∞)

⇒ Energy surface
ΣE = {H = E}

consists of two disconnected components representing ‘reactants’ and ‘products’
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

E > 0 :

E +
1
2
λ2x2 =

1
2

p2
x +

1
2

p2
y +

1
2
ω2

y y2| {z }
' S2 for all x ∈ R

⇒ Energy surface

ΣE = {H = E} ' S2 × R (spherical cylinder)

⇒ ΣE bifurcates at E = 0 (the energy of the saddle) from two disconnected
components to a single connected component

Consider projection of ΣE to R3(x , y , py ), i.e. project out

px = ±
q

2E − p2
y + λ2x2 − ω2

y y2

which gives two copies for the two signs of px
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

Ex

EyE = E  + E
x

y

0BB@
ṗx
ṗy
ẋ
ẏ

1CCA =

0BBB@
λ2x

−ω2
y y

px
py

1CCCAΣE for E < 0

ΣE consists of two components representing reactants and products

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y
“reactants” “products” “reactants” “products”
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Ex

EyE = E  + E
x

y

0BB@
ṗx
ṗy
ẋ
ẏ

1CCA =
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−ω2
y y

px
py
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y

p
y

x
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ṗy
ẋ
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Ex

EyE = E  + E
x

y
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ṗx
ṗy
ẋ
ẏ
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Reactive trajectories have Hx = Ex > 0
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

Ex

EyE = E  + E
x

y

0BB@
ṗx
ṗy
ẋ
ẏ

1CCA =

0BBB@
λ2x

−ω2
y y

px
py

1CCCAΣE for E > 0

Dynamical reaction paths have Hx = Ex = E (i.e. Hy = Ey = 0)

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y
forward reaction path backward reaction path
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x

y
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ṗx
ṗy
ẋ
ẏ

1CCA =
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y y

px
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1CCCAΣE for E > 0

Lyapunov periodic orbit ' S1 has Hx = Ex = 0 with x = px = 0

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y
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λ2x

−ω2
y y

px
py
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Stable manifolds W s ' S1 × R has Hx = Ex = 0 with px = −λx

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y
reactants branch W s

r products branch W s
p
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ẋ
ẏ
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Linear vector field for f = 2 degrees of freedom

Ex
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x

y

0BB@
ṗx
ṗy
ẋ
ẏ

1CCA =

0BBB@
λ2x

−ω2
y y

px
py
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Forward cylinder W s
r ∪W u

p and backward cylinder W s
p ∪W u

r enclose all the
forward and backward reactive trajectories, respectively

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y
forward cylinder backward cylinder
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ẏ
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Dividing surface ' S2 has x = 0,

Lyapunov periodic orbit ' S1 forms its equator and divides it into two
hemispheres ' B2

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y
forward hemisphere B2

f backward hemisphere B2
b
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Apart from its equator (which has x = px = 0) the dividing surface is transverse
to the flow (ẋ = px 6= 0 for px 6= 0)

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y
forward hemisphere B2

f backward hemisphere B2
b
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Phase Space Structures near a Saddle
General (nonlinear) case

f = 2 degrees of freedom: dividing surface can be constructed from periodic orbit

Periodic Orbit Dividing Surface (PODS) (Pechukas, Pollak and McLafferty, 1970s)

How can one construct a dividing surface for a system with an arbitrary number of

degrees of freedom? What are the phase space conduits for reaction in this case?
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Phase Space Structures near a Saddle
General (nonlinear) case; E > 0

2 DoF 3 DoF f DoF

energy surface S2 × R S4 × R S2f−2 × R

dividing surface S2 S4 S2f−2

normally hyperbolic S1 S3 S2f−3

invariant manifold (NHIM)

(un)stable manifolds S1 × R S3 × R S2f−3 × R

forward/backward B2 B4 B2f−2

hemispheres

“flux” form Ω′ = dϕ ω 1
2ω

2 1
(f−1)!

ωf−1

“action” form ϕ p1dq1 + p2dq2 (p1dq1 + p2dq2 + p3dq3) ∧ 1
2 ω

Pf
k=1 pk dqk ∧

1
(f−1)!

ωf−2

Flux (rate): N(E) =
R

B2f−2
ds; forward

Ω′ =
R

S2f−3
NHIM

ϕ

Uzer et al. (2001) Nonlinearity 15 957-992
H. W. & S. Wiggins (2004) J. Phys. A 37 L435
H. W., A. Burbanks & S. Wiggins (2004) J. Chem. Phys. 121 6207
H. W., A. Burbanks & S. Wiggins (2005) Mon. Not. R. Astr. Soc. 361 763

Holger Waalkens Erice 2008 Classical and quantum reaction dynamics in multidimensional systems



Phase Space Conduits for Reaction
Quantum Transition State Theory

Outlook

Phase Space Structures near a Saddle
General (nonlinear) case; construction of the phase space structures from normal form

locally: decouple the dynamics in terms of Poincaré-Birkhoff normal form

Suppose generic non-resonance condition is fulfilled. Then, for each order
N, there is a symplectic transformation Φ(N) such that the transformed

Hamiltonian H(N)
NF = H ◦ Φ−1

(N)
truncated at order N is of the form

H(N)
NF = H(N)

NF (I, J2, . . . , Jf ) = λI + ω2J2 + · · ·+ ωf Jf + h.o.t.

where

I = p1q1 ≡ 1
2

`
p̃2 + q̃2´ “reaction coordinate”

Jk = 1
2

`
p2

k + q2
k

´
“bath coordinates”

phase space structures mentioned above can be explicitly constructed in
terms of the normal form coordinates (p,q), and transformed back to the
original coordinates using Φ−1

(N)

globally: “globalise” manifolds by integrating them out of the neighbourhood of
validity of the normal form
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Example: HCN/CNH Isomerisation

CN

H

r

R

γ
3 DoF for vanishing total angular momentum:

Jacobi coordinates r ,R, γ

Hamilton function

H =
1

2µ
p2

r +
1

2m
p2

R +
1
2

„
1
µr2

+
1

mR2

«
p2

γ + V (r ,R, γ) ,

where

µ = mCmN/(mC + mN), m = mH(mC + mN)/(mH + mC + mN)

V (r ,R, γ) : Murrell-Carter-Halonen potential energy surface
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Example: HCN/CNH Isomerisation
Decoupling the dynamics

Iso-potential surfaces V = const . saddle(s) at γ = ±67◦

consider energy 0.2 eV above saddle

normal form to 16th order

H. W., A. Burbanks & S. Wiggins (2004) J. Chem. Phys. 121 6207
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Example: HCN/CNH Isomerisation
Phase space structures

dividing surface S4

transverse to Hamiltonian
vector field

minimises the flux

NHIM S3

transition state or activated
complex

(un)stable manifolds S3 × R

phase space conduits for
reaction
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Quantum Transition State Theory

Outlook

The stable and unstable manifolds of the NHIM(s) and the geometry of their
intersections contain the full information about the reaction dynamics

This allows one to study

complex reactions (rare events - how does a system find its way through a
succession of transition states? global recrossings of the dividing surface?)

violations of ergodicity assumptions which are routinely employed in
statistical reaction rate theories (can every initial condition react?)

time scales for reactions (classification of different types of reactive
trajectories)

the control of reactions
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Global Recrossings and Rare Events

The role of homoclinic and heteroclinic connections

Homoclinic connections

orbits contained in the stable and unstable manifold of the same NHIM

Heteroclinic connections

orbits contained in the stable and unstable manifold of different NHIMs

Heteroclinic cycles

succession of heteroclinic connections

H. W., A. Burbanks & S. Wiggins (2004) J. Phys. A 37 L257

H. W., A. Burbanks & S. Wiggins (2004) J. Chem. Phys. 121 6207
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Outlook

Example: HCN/CNH Isomerisation
Fibration of the NHIM and homoclinic and heteroclinic connections

H. W., A. Burbanks & S. Wiggins (2004) J. Phys. A 37 L257

H. W., A. Burbanks & S. Wiggins (2004) J. Chem. Phys. 121 6207
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Example: HCN/CNH Isomerisation
Homoclinic and heteroclinic connections

Heteroclinic connection between invariant 2-tori in different NHIMs
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Example: HCN/CNH Isomerisation
Homoclinic and heteroclinic connections

Heteroclinic connection between invariant 2-torus and Lyapunov periodic orbit in
different NHIMs
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Outlook

Example: HCN/CNH Isomerisation
Homoclinic and heteroclinic connections

Homoclinic connection to a single invariant 2-torus in a NHIM
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Violations of ergodicity assumptions

Are all points in phase space reactive i.e. do they all, as initial conditions for Hamilton’s
equations, lead to reactive trajectories?

Theorem (Reactive Phase Space Volume) Consider a region M in an energy surface
(e.g. the energy surface region corresponding to a potential well) with n exit channels
associated with saddle equilibrium points. The energy surface volume of initial
coniditions in M that lead to reactive (escape) trajectories is given by

vol(Mreact) =
nX

j=1

〈t〉Bds;j NBds;j

where

〈t〉Bds;j = mean residence time in the region M of trajectories
starting on the j th dividing surface Bds;j

NBds;j = flux through j th dividing surface Bds;j

H. W., A. Burbanks & S. Wiggins (2005) Phys. Rev. Lett. 95 084301

H. W., A. Burbanks & S. Wiggins (2005) J. Phys. A 38 L759

H. W., A. Burbanks & S. Wiggins (2005) Mon. Not. R. Astr. Soc. 361 763
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Example: HCN/CNH Isomerisation
Reactive phase space volumes

vol(MHCN; react)

vol(MHCN; total)
= 0.09

only 9 % of initial conditions in the HCN well
are reactive!

The procedure to compute vol(Mreact) following
from the theorem is orders of magnitudes more
efficient than a brute force Monte Carlo
computation

H. W., A. Burbanks & S. Wiggins (2005) Phys. Rev. Lett. 95 084301

H. W., A. Burbanks & S. Wiggins (2005) J. Phys. A 38 L759

H. W., A. Burbanks & S. Wiggins (2005) Mon. Not. R. Astr. Soc. 361 763
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Outlook

The stable and unstable manifolds structure the reactive region into subregions of
different types of reactive trajectories with a hierarchy of reaction time scales
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Outlook

Example: HCN/CNH Isomerisation
Reactive phase space subvolumes
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Quantum Reaction Dynamics in Multidimensional Systems

Quantum Transition State Theory
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Quantum Transition State Theory

classical quantum

Hamilton’s equations Schrödinger equation

ṗ = − ∂H
∂q , q̇ = ∂H

∂p , (p, q) ∈ R2f bHψ ≡ `− ~2

2 ∇
2 + V

´
ψ = Eψ , ψ ∈ L2(Rf )

Main idea: “locally simplify” Hamilton function/operator

symplectic transformations unitary transformations

H 7→ H ◦ φ bH 7→ U bHU?

(classical) normal form quantum normal form

R. Schubert, H. W. & S. Wiggins (2006) Phys. Rev. Lett. 96 218302

H.W., R. Schubert & S. Wiggins (2008) Nonlinearty 21 R1-R118
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Quantum normal form

Quantum normal form is based on the symbol calculus (this leads to explicit
algorithms like in the classical case)

Suppose generic non-resonance condition is fulfilled. Then, for each order N,
there is a unitary transformation U(N) such that the transformed Hamilton operatorbH(N)

QNF = U(N)
bHU?

(N)
resulting from truncating its symbol at order N is of the form

bH(N)
QNF = H(N)

QNF(bI,bJ2, . . . ,bJf ) ,

where bI = −i~
`
q1

∂
∂q1

+ 1
2

´
bJk = −~2

2
∂2

∂q2
k

+ 1
2 q2

k

The elementary operatorsbI and bJk have well known spectral properties

σ(bI) = R , σ(bJk ) = {~(nk +
1
2
) : nk ∈ N0}

This allows one to compute

cumulative reaction probabilities and quantum resonances
scattering and resonance wavefunctions (‘quantum bottleneck states’)
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Example: Coupled Eckart-Morse-Morse Potential

H =
1
2
(p2

x + p2
y + p2

z ) + VE(x) + VM;y (y) + VM;z(z)| {z }+ ε (px py + px pz + py pz)| {z }
VE(x) =

A eax

1 + eax
+

B eax

(1 + eax )2
‘kinetic coupling’

VM;y (y) = Dy

“
e(−2αy y) − 2e(−αy y)

”
VM;z(z) = Dz

“
e(−2αz z) − 2e(−αz z)

”

Iso-potential surfaces:
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Example: Coupled Eckart-Morse-Morse Potential
Cumulative reaction probability
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Example: Coupled Eckart-Morse-Morse Potential
Quantum resonances
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Outlook

scattering and resonance states ↔ classical phase space structures

experimental observability of ‘quantum bottleneck states’

state-to-state reactivities
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