Few-Body Approaches in Hypernuclei Avraham Gal Racah Institute of Physics, Hebrew University, Jerusalem

- Updated Nucl. Phys. A **754** (2005) 91c-102c
- A hyperon is bound by 28 MeV in nuclear matter.
- No ΛN bound state, binding starts with $^{3}_{\Lambda}$ H; a minute binding energy $B_{\Lambda}(^{3}_{\Lambda}H) = 0.13 \pm 0.05$ MeV.
- Σ hyperons are not bound in nuclei except for ${}_{\Sigma}^{4}$ He; $\Sigma N \rightarrow \Lambda N$ releases ~ 80 MeV in free space.
- $\Sigma N \Lambda N$ coupling is important in certain few-body Λ hypernuclei.

Λ binding energies vs. $A^{-2/3}$. Most B_{Λ} values are from (π^+, K^+) experiments at KEK. Curves represent calculations using an effective density-dependent Λ-nuclear potential (MDG 1988).

⁴He(K^-, π^{\pm}) spectra from BNL-E905 and as calculated [Harada, PRL **81** (1998) 5287]: evidence for a quasibound $I = \frac{1}{2} \quad {}_{\Sigma}^{4}$ He.

DWIA calculations by Harada & Hirabayashi, NPA **759** (2005) 143, for the ${}^{28}\text{Si}(\pi^-, K^+)$ spectrum from KEK-E438, using six Σ -nucleus potentials, (a)-(c) with inner repulsion, (d)-(f) fully attractive.

E. Friedman, A. Gal, Phys. Rept. **452** (2007) 89 Σ^- nuclear potentials fitted to Σ^- atomic data. Inner repulsion established phenomenologically.

- No $\Lambda\Lambda N$, perhaps also no $\Lambda\Lambda NN$ bound state; the lightest measured is ${}_{\Lambda\Lambda}{}^{6}$ He, implying bound ${}_{\Lambda\Lambda}{}^{5}$ H - ${}_{\Lambda\Lambda}{}^{5}$ He.
- Ξ hyperons are perhaps bound by ~ 15 MeV in nuclear matter, no measured bound states have been reported that are accepted; $\Xi N \rightarrow \Lambda \Lambda$ releases ~ 25 MeV in free space.
- lightest S = -3, -4 bound states? the case for ${}_{\Lambda\Lambda\Xi}^{7}$ He.
- Strange Hadronic Matter {p, n, Λ, Ξ⁰, Ξ⁻}, similarities to strange quark matter.
- Kaon condensation, on earth & in heaven (neutron stars)?

Recent Advances in Strangeness Nuclear Physics Nucl. Phys. A 804 (2008), Eds. A. Gal, R.S. Hayano

I.N. Filikhin, A. Gal, Nucl. Phys. A 707 (2002) 491.

Nijmegen OBE phase-equivalent soft-core $\Lambda\Lambda$ potentials.

 $\Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}\text{He}) \approx 1 \text{ MeV}$ implies a fairly weak $\Lambda\Lambda$ interaction (NSC97).

I.N. Filikhin, A. Gal, Nucl. Phys. A **707** (2002) 491.

s-wave Faddeev calculations of $\Delta B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{6}\text{He})$ vs. $\Delta B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{5}\text{H}, {}_{\Lambda\Lambda}{}^{5}\text{He})$. $\Delta B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{6}\text{He}) \equiv B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{6}\text{He}) - 2B_{\Lambda}({}_{\Lambda}{}^{5}\text{He}).$ $\Delta B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{6}\text{He}) \approx 1$ MeV implies that ${}_{\Lambda\Lambda}{}^{5}\text{H}$ & ${}_{\Lambda\Lambda}{}^{5}\text{He}$ are also bound.

I.N. Filikhin, A. Gal, Nucl. Phys. A **707** (2002) 491.

s-wave Faddeev-Yakubovsky calculations for $^{10}_{\Lambda\Lambda}$ Be: ⁸Be $\Lambda\Lambda$ vs. $\alpha\alpha\Lambda\Lambda$. Four-body model admits $\alpha\Lambda - \alpha\Lambda$ & $\alpha\Lambda\Lambda - \alpha$ correlations.

I.N. Filikhin, A. Gal, Phys. Rev. Lett. **89** (2002) 172502. s-wave Faddeev-Yakubovsky calculations for Λpn , $\Lambda\Lambda d$ and $\Lambda\Lambda pn$. $\Lambda\Lambda d$: Λd binding implies $\Lambda\Lambda d$ binding. $\Lambda\Lambda pn$: $4 \Lambda N + 1 \Lambda\Lambda$ (unbound) pairs vs. 1 pn (bound) pair.

H. Nemura, Y. Akaishi, K.S. Myint, Phys. Rev. C **67** (2003) 051001(R). $B_{\Lambda\Lambda}({}_{\Lambda\Lambda}^{4}\text{H})$ calculated using stochastic variational methods. Whether or not ${}_{\Lambda\Lambda}^{4}\text{H}$ is bound is unsettled.

H. Nemura, S. Shinmura, Y. Akaishi, K.S. Myint, PRL **94** (2005) 202502. Calculated $\Lambda \& \Lambda \Lambda$ separation energies of *s*-shell hypernuclei. $\Lambda N - \Sigma N$ and $\Lambda \Lambda - \Xi N$ mixings are important.

Hiyama, Kamimura, Motoba, Yamada, Yamamoto, NPA **754** (2005) 103c. Calculated $\Delta B_{\Lambda\Lambda}$ values in 3-body & 4-body cluster models.

 $^{12}C(K^-, K^+)$ missing-mass spectra from KEK-E224 (left), and from BNL-E885 (right), as a function of Ξ^- nuclear potential depth.

I.N. Filikhin, A. Gal, Phys. Rev. C **65** (2002) 041001(R). NSC97 phase-equivalent YY potentials. $\Lambda \Xi$ attraction stronger than $\Lambda \Lambda$.

I.N. Filikhin, A. Gal, Phys. Rev. C **65** (2002) 041001(R). s-wave Faddeev calculations for Λ_{Ξ}^{6} H and Λ_{Ξ}^{6} He; marginal binding. Onset of Ξ hyperon stability probably at $\Lambda_{\Lambda\Xi}^{7}$ He. Reliable model calculations are warranted (JPG **35** (2008) 135103 is unreliable).

J. Schaffner, C.B. Dover, A. Gal, C. Greiner, H. Stocker, PRL 71 (1993) 1328 Calculated binding energy of multistrange ${}^{56}\text{Ni} + \Lambda$, Ξ hyperons. $\Xi N \to \Lambda\Lambda$ is Pauli blocked.

J. Schaffner-Bielich, A. Gal, PRC 62 (2000) 034311 Transition from $N\Lambda\Xi$ to $N\Sigma\Xi$ matter upon increasing the strangeness fraction f_S in NSC97 models with Σ nuclear (outdated) attraction.

J. Schaffner-Bielich, A. Gal, PRC 62 (2000) 034311 Strange Hadronic Matter composition as a function of f_S in NSC97 models with Σ nuclear (outdated) attraction.

J. Schaffner-Bielich, NPA 804 (2008) 309

RMF calculation of baryon & lepton fractions in neutron star matter. Strangeness acts for densities $\geq 2.5\rho_0$; why not $\Lambda \to p + K^-$?

N.K. Glendenning, J. Schaffner-Bielich, PRC 60 (1999) 025803 Population of nuclear star matter under kaon condensation. $\ell^- \to K^- + \nu_{\ell}$: lepton depletion occurs for $\rho \geq 3\rho_0$.

T. Muto, NPA 754 (2005) 350c

Total energy per particle as a function of baryon number density. Onset of *p*-wave kaon condensate at $\rho_B \sim 0.55 \text{ fm}^{-3}$.

Exotic \overline{K} structures, with unbound nuclear cores onset of binding: K^-pp and \overline{K}^0nn

Table 1: K^-pp binding energies & widths (in MeV) calculated without $\bar{K}NN \to YN$

	single channel		coupled channels		
	ATMS $[1]$	AMD $[2]$	Faddeev [3]	Faddeev [4]	variational $[5]$
В	48	17-23	50-70	60-95	40-80
Γ	61	40-70	90-110	45-80	40-85

- 1. T. Yamazaki, Y. Akaishi, PLB 535 (2002) 70
- 2. A. Doté, T. Hyodo, W. Weise, NPA 804 (2008) 197; arXiv:0806.4917 [nucl-th]
- 3. N.V. Shevchenko, A. Gal, J. Mareš, PRL 98 (2007) 082301
- 4. Y. Ikeda, T. Sato, PRC 76 (2007) 035203
- 5. S. Wycech, A.M. Green, arXiv:0808.3329 [nucl-th] (including p waves)

D. Gazda, E. Friedman, A. Gal, J. Mareš, unpublished (2007) **RMF extension of** K^-pp calculations $\bar{K}\bar{K}N$ bound with respect to $\Lambda(1405) + \bar{K}$ Y. Kanada-En'yo, D. Jido, PRC 78 (2008) 025212

D. Gazda, E. Friedman, A. Gal, J. Mareš, PRC 77 (2008) 045206 Saturation of $B_{\bar{K}}$ in ⁴⁰Ca, far away from \bar{K} condensation. $B_{\bar{K}}(\kappa \to \infty) << (m_K + M_N - M_\Lambda) \approx 320$ MeV.