Critical Stability

5th Workshop on Critical Stability of Few-Body Quantum Systems Erice, Italy, 13-17 October 2008

LIGHT NUCLEI IN THE CONTINUUM

F. Miguel Marqués Moreno LPC-Caen (France) marques@lpccaen.in2p3.fr

LPC-Caen [N.A. Orr, B. Laurent, H. Al Falou, A. Leprince], Surrey, Oxford, Birmingham, ULB-Bruxelles [V. Bouchat], IReS-Strasbourg, GANIL, Orsay, Göteborg, Aarhus, Madrid

nucleons in nuclei

- ► the valley of stability : $> B = Nm_n + Zm_p - M(N, Z)$ > rather a ridge of stability ...
- ► where are the drip lines ? ▷ $E_{gs}(N, Z)$ = $\min\left[\sum M(n_i, z_i)\right] - M(N, Z)$
 - ▶ very light nuclei :
 ▷ access to extreme (N, Z) !!!

- ▷ breakup exp + fragment/n detectors :
 - → unbound systems
 - → excited weakly-bound nuclei

unstable beams

▶ ${}^{19}C \rightarrow {}^{18}C+n$ experiment @ GANIL :

ightarrow add 7n to ¹²C ?? study it in less than 49 ms ???

unstable beams

► ${}^{19}C \rightarrow {}^{18}C+n$ experiment @ GANIL :

ightarrow add 7n to ¹²C ?? study it in less than 49 ms ???

mapping the seabed

how to dive below the surface ?
 strip nucleons from a beam !

mapping the seabed

- how to dive below the surface ?
 strip nucleons from a beam !
- ▶ how to find a "nucleus" ?▷ look for energy levels ...

7He : a well-known nucleus ? [Al Falou]

► $C(^{8}\text{He}, ^{6}\text{He} + n)X @ 240 \text{ and } 15 \text{ MeV/N}$:

7He : a well-known nucleus ? [Al Falou]

► C(⁸He,⁶He+n)X @ 240 and 15 MeV/N :

7He : a well-known nucleus ? [Al Falou]

► $C(^{8}\text{He}, ^{6}\text{He} + n)X @ 240 \text{ and } 15 \text{ MeV/N}$:

10Li : initial state dependence [Al Falou]

► $C(^{11}Be, ^{9}Li + n)X @ 35 MeV/N :$

> non-resonant continuum

▷ non-resonant continuum
▷ plus *s*-wave : $a_s = -14\pm 2$ fm

 $[{}^{11} ext{Be}: C^2S(
u s_{1/2}) \sim 0.8]$

▷ non-resonant continuum ▷ plus *s*-wave : $a_s = -14\pm 2$ fm $[^{11}\text{Be}: C^2S(\nu s_{1/2}) \sim 0.8]$

► $C(^{14}B, ^{9}Li+n)X @ 35 MeV/N :$

- > non-resonant continuum
- \triangleright plus $a_s = -14$ fm
- ightarrow plus *p*-wave : $(E, \Gamma) \sim 500$ keV

9He : almost unknown [Al Falou]

> non-resonant continuum

 $arprop ext{ non-resonant continuum}$ $arprop ext{ plus } extbf{s-wave}: extbf{a}_s > -3 ext{ fm}$ $[^{11} ext{Be}: extbf{C}^2 extbf{S}(
u extbf{s}_{1/2}) \sim 0.8]$

F.M. Marqués (6/12)

F.M. Marqués (7/12)

- ▷ breakup exp + fragment/n detectors :
 - \rightsquigarrow unbound systems
 - → excited weakly-bound nuclei

3-body continuum

▶ the halo of ¹¹Li : $\bigcirc^{\bullet\bullet} \bigoplus$?

 $\triangleright \sigma(q) \equiv \Omega(q) \times C_{nn} \{ \psi(r_{nn}), a_{nn} \} :$ \$\sim \sigma(q)\$ is measured \$\sigma \constraint event mixing provides \$\Omega(q)\$...\$

3-body continuum

▶ the halo of ¹¹Li : $\bigcirc^{\bullet\bullet} \bigoplus$?

 $\triangleright \sigma(q) \equiv \Omega(q) \times C_{nn} \{ \psi(r_{nn}), a_{nn} \} :$ \$\sim \sigma(q)\$ is measured \$\sigma \constraint event mixing provides \$\Omega(q)\$...\$

4-body continuum ?

 $|^{14}\text{Be}\rangle \equiv a |^{10}\text{Be} + \frac{4}{n}\rangle + \cdots$

- ▷ effective + clean + sensitive !!!
- \triangleright saturation (sensitive to low E_p) ...

4n candidate events

¹⁴Be
$$\xrightarrow{(C)}$$
 ¹⁰Be + ⁴n ('01,'02)
⁸He $\xrightarrow{(C)}$ ⁴He + ⁴n ('02)
^{12/14}Be $\xrightarrow{(C)}$ $2\alpha + \frac{4/6}{n}$ ('02)
⁸He $\xrightarrow{(d)}$ ⁴He + d [+⁴n] ('04)

F.M. Marqués (10/12) $\mathbf{F}_{\mathbf{N}}^{\mathbf{C}}$

4n candidate events [Bouchat, preliminary]

¹⁴Be
$$\xrightarrow{(C)}$$
 ¹⁰Be + ⁴n ('01,'02)
⁸He $\xrightarrow{(C)}$ ⁴He + ⁴n ('02)
^{12/14}Be $\xrightarrow{(C)}$ $2\alpha + \frac{4/6}{n}$ ('02)
⁸He $\xrightarrow{(d)}$ ⁴He + d [+⁴n] ('04)

- ▶ unbound nuclei [Al Falou] :
 - ightarrow ⁷He : no excited state ...
 - $ightarrow {}^{10} ext{Li}: a_s \sim -14 ext{ fm} + p ext{-wave}$
 - \triangleright ⁹He : $a_s \sim -3$ fm + p-wave ?
 - \rightsquigarrow N=7 s/p inversion

preliminary conclusions & outlook

- ► unbound nuclei [Al Falou] :
 - ightarrow ⁷He : no excited state ...
 - ho ¹⁰Li : $a_s \sim -14$ fm + p-wave
 - $ightarrow {}^{9}\text{He}: a_{s} \sim -3 \text{ fm} + p \text{-wave } ?$
 - \rightsquigarrow N=7 s/p inversion
- ► DEMON @ GANIL '06 [Leprince] :

¹⁵B $\xrightarrow{(C)}$...

preliminary conclusions & outlook

- ► unbound nuclei [Al Falou] :
 - ightarrow ⁷He : no excited state ...
 - $ightarrow {}^{10} ext{Li}: a_s \sim -14 ext{ fm} + p ext{-wave}$
 - $ightarrow {}^{9}\text{He}: a_{s} \sim -3 \text{ fm} + p \text{-wave } ?$
 - \rightsquigarrow N=7 s/p inversion
- ► DEMON @ GANIL '06 [Leprince] :

preliminary conclusions & outlook

- ▶ unbound nuclei [Al Falou] :
 - ightarrow ⁷He : no excited state ...
 - $ightarrow {}^{10} ext{Li}: a_s \sim -14 ext{ fm} + p ext{-wave}$
 - $ightarrow {}^{9}\text{He}: a_{s} \sim -3 \text{ fm} + p \text{-wave } ?$
 - \rightsquigarrow N=7 s/p inversion
- ► DEMON @ GANIL '06 [Leprince] :
 - ${}^{15}B \xrightarrow{(C)} \cdots$ $> {}^{10}Li, {}^{9,10}He, {}^{12}Li$ $> {}^{14}Be^* \rightarrow {}^{12}Be+nn$ $\rightarrow {}^{10}Be+{}^{4}n$ $\rightarrow {}^{8}Be+{}^{6}n$ $\rightsquigarrow clean Be identification$

► β-delayed neutrons ? ▷ ¹¹Li $[Q_{\beta 2n} = 13 \text{ MeV}]$ ▷ ¹⁷B $[Q_{\beta 4n} = 9 \text{ MeV}]$ ▷ ¹⁹B $[Q_{\beta 4/6n} \sim 17/8 \text{ MeV}]$ $[S_{4n} \sim 2 \text{ MeV} !!!]$ \Rightarrow ¹¹Li planned @ GANIL '09

3-body correlations

- ▶ ¹⁴Be [FMM et al, PRC 64 (2001) 061301] :
 - \triangleright decay \rightarrow ¹²Be+nn
 - ▷ Dalitz plots (core-n vs n-n) :

3-body correlations

- ▶ ¹⁴Be [FMM et al, PRC 64 (2001) 061301] :
 - \triangleright decay \rightarrow ¹²Be+nn
 - ▷ Dalitz plots (core-n vs n-n) :

 $\rightsquigarrow \boldsymbol{r_{nn}}[C] > r_{nn}[Pb]$???

► core-n resonances :

F.M. Marqués (13/12)

femto+chronometer [Laurent]

► ⁸He^{*} $\xrightarrow{(C)}$ ⁶He+nn :

► ⁸He^{*} $\xrightarrow{(C)}$ ⁶He+nn :

$$[60\%] \rightarrow {}^{6}\mathrm{He} + \mathrm{nn} \left[C_{nn}(\mathbf{r_0}) \right]$$

femto+chronometer [Laurent]

► ⁸He^{*} $\xrightarrow{(C)}$ ⁶He+nn :

$$[60\%] \rightarrow {}^{6}\text{He} + nn [C_{nn}(r_{0})]$$
$$[40\%] \rightarrow {}^{7}\text{He} + n \xrightarrow{\tau} {}^{6}\text{He} + nn [C_{nn}(r_{0},\tau)]$$

femto+chronometer [Laurent]

► ⁸He^{*} $\xrightarrow{(C)}$ ⁶He+nn :

$$[60\%] \rightarrow {}^{6}\text{He} + \text{nn} [C_{nn}(r_{0})]$$
$$[40\%] \rightarrow {}^{7}\text{He} + n \xrightarrow{\tau} {}^{6}\text{He} + \text{nn} [C_{nn}(r_{0},\tau)]$$

▶ how sensitive to τ ?

 $\rightsquigarrow \boldsymbol{\tau} = 2000 \pm 500 \text{ fm}/c$ [same order than $\Gamma(^{7}\text{He})$]

