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Introduction

Speculations on multiquarks

low mass of (qq̄), hence (qqq̄q̄) in S-wave perhaps lighter than
(qq̄) in P-wave. Applied to the problem of scalar mesons.
Peculiar features of chiral dynamics. Speculations on the late
pentaquarks made of light or strange quarks or antiquarks,
Coherences in the hyperfine interaction→ see next section,
Properties of the mass dependence in a flavour-independent
potential,→ below
Favourable 4-body interaction in QCD→ below.
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Symmetry breaking and tetraquarks-1

Consider
H = H0(even) + λH1(odd).

Then for the ground state, with ψ0(H0) as trial w.f, 〈ψ0|H1|ψ0〉 = 0

E(H) ≤ E(H0),

i.e., H benefits of symmetry breaking.
For instance E(p2 + x2 + λx) = 1− λ2/4.

This is very general.
Starting, e.g., from a symmetrical four-body system (µ, µ, µ̄, µ̄)
breaking particle identity or charge conjugation lowers the ground
state, but has different consequences on stability
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Breaking particle identity

H(M,m,M,m), where V does not change if M and/or m is modified,
can be rewritten as

H =

(
1

4M
+

1
4m

)[
p2

1 + · · ·+ p2
4
]

+ V︸ ︷︷ ︸
H0

+

(
1

4M
− 1

4m

)[
p2

1 − p2
2 + p2

3 − p2
4
]

︸ ︷︷ ︸
H1

Thus E(H) ≤ E(H0). But in general, the threshold also benefits from
this symmetry breaking, and actually benefits more, so that four-body
binding deteriorates.
For instance, in atomic physics (e+,e+,e−,e−) and any equal-mass
(µ+, µ+, µ−, µ−) weakly bound below the atom–atom threshold, but
(M+,m+,M−,m−) unstable for M/m & 2.2, see Dario.
Then: breaking the symmetry of identical particles does not help
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Breaking charge conjugation

H(M,M,m,m) written as

H =

(
1

4M
+

1
4m

)[
p2

1 + · · ·+ p2
4
]

+ V︸ ︷︷ ︸
H0

+

(
1

4M
− 1

4m

)[
p2

1 + p2
2 − p2

3 − p2
4
]

︸ ︷︷ ︸
H1

still benefits to the four-body system, E(H) ≤ E(H0), but H and H0
have the same threshold (M+,m−) + (M+,m−). Hence binding
improves. Indeed, H2 more bound than Ps2 and has even a rich
spectrum of excitations.
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Quark model analogs

For a central, flavour-independent, confining interaction V ,

Equal mass case (q,q, q̄, q̄) hardly bound
Hidden-flavour case (Q,q,Q, q̄) even farther from binding,
(QQq̄q̄) with flavour = 2 bound if M/m large enough
See Ader et al. (then at CERN), Heller et al. (Los Alamos),
Zouzou et al. (Grenoble), D. Brink et al. (Oxford), Rosina et al.
(Slovenia), Lipkin, Vijande et al., etc.

(QQq̄q̄) expected at least in the limit of large or very large M/m.
As compared to the “colour-chemistry” (late 70’s and early 80’s)

no exotic colour configuration
for large M/m, almost pure 3→ 3̄ for (QQ) as in every baryon,
and then 3̄× 3̄× 3̄→ 1 for [(QQ)− q̄q̄] as in every antibaryon:
well probed colour structure.
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The additive model of tetraquark confinement

Questions:
What is V for tetraquarks?
Even earlier: what is the link from mesons to baryons?

The additive model By analogy with QED,

V (1,2, . . .) = − 3
16

∑
i<j

λ̃
(c)
i .λ̃

(c)
j v(rij ) ,

v(r) is the quarkonium potential fitted to mesons,
λ(c) is the non-abelian colour operator

Consequences
A reasonable simultaneous phenomenology of baryon and
meson spectra
Multiquarks unbound, except (QQq̄q̄) with large M/m.
Hence multiquark binding was based on other mechanisms:
chrmomagnetism (Jaffe, Lipjkin, Gignoux et al.), chiral dynamics
(cf. the late pentaquark), etc.
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The Steiner-tree model of baryons

Y -shape potential:
Proposed by Artru, Dosch, Merkuriev, etc., proposed a better
ansatz, often verified and rediscovered (strong coupling,
adiabatic bag model (Kuti et al.), flux tube, lattice QCD, etc.)

The linear q − q̄ potential of mesons
interpreted as minimising the gluon energy in the flux tube limit

The q − q − q potential of baryons is
with the junction optimised, i.e., fulfilling the conditions of the
well-known Fermat-Torricelli problem.

This potential was used for baryons (Taxil et al., Semay et al., Kogut
et al.), but it does not make much difference as compared with the
additive ansatz.
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The Steiner tree model of tetraquarks

A tempting generalisation to tetraquarks is the combination
V4 = min(Vf ,VS) of

flip-flop Vf (already used in its quadratic version by Lenz et al.)

Vf = λmin(r13 + r24, r23 + r14)

and Steiner-tree VS

VS = λmink,`(r1k + r2k + rk` + r`3 + r`4) .

J. Carlson and V.R. Pandharipande concluded that this potential
does not bind, but

they used too simple trial wave functions for the 4-body problem,
and did not consider unequal masses.
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Tetraquarks in the minimal-path model-1

Vijande, Valcarce and R. revisited the calculation of Carlson at al.
with a basis of correlated Gaussians (matrix elements painfully
calculated numerically), and obtained stability for (QQq̄q̄) even for
M/m = 1, but better stability for M/m� 1.

u = (Eth − E4)/Eth
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Tetraquarks in the minimal-path model-2

More recently, Cafer Ay, Hyam
Rubinstein (Melbourne) and R.:
rigorous proof of stability within the
minimal-path model if M � m.
Obviously,
V4 ≤ VS ≤ |x |+ |y |+ |z|

where x =
−→
AB , y =

−→
CD ,

and z links the middles.
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Figure 4: First inequality.
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Figure 5: Construction of the minimal string in the planar case.

4 The spatial tetraquark problem
In general, the four constituents do not belong to the same plane. The minimum is achieved for
A, B, I, J coplanar, and C, D, I, J also coplanar, but in a different plane. The point E belongs
to a circle of axisAB and similarly for F . The straight line EF has to intersect these two circles
as well as the lines AB and CD. The problem consists of constructing such straight line.

5

Then

H ≤
[

p2
x

M
+ |x |

]
+

[
p2

y

m
+ |y |

]
+

[
p2

z

2µ
+ |z|

]
exactly solvable, but not does not demonstrate binding of (QQq̄q̄)

JMR Steiner tree



Introduction Symmetry breaking and tetraquarks The additive model of tetraquark confinement The Steiner-tree model of confinement Conclusions

Better bound

A better bound demonstrates stability for large M/m:

H ≤

[
p2

x

M
+

√
3

2
|x |

]
+

[
p2

y

m
+

√
3

2
|y |

]
+

[
p2

z

2µ
+ |z|

]
p2 + |x | =⇒ e0 = 2.3381... (Airy function)
by scaling p2/m + λ|x | =⇒ e0 λ

2/3 m−1/3.
Threshold 2(Qq̄)Qq̄) at Eth = 2e0µ

−1/3, µ = Mm/(M + m).
The tetraquark energy has a upper bound

E4 ≤ Eup
4 = e0

{(
3
4

)1/3 [
M−1/3 + m−1/3

]
+ (2µ)−1/3

}

Straightforward to check that Eup
4 < Eth for M/m < 6403

Thus E4 < Eth at large M/m demonstrated rigorously
Actually ∀M/m from solving numerically the 4-boby pb.
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Proof-1

A flavour of the proof. In the
3-body case, Steiner tree
linked to Napoleon’s
theorem.
JA + JB + JC = CC′ where
C′ makes an external
equilateral triangle
associated to the side AB.

Well-known property of the
Fermat-Torricelli problem.
(C′ belongs to the torroı̈dal
domain associated to AB)
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Figure 1: Generalisation of the linear quark–antiquark potential of mesons to baryons (left) and
tetraquarks (right).
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Figure 2: Left: the junction is at the intersection of the arcs from which each side is seen under
120◦. Right: the junction as a side product of Napoleon’s theorem
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Figure 3: First inequality.

A

B

E

E ′

C

D

F

F ′

I

J

P

Q

H
K

Figure 4: Construction of the minimal string in the planar case.

2

JMR Steiner tree



Introduction Symmetry breaking and tetraquarks The additive model of tetraquark confinement The Steiner-tree model of confinement Conclusions

Proof-2

The analogue for the planar tetraquark is
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Figure 5: Construction of the minimal string in the planar case.

3

VS = JA + JB + JK + KC + KD = EF

The minimal network linking (A,B,C,D) is the maximal distance
beween {E ,E ′} and {F ,F ′}, which are the torroı̈dal domains
associated to (A,B) and (C,D) (= points completing an equilateral tr.)
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Proof-3

In space, still

VS = JA + JB + JK + KC + KD = EF

where
E ∈ CAB= torroı̈dal domain of
quarks AB, (equilateral circle)
F ∈ CCD= torroı̈dal domain of
antiquarks CD,
VS is the maximal distance
between the circles CAB and
CCD, which is less than the
distance between the centres
and the sum of radii.

A
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CAB
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D

CCD

I

J

E

F

Figure 5: The confining potential for the tetraquark sys-
tem (ABCD) is the minimal length of the tree IA+IB+
IJ+JB+JC when I and J are varied. It is also the max-
imal distances between the circles CAB and CCD, i.e., the
distance EF . The circle CAB is centered at the middle of
A and B, has AB as axis and a radius |AB|

√
3/2, and

CCD has analogous properties in the antiquark sector.

hadrons does not require the mass of baryons to be computed within less than 1MeV of accuracy.
What matter are the pattern of ordering and the properties beyond the mass spectrum. On the
other hand, it is crucial to treat the four-body problem very precisely, even in simple models,
to compare within the same dynamical scheme, the mass of the tetraquark states to that of two
mesons, i.e., to indicate whether the model predicts he existence of stable multiquarks. In other
words, it is required to solved the four-body problem much beyond he simplest approximation.
This means that the potential has to be estimated a very large number of times.We are convinced
that the geometric properties of the Steiner tree will be of great help, to reduce considerably the
amount of numerical minimisation when estimating the value of the potential.

It is our intend to extend this investigation to the case the pentaquark (one antiquark and
four quarks) and hexaquark configurations (six quarks), which have been much debated in recent
years.
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Conclusions

New models of confinement beyond
naive additive models, in better
agreement with QCD in the strong
coupling limit
New inequality on the combined
flip-flop and Steiner-tree paths,
Drastic revision of the four-body
spectrum within this model
Analogous to the Wheeler (1945) –
Ore (1946) – Hyllerras & Ore (1947)
views on the Ps2 molecule.
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