

NEAR-THRESHOLD STATES IN OZONE ISOTOPE EFFECT

Sergy Yu. Grebenschikov MPI für Dynamik und Selbstorganisation, Göttingen

Critical Stability, Eriche, Oct. 17 2008

CHAPMAN CYCLE OF OZONE LIFE

 O_2

Recombination:

 $O_2 + O + M \rightarrow O_3 + M$

hv

 0_{2}

Isotope effects?

P,T-dependences?

Photodissociation:

 $O_3 + hv \rightarrow O_2 + O$

Electronic states?

Diffuse structures?

OUTLINE OF THE TALK

I. BASIC PROPERTIES OF OZONE & THE ISOTOPE EFFECT

Isotopes & equilibrium forms

Elementary reactions and main experimental results

II. QUANTUM MECHANICS OF $O+O_2 \rightarrow O_3$ REACTION

Ozone at dissociation threshold (potential, spectrum, vdW states)

Resonance-driven recombination and isotope effect

III. COLLISIONAL DEACTIVATION NEAR THRESHOLD

Efficiency of stabilization in quantum O_3^* +Ar scattering

IV. CONCLUSIONS

BASIC FACTS ABOUT OZONE

Oxygen isotopes:

Three permutations of O atoms \Leftrightarrow three equivalent C_{2v} minima

868: Symmetric molecule; 688: Non-symmetric molecule

Central atom is special: $868 \rightarrow 6 + 88$ is **not** feasible.

SCHEMATIC REPRESENTATION OF O₃ POTENTIAL

ISOTOPE EFFECT IN ELEMENTARY REACTIONS

Exchange:
$$O + O_2 \xrightarrow{k^{EX}} O_2 + O$$
 fast

Formation:
$$\begin{cases} \text{Association:} & O + O_2 \xrightarrow{k^A} O_3^* \\ \\ \text{Stabilization:} & O_3^* + M \xrightarrow{k^{ST}} O_3 + M & \text{slow} \end{cases}$$

Strong isotope sensitivity! (Mauersberger & co-workers, 1981-1997)

ISOTOPE EFFECT IN ELEMENTARY REACTIONS

ISOTOPE EFFECT IN ELEMENTARY REACTIONS

Isotope dependence of k_{rel} : systematic if plotted against $\triangle ZPE$

Atmospheric conditions: enrichments are only due to IsE-2!

REDUCTION OF THE RECOMBINATION DYNAMICS

Full scattering problem: $O + O_2 + M \rightarrow O_3 + M$

State-specific "Lindemann mechanism":

$$\begin{cases} ...Association: & O+O_2 \rightarrow O_3^*(n) \\ \\ ...Stabilization: & O_3^*(n) + M \xrightarrow{P(n,n')} O_3 + M \end{cases}$$

Strong Collisions: Stabilization in ONE STEP

$$P(n) = \omega / (\omega + \Gamma_n)$$

RECOMBINATION VIA AN ISOLATED RESONANCE

$$O(\alpha) + O_2(\alpha; j'; v' = 0) \longrightarrow O_3^*(n) \longrightarrow O_3(+M)$$

Recombination cross-section (incoming channel α):

$$\sigma_{\rm rec}(\alpha;n) = \sigma_{\rm cap}(\alpha;n) \frac{\omega}{\omega + \Gamma_n^{\rm J}}$$

 σ_{rec} (α ;n) gives thermal recombination rate from channel α :

$$k_{\rm rec}(T;\alpha;n;J) = \frac{1}{Q}(2J+1)\frac{\omega\Gamma_n^J(\alpha)}{\omega+\Gamma_n^J}\exp\left(-\frac{E_n^J}{k_BT}\right)$$

QUANTUM MECHANICAL CALCUATIONS OF O₃

• Global full-dimensional accurate Potential Energy Surface

• (Numerical) solution of the Schrödinger equation for nuclei:

at dissociation threshold

for large (and many!) angular momenta J

PES OF THE GROUND ELECTRONIC STATE OF O₃

Three equivalent C_{2v} wells (+cyclic)

~ 1eV (9000 cm⁻¹) deep potential

250 bound states in each C_{2v} well: Good agreement with experiment

Submerged dissociation barrier

Shallow vdW wells in entrance channels

PES OF THE GROUND ELECTRONIC STATE OF O₃

 $R_1 \alpha$ $R_2 \circ$

Shallow vdW wells in entrance channels ... with many weakly bound and strongly delocalized states

MODEL FOR IsE-1: MINUS vdW...

MODEL FOR IsE-1: MINUS vdW & D_{3h} SYMMETRY

CALCULATIONS OF RESONANCE SPECTRUM

Hamiltonian for a rotating molecule + absorbing potential

$$\hat{H}^{DVR} = \hat{H}_{J}^{DVR} - i\hat{W}^{DVR}$$

(Modified) Chebyshev expansion for the Green's function:

$$G^+(E) = \sum_{n=0}^{N_{ITER}} b_n(E) Q_n(\hat{\overline{H}})$$

Filter diagonalization: A basis adapted for one energy window

$$\varphi_j \cong \delta(\hat{H} - E_j) \Phi(0) \qquad E_{\min} \le E_j \le E_{\max}$$

Partial widths $\Gamma(\alpha)$: Perturbation theory in asymptotic channels

$$\Gamma_n^{\mathrm{J}}(\alpha)/\Gamma_n^{\mathrm{J}}(\beta) \sim \left| \delta^{(\alpha)} E_n^{\mathrm{J}} / \delta^{(\beta)} E_n^{\mathrm{J}} \right|$$

QUANTUM REC.RATES ARE *AZPE-SENSITIVE*!

experiment

"SPREADING" OF ∆ZPE EFFECT

Non-statistical energy distribution

Non-statistical energy distribution J-contribution

Non-statistical energy distribution J-contribution

Non-statistical energy distribution

J-contribution: centrifugal barriers shifted by $\triangle ZPE$

SUMMARY

- Modified potential + narrow resonances

- Experimental pressure dependence OK.

- Relative formation rates: depend ~linearly on $\triangle ZPE$
- ∆ZPE controls partial widths over a broad energy range
- The "symmetry" effect IsE-2 (at ∆ZPE=0)?

REDUCTION OF THE RECOMBINATION DYNAMICS

Full scattering problem: $O + O_2 + Ar \rightarrow O_3 + Ar$

State-specific "Lindemann mechanism": $\begin{cases}
...Association: O+O_2 \rightarrow O_3^*(n) \\
...Stabilization: O_3^*(n) + Ar \rightarrow O_3 + Ar
\end{cases}$

Collisional deactivation efficiency for various resonances?

$$k_{\rm rec}(n) = P(n \rightarrow \text{bound}) \frac{\omega \Gamma_n}{\omega + \Gamma_n}$$

COLLISIONAL DEACTIVATION OF RESONANCES

Close coupling scattering calculations for $E_{coll} = 200 \text{ cm}^{-1}$.

"Breathing sphere" approximation [angle-averaged V(Ar-O₃)]

All bound and many resonance states of non-rotating O_3

...Stabilization:
$$O_3^*(n) + Ar \xrightarrow{P(n,n')} O_3 + Ar$$

Collisional deactivation efficiency for various resonances?

$$k_{\rm rec}(n) = P(n \rightarrow \text{bound}) \frac{\omega \Gamma_n}{\omega + \Gamma_n}$$

COLLISIONAL DEACTIVATION OF RESONANCES

COLLISIONAL DEACTIVATION OF RESONANCES

$$k_{\rm rec}(n) = P(n \rightarrow \text{bound}) \frac{\omega \Gamma_n}{\omega + \Gamma_n}$$

Broad resonances live outside the main well

Bound states for them are effectively screened

MANY THANKS TO:

Reinhard Schinke Mikhail Ivanov

Christof Janssen Konrad Mauersberger

OVERVIEW REFERENCES:

Ozone/Photodissociation: PCCP 9 2044 (2007).

Ozone/Formation-Exchange-Isotope effect: Ann. Rev. Phys. Chem. **57** 625 (2006)

OZONE SPECTRUM AT THRESHOLD: vdW STATES

Each vdW well: a double minimum

Two small vibrational frequencies

High threshold density of states

VdW STATES IN ASSOCIATION/STABILIZATION

Contribute?

= early explanation of IsE-1:

 ΔZPE

VdW STATES IN ASSOCIATION/STABILIZATION

Contribute?

= early explanation of IsE-1:

Do not contribute?

- Delocalized threshold states:
- -Low stabilization probability in collisions $O_3+(M=Ar)$
- -Disappear for thermal J>>1

Irrelevant for recombination, but make calculations difficult!

 ΔZPE

SCHEMATIC REPRESENTATION OF THE PES

Q.M. RECOMBINATION RATE FOR 6-6-6 OZONE

Pressure dependence:

Convergence vs. J_{03} : Theory vs. experiment frequency [ps⁻¹] 10⁻⁴ 10⁻³ 10⁻² 10^{-1} 10⁻¹¹ 3 0 Ö 10⁻¹² T = 300K0 k_{stab} [10'⁴cm³/s] 2 k_{stab} [cm³/s] 10⁻¹³ 10⁻¹⁴ experiment 10⁻¹⁵ 0 10¹⁸ 10¹⁹ 10²⁰ 20 30 10²¹ 10²² 0 10 40 pressure [mol./cm³] Total angular momentum of ozone