Universita' dell''Insubria, Como, Italy

Boundary-condition-determined wave functions (and their nodal structure) for few-electron atomic systems

Dario Bressaninin
http://scienze-como uninsubria. it/bressanini
Critical stability V(Erice) 2008

Numbers and insight

There is no shortage of accurate calculations for few-electron systems
-2.90372437703411959831115924519440444669690537 а.и.
Helium atom (Nakashima and Nakatsuji JCP 2007)

- However...
"The more accurate the calculations became, the more the concepts tended to vamish into thin air "

(Robert Mulliken)

The curse of Ψ_{T}

- Currently Quantum Monte Carlo (and quantum chemistry in general) uses moderatly large to extremely large expansions for Ψ
- Can we ask for both accurate and compact wave functions?

VMC: Variational Monte Carlo

- Use the Variational Principle

$$
\langle H\rangle=\frac{\int \Psi(R) H \Psi(R) d R}{\int \Psi^{2}(R) d R} \geq E_{0}
$$

- Use Monte Carlo to estimate the integrals
- Complete freedom in the choice of the trial wave function
- Can use interparticle distances into Ψ
\square But It depends critically on our skill to invent a good Ψ

QMC: Quantum Monte Carlo

- Analogy with diffusion equation
- Wave functions for fermions have nodes
- If we knew the exact nodes of Ψ, we could exactly simulate the system by QMC
- The exact nodes are unknown. Use approximate nodes from a trial Ψ as boundary conditions

Long term motivations

- In QMC we only need the zeros of the wave function, not what is in between!
- A stochastic process of diffusing points is set up using the nodes as boundary conditions
- The exact wave function (for that boundary conditions) is sampled
- We need ways to build good approximate nodes
- We need to study their mathematical properties (poorly understood)

Convergence to the exact Ψ

We must include the correct analytical structure

Cusps: $\quad \Psi\left(r_{12} \rightarrow 0\right) \approx 1+\frac{r_{12}}{2} \quad \Psi(r \rightarrow 0) \approx 1-Z r$

QMC OK

3-body coalescence and logarithmic terms: QMC OK

Tails and fragments:
Usually neglected

Asymptotic behavior of Ψ

- Example with 2-e atoms $H=\frac{1}{2}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right)-Z\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)+\frac{1}{r_{12}}$

$$
H \stackrel{r_{2} \rightarrow \infty}{\rightarrow} \frac{1}{2}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right)-\frac{Z}{r_{1}}-\frac{Z-1}{r_{2}}
$$

$\varphi_{0}\left(r_{1}\right)$ is the solution of the 1 electron problem

Asymptotic behavior of Ψ

The usual form

$$
\begin{gathered}
\Psi=\phi\left(r_{1}\right) \phi\left(r_{2}\right) \\
\Psi=e^{-a\left(r_{1}+r_{2}\right)}
\end{gathered}
$$

does not satisfy the asymptotic conditions

```
Y}(\mp@subsup{r}{2}{}\longrightarrow\infty)\longrightarrow\mp@subsup{\phi}{0}{}(\mp@subsup{r}{1}{})\phi(\mp@subsup{r}{2}{}
\Psi}(\mp@subsup{r}{1}{}->\infty)\longrightarrow\phi(\mp@subsup{r}{1}{})\mp@subsup{\phi}{0}{}(\mp@subsup{r}{2}{}
```

A closed shell determinant has the wrong structure

Asymptotic behavior of Ψ

In general $\Psi_{0}^{N} \rightarrow r_{1^{\prime}}\left(1+c_{1} r_{1}^{-1}+O\left(r_{1}^{-2}\right)\right) e^{-r_{1} / b_{1}} Y_{l l}^{m I}\left(r_{1}\right) \Psi_{0}^{N-1}(2, \ldots N)$

Recursively, fixing the cusps, and setting the right symmetry...

$$
\begin{aligned}
\Psi & =\hat{A}\left(f_{1}(1) f_{2}(2) \ldots f_{N}(N) \Theta_{N}\right) e^{U} \\
\Theta_{N} & =\text { spin function }, e^{U}=\text { correlation factor }
\end{aligned}
$$

Each electron has its own orbital, Multideterminant (GVB) Structure!

PsH - Positronium Hydride

A wave function with the correct asymptotic conditions:

$$
\Psi\left(1,2, e^{+}\right)=\left(1+\hat{P}_{12}\right) \Psi\left(H^{-}\right) f\left(r_{e^{+}}^{-}\right) \Psi\left(P_{S}\right) g\left(r_{1 e^{+}}\right)
$$

Type	Energy (hartree)
SCF	-0.6669
VMC single term	-0.7723
Hylleraas 12 terms	-0.7742
VMC single term	-07774
CI 95324 configurations	-0.7867761
MRCI 13230 configurations	-0.786782
Hylleraas 396 terms	-0.788951
ECG 1600 terms	-0.7891965536
Hylleraas 5741 terms	-0.7891967
DMC	$-0.78918(5)$
DMC	$-0.78915(4)$
VMC single term	$-0.786073(6)$

Bressanini and Morosi: JCP 119, 7037 (2003)

Basis

- In order to build compact wave functions we used orbital functions where the cusp and the asymptotic behavior are decoupled

2-electron atoms

$$
\Psi=\left(1+\hat{P}_{12}\right) \exp \left(\frac{a_{1} r_{1}+b_{1} r_{1}^{2}}{1+r_{1}}\right) \exp \left(\frac{a_{2} r_{2}+b_{2} r_{2}^{2}}{1+r_{2}}\right) \exp \left(\frac{d r_{12}}{1+e r_{12}}\right)
$$

Tails OK

$$
\Psi=\left(1+\hat{P}_{12}\right) \exp \left(\frac{-Z r_{1}+b_{1} r_{1}^{2}}{1+r_{1}}\right) \exp \left(\frac{-Z r_{2}+b_{2} r_{2}^{2}}{1+r_{2}}\right) \exp \left(\frac{r_{12} / 2}{1+e r_{12}}\right)
$$

Cusps OK - 3 parameters

$$
\Psi=\left(1+\hat{P}_{12}\right) \exp \left(-Z r_{1}\right) \exp \left(\frac{-Z r_{2}+b_{2} r_{2}^{2}}{1+r_{2}}\right) \exp \left(\frac{r_{12} / 2}{1+e r_{12}}\right)
$$

Fragments OK - 2 parameters (coalescence wave function)

Z dependence

Best values around for compact wave functions

- D. Bressanini and G. Morosi J. Phys. B 41, 145001 (2008)
- We can write a general wave function, with Z as a parameter and fixed constants k_{i}
$\Psi(1,2 \mid Z)=\left(1+\hat{P}_{12}\right) \exp \frac{-Z r_{1}+Z k_{2} r_{1}^{2}}{1+r_{1}} \exp \frac{-Z r_{2}+\left(k_{3}+Z k_{4}\right) r_{2}^{2}}{1+r_{2}} \exp \frac{r_{11} / 2}{1+Z k_{1} r_{12}}$
- Tested for $\mathrm{Z}=30$
- Can we use this approach to larger systems? Nodes for QMC become crucial

GVB Monte Carlo for Atoms

Nodes does not improve

- The wave function can be improved by incorporating the known analytical structure... with a small number of parameters
... but the nodes do not seem to improve
- Was able to prove it mathematically up to $\mathbf{N}=7$ (Nitrogen atom), but it seems a general feature

$$
\begin{aligned}
& =\mathrm{E}_{\mathrm{VMC}}\left(\Psi_{\mathrm{RHF}}\right)>\mathrm{E}_{\mathrm{VMC}}\left(\Psi_{\mathrm{GVB}}\right) \\
& =\mathrm{E}_{\mathrm{DMC}}\left(\Psi_{\mathrm{RHF}}\right)=\mathrm{E}_{\mathrm{DMC}}\left(\Psi_{\mathrm{GVB}}\right)
\end{aligned}
$$

Is there anything "critical" about the nodes of critical wave functions?

Critical charge Z_{c}

- electrons:

$$
H=\frac{1}{2}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right)-\frac{1}{r_{1}}-\frac{1}{r_{2}}+\frac{\lambda}{r_{12}} \quad \lambda=\frac{1}{Z}
$$

- Critical Z for binding $Z_{c}=0.91103$
- Ψ_{c} is square integrable $\left\|\Psi_{c}\right\|_{2}<+\infty$
- $\lambda<1$: infinitely many discrete bound states
- $1 \leq \lambda \leq \lambda_{\mathrm{c}}$: only one bound state
- All discrete excited state are absorbed in the continuum exactly at $\lambda=1$
- Their Ψ become more and more diffuse

Critical charge Z_{c}

- N electrons atom
- $\lambda<1$ / (N-1) infinite number of discrete
eigenvalues
- $\lambda \geq 1 /(\mathrm{N}-1)$ finite number of discrete eigenvalues
- $\mathrm{N}-2 \leq \mathrm{Z}_{\mathrm{c}} \leq \mathrm{N}$ - -1
- $\mathrm{N}=3$ "Lithium" atom $\mathrm{Z}_{\mathrm{c}} \cong 2$. As $\mathrm{Z} \rightarrow \mathrm{Z}_{\mathrm{c}}$
- $\mathrm{N}=4$ "Beryllium" atom $\mathrm{Z}_{\mathrm{c}} \cong 2.85$ As $\mathrm{Z} \rightarrow \mathrm{Z}_{\mathrm{c}}$

Lithium atom

$r_{13} \operatorname{Spin} \uparrow$
Spin

$r_{1}=r_{2} \Rightarrow \Psi_{\text {Hartree }- \text { Fork }}=0$
Is $r_{1}=r_{2}$ the exact node of Lithium?

Spin \uparrow

- Even the exaxt node seems to be $r_{1}=r_{2}$, taking different cuts (using a very accurate Hylleraas expansion)

Varying Z: QMC versus Hylleraas

preliminary results
The node
r1=r2 seems to be valid over a wide range of λ
Up to $\lambda_{\mathrm{c}}=1 / 2$?

Be Nodal Topology

Ψ

$$
\text { Exact }=0
$$

$$
\Psi=\left|1 s^{2} 2 s^{2}\right|+c\left|1 s^{2} 2 n^{2}\right|
$$

$\mathrm{N}=4$ critical charge

Closeup
 $\mathbf{N}=\mathbf{3}$ $\mathbf{N}=4$

$$
\begin{aligned}
& \lambda_{c} \cong 0.3502 \\
& Z_{c} \cong 2.855
\end{aligned}
$$

$\mathrm{Zc}($ Hogreve $) \cong 2.85$

$\mathrm{N}=4$ critical charge node

preliminary results
very close to λ
${ }_{c}=0.3502$

Critical Node very close to

The End

Take a look at your nodes

