

<u>α- cluster model</u>

Three-body potentials:

T 7

$$V_{3b}(\rho) = \frac{V_0}{1 + e^{(\rho - \rho_0)/b}}$$

The parameters are chosen to fix
 Ground state
 E_{qs} = -7.2747 MeV

rms radius $R^{(1)}$ = 2.48 ± 0.02 fm

Excited (Hoyle) state $E_r = 0.3795 \text{ MeV}$

				Erice, October					
Realistic effective potentials									
Potential	$V_{\tau}(\text{MeV})$	$\mu_r^{-1}(fm)$	$V_a(MeV)$	μ_a^{-1} (fr					
s0	234.914	1.54	-109.766	2.094					
s1	295.160	1.4213	-99.1406	2.0945					
s2	340.362	1.48	-140.625	2.012					
s3	378.920	1.39	-116.055	2.043					
s4	581.539	1.335	-148.406	1.9673					
d0	152.9	1.4213	-99.1406	2.0945					
d1	240.0	1.3	-99.1406	2.0945					
d2	299.0	1.25	-99.1406	2.0945					
dß	572.0	1.23	-148.406	1.9673					
g1	10.0	1.424	-134.000	2.0945					
g2	36.0	1.424	-140.000	2.0945					
a3	367.0	1.335	-230.000	1.9673					

Calculated properties of ¹²C for a set of effective potentials

2b pot.	$V_0({ m MeV})$	$\rho_0({\rm fm})$	$b(\mathrm{fm})$	$\Gamma(\mathrm{eV})$	$R^{(1)}({\rm fm})$	$\mathbb{R}^{(2)}(\mathrm{fm})$	$M_{12}({\rm fm}^2)$	$R_{tr}(\mathrm{fm})$
s1 + d2 + g1	-260.283	0	1.15362	8.81	2.488	3.591	5.494	4.86
s1 + d0 + g1	-63.4126	1.90625	1.06614	7.92	2.48	3.574	5.335	4.836
s4 + d6 + g3	-170.04	0.	1.33903	9.68	2.541	3.688	5.316	4.991
s0 + d0 + g1	-33.7737	2.87500	0.97565	8.29	2.48	3.555	5.270	4.844
s2 + d2 + g2	-233.807	0.	1.19950	9.11	2.502	3.620	5.452	4.888
s0 + d1 + g1	-129.031	0.96875	1.11313	8.65	2.48	3.576	5.449	4.847
s0 + d1 + g3	-225.326	0	1.21651	9.11	2.496	3.616	5.329	4.904
s1 + d1 + g1	-262.927	0.	1.14824	8.82	2.485	3.591	5.449	4.848
Exp.				8.5 ± 1.0	2.48 ± 0.02	_	5.47 ± 0.22	4.396 ± 0.27

REPARTER PREPARTER PREPARTER PREPARTER PREPARTER PREPARTER

Remarks

Amazing ability of the simple α - cluster model

One can demand to improve the experimental accuracy

Further restrictions on the model can be imposed by description of

Reactions in few- α systems

e.g., α - α bremsstrahlung scattering cross section

 (α, α) reactions on ¹²C

The times has come for further activity

e.g., Low-energy 3 a reactions

(in particular, non-resonant reaction, which is important for Helium burning at low temperature as it takes place in accretion of white dwarfs and neutron stars)

Different spin-parity states of ¹²C

Appendix: The first channel eigenfunction Φ_1

Large ρ (ρ =45fm)

The hyperradial function has the two-cluster structure that confirms the sequential mechanism of 0^+_2 state decay with formation of α +⁸Be at the first step.

Intermediate ρ (ρ =15fm)

The two-cluster structure widens; and the most important are the equilateral-triangle and the linear configuration.

 \checkmark Small p (p =5 fm)

The most important is the equilateral-triangle configuration.

 $\sin \xi = \sin \alpha_i \sin \theta_i,$ $\cos \xi \cos \varphi_i = \cos \alpha_i,$ $\cos \xi \sin \varphi_i = \sin \alpha_i \cos \theta_i .$

$$0 \le \xi \le \frac{\pi}{2}, \ -\pi \le \varphi_i \le \pi$$