

Experimental Low Energy Antiproton Physics

Eberhard Widmann

Workshop on Critical Stability Ettore Majorana Centre, Erice 15.10.2008

Stefan Meyer Institute for subatomic Physics, Wien

Low Energy Antiproton Physics

- Spectroscopy for tests of CPT and QED
 - Antiprotonic atoms (pbar-He, pbar-p), antihydrogen
- Atomic collisions
 - Sub-femtosecond correlated dynamics: ionization, energy loss, antimatter-matter collisions
- Antiprotons as hadronic probes
 - X-rays of light antiprotonic atoms: low-energy QCD
 - X-rays of neutron-rich nuclei: nuclear structure (halo)
 - Antineutron interaction

LEAP

- Strangeness –2 production
- Medical applications: tumor therapy

HYDROGEN MEDROGEN MEDROGEN

Sub-Femtosecond Correlated Dynamics Probed with Antiprotons

FLAIR LoI http://www.oeaw.ac.at/smi/flair

Antiprotonic helium

Precision spectroscopy

ASACUSA collaboration @ CERN-AD

Asakusa Kannon Temple by Utagawa Hiroshige (1797-1858)

Atomic Spectroscopy And Collisions Using Slow Antiprotons

Spokesperson: R.S. Hayano, University of Tokyo

- University of Tokyo, Japan
 - College of Arts and Sciences, Institute of Physics
 - □ Faculty of Science, Department of Physics
- RIKEN, Saitama, Japan
- SMI, Austria
- Aarhus University & ISA, Denmark
- Niels Bohr Institute, Copenhagen, Denmark
- Max-Planck-Institut f
 ür Kernphysik, Heidelberg, Germany
- KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
- University of Debrecen, Hungary
- Brescia University & INFN, Italy

~ 44 members

- University of Wales, Swansea, UK
- The Queen's University of Belfast, Ireland

Antiproton Decelerator (AD) at CERN

- Antiproton capture, deceleration, cooling
 100 MeV/c (5.3 MeV)
- Pulsed extraction
 - 2-4 x 10^7 antiprotons per pulse of 100 ns length
 - I pulse / 85 seconds
- Antiprotonic atom,
 Antihydrogen formation and spectroscopy, atomic collisions

Experimental Setup at AD

LEAP

Analog Measurement of Delayed Annihilation using Cerenkov counters and digital oscilloscope

5.3 MeV antiprotons are stopped in ~ 6 K 0.5 – 3 bar He gas

Microwave cavity 12.91 GHz: 28.8 mm diameter, 24.5 mm length

Precise Measurement of Transition Wavelength

Laser Spectroscopy at Ultra-low Density: Radio Frequency Quadrupole Decelerator: 20-120 keV

• RFQD: 5.3 MeV -> 20 - 120 keV (eff. > 25%)

- Differential pumping + ultra-thin beam window (~ Ι μm Mylar)
- high efficiency of stopping antiprotons at ultra-low densities (p < 1 mbar, T~20 K)

3-body QED description

- non-relativistic 3body calculations differ about 50 ppm
- relativisitc
 corrections: 10 ppm
 difference left
- Lamb shift and higher QED corrections needed

Experimental results and theory

E.Widmann Erice 15.10.2008

LEAP

AW

p(bar)-e mass ratio

M. Hori et al. PRL 96 (2006) 243401

12

Progress in atomcule spectroscopy

E.Widmann Erice 15.10.2008

Hyperfine Structure of \bar{p}^4He^+

14

vHF tests orbital angular moment: g

- interactions of magnetic moments:
 - electron: $\vec{\mu}_e = g \mu_B S_e$
 - pbar: $\vec{\mu}_{\overline{p}} = [g_s(\overline{p})\vec{S}_{\overline{p}} + g_l(\overline{p})\vec{L}_{\overline{p}}]\mu_N$
- "Hyperfine" splitting HFS: $\vec{L}_{\vec{p}} \cdot \vec{S}_{e}$
 - dominant because of large L
- "Superhyperfine" splitting
- •*HFS:* 10 ... 15[°]*GHz*
- SHFS: 0.1 ... 0.3 GHz

First observation of HFS transition

15

Experimental accuracy: ~ 3×10^{-5}

ν_{HF}^{+}	12.895 96(34) GHz	27 ppm
v_{HF}^{-}	12.924 67(29) GHz	23 ppm

E.W. et al. PRL 89 (2002) 243402

LEAP

- Comparison to theory favours most recent results of both groups
 - Korobov & Bakalov JPB 34 L519 2001
 - ✦ Kino et al. Proc. APAC 2001
- Difference < 6×10^{-5}
- Corresponds to theoretical uncertainty

+Omission of terms $O(\alpha^2) \sim 5 \times 10^{-5}$

determination of $\mu_{\overline{p}}$

- v_{SHF}^+ , v_{SHF}^- most sensitive, but impossible to measure (power requirement)
- $\Delta v_{HF} = v_{HF}^{-} v_{HF}^{+} = v_{SHF}^{+} v_{SHF}^{-}$: sensitive to μ_{P}^{-}
- sensitivity factors from theory (D. Bakalov and E.W., PRA 76 (2007) 012512)

16

•
$$S(F,J) = \partial E_{nFLJ} / \partial \mu_{\overline{p}} | \mu_{\overline{p}} = -\mu_p$$

• $S(v_{H^{+}}) = S(F^{-}J^{--}) - S(F^{+}J^{+-})$

E.Widmann Erice 15.10.2008

- no density nor power shift observed
- agreement to theory not yet perfect

LEAP

17

- statistical error: 20 kHz on V_{HF}^{\pm} : $\Delta v / v = 1.5 \times 10^{-6}$
- 30 kHz on Δv_{HF} : $\Delta v/v = 10^{-3}$

MUSASHI – Mono-energetic Ultra Slow Antiproton Source for High-precision Investigations

Physics with MUSASHI

- I0 I000 eV antiproton beam useful for
 - Formation of antiprotonic atoms (protonium, ...)
 - Ionization in single collision by slow antiprotons
 - Ionization chamber to be installed at AD in October
 - Many other applications

LEAP

- Protonium X-ray spectroscopy
- Probing neutron and proton distribution in nuclei

Y.Yamazaki & H.A.Torii U Tokyo

Hydrogen and Antihydrogen

Antihydrogen IS-2S Spectroscopy

ATHENA Collaboration *

21

First Cold Antihydrogen 2002 @ AD

advance online publication

Production and detection of cold antihydrogen atoms

M. Amoretti*, C. Amsler†, G. Bonomi‡§, A. Bouchta‡, P. Bowe ||,
C. Carraro*, C. L. Cesar¶, M. Charlton#, M. J. T. Collier#, M. Doser‡,
V. Filippini☆, K. S. Fine‡, A. Fontana☆**, M. C. Fujiwara††,
R. Funakoshi††, P. Genova☆**, J. S. Hangst||, R. S. Hayano††,
M. H. Holzscheiter‡, L. V. Jørgensen#, V. Lagomarsino*‡‡, R. Landua‡,
D. Lindelöf†, E. Lodi Rizzini§☆, M. Macrì*, N. Madsen†, G. Manuzio*‡‡,
M. Marchesotti☆, P. Montagna☆**, H. Pruys†, C. Regenfus†, P. Riedler‡,
J. Rochet†#, A. Rotondi☆**, G. Rouleau‡#, G. Testera*, A. Variola*,
T. L. Watson# & D. P. van der Werf#

ATHENA Nature 419 (2002) 456

VOLUME 89, NUMBER 21

LEAP

PHYSICAL REVIEW LETTERS

 $18 \ N \text{OVEMBER} \ 2002$

Background-Free Observation of Cold Antihydrogen with Field-Ionization Analysis of Its States

G. Gabrielse,^{1,*} N.S. Bowden,¹ P. Oxley,¹ A. Speck,¹ C. H. Storry,¹ J. N. Tan,¹ M. Wessels,¹ D. Grzonka,² W. Oelert,² G. Schepers,² T. Sefzick,² J. Walz,³ H. Pittner,⁴ T.W. Hänsch,^{4,5} and E. A. Hessels⁶

(ATR AP Collaboration)

 ¹Department of Physics, Harvard University, Cambridge, Massachusetts 02138
 ²IKP, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
 ³CERN, 1211 Geneva 23, Switzerland
 ⁴Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany
 ⁵Ludwig-Maximilians-Universität München, Schellingstrasse 4/III, 80799 München, Germany
 ⁶York University, Department of Physics and Astronomy, Toronto, Ontario, Canada M3J 1P3 (Received 11 October 2002; published 31 October 2002)

ATRAP PRL 89 (2002) 213401

No "useful" Hbar produced (ground-state, < 1 K temperature for trapping) Ultimate precision: neutral atom trap and laser cooling to milli-Kelvin temperature

Nested Penning traps Capture energy: few keV

Hydrogen spectroscopy in a neutral atom trap

Source solenoid

Source

Z

23

Bolometer

- Force of magnetic field gradient on magnetic moment of atom
- "depth" typically < I K
 (50 µeV)
- Constant holding-field B_{z,0} to avoid spin flips

Quadrupole magnet

Pinch

solenoid

(a)

Latin Charles

Bias

solenoid

0

B(z)

• Typical configuration:

Confined atoms

Pinch

solenoid

- Cesar et al., PRL 77, 255 (1996)
- Precision less than MPQ

H Ground-state Hyperfine Structure

- atoms "evaporate"
 - No trapping needed !!
- atomic beam for focussing and spin selection
- spin-flip by microwave radiation
- low-background high-efficiency detection of antihydrogen through annihilation
- achievable resolution
 - better 10–6 for T \leq 100 K
 - > 100 H/s in IS state needed
- ultimate precision:

LEAP

atomic fountain of H -> FLAIR

ASACUSA proposal for AD E.W. et al. CERN-SPSC-2003-009

Antiprotons at FAIR

25

FLAIR@ FAIR

26

- High brightness low energy beams
 - two storage rings with 300 keV (LSR) and 20 keV (USR)
 - electron cooling
 - $\epsilon \sim I \pi$ mm mrad
 - Δp/p ~ 10–4
- Storage rings with internal targets for collision studies
- Slow and fast extraction
- Ion traps

LEAP

- HITRAP facility for HCI & pbar
- Many new experiments possible
- same facilities can be used for HCI

Factor 100 more pbar trapped or stopped in gas targets than now

Summary and Outlook

- Low energy antiprotons offer many opportunities to study fundamental interactions and symmetries
- FLAIR facilities offers new possibilities
- Cooled antiprotons at 20 keV will revolutionize low- energy antiproton physics
- DC beams enable nuclear and particle physics type experiments (not possible at AD)
- Availability of radioactive ion beams (RIB) offers new synergies
- ~2015: first low-energy antiproton beam at FLAIR

