

Gauge-scalar lattice spectroscopy

Elizabeth Dobson • University of Graz

Grand Unified Theories importance of systematic control

Gauge invariance

BRST breaks down for nonabelian theories elementary fields are unphysical the Fröhlich–Morchio–Strocchi mechanism

Lattice spectroscopy

toy SU(3) model to test FMS mechanism discrepancies with naive perturbation theory

Main message:

naive perturbation theory can't be trusted for predicting GUT spectra

Gauge-invariant approach to grand unified theories

our approach

- subgroup depends on gauge choice
- different spectra possible
- nontrivial mapping to SM spectrum
- no assumption that BEH \implies low-energy

- which assumptions carry over from SM pheno?
- What is the correspondence between bound states in the unbroken theory and SM observables?
- Which GUT groups are plausible?

Elementary fields form an unphysical state space

nonabelian gauge group + local gauge-fixing condition:

no unique solutions beyond PT BRST insufficient to fix gauge

 ξ -invariance \Rightarrow gauge invariance perturbative state space is gauge-dependent

elementary fields (and e.g. Higgs vev) are not reliable order parameters

Landau gauge-fixing surface

Fröhlich-Morchio-Strocchi approach: composite states

boundstate-boundstate correspondence after gauge-fixing is nontrivial in general:

important for BSM model building!

Compare: composite "Higgs" and 1⁻ vector singlet

[here: SU(N) Yang–Mills with single fundamental scalar]

poles coincide to all orders in perturbation theory!

Gauge invariance qualitatively changes the spectrum

[here: SU(N) Yang–Mills with single fundamental scalar]

Testing FMS on the lattice: a toy SU(3) + YM model

Generalisation of SM gauge-weak sector single scalar $\varphi \in SU(3)$ or $\varphi \in su(3)$

Breaks to nontrivial gauge group SU(3) \rightarrow SU(2) or SU(2) \times U(1), U(1) \times U(1)

Nontrivial custodial group global U(1) or Z_2

⑦ what is the stable spectrum?

⑦ are the lighter states charged?

⑦ do lattice results support FMS?

Constructing operators in different channels

States for any (J, M) via 'ladder operators': $\tilde{D}_{\pm} = \mp i (D_1 \pm i D_2) / \sqrt{2}$, $\tilde{D}_0 = i D_3$

Continuum \rightarrow lattice: project onto O_h irreps via Clebsch–Gordan coefficients

Project to required parity/charge parity

 $\varphi^{\dagger} \cdot (D_{\mu_1} \dots D_{\mu_n} \varphi)$

U(1)-neutral, gauge-scalar

Implementation details

Setup

SU(3) + YM + single scalar 3D coupling space (β, κ, γ) isotropic lattice: L = 10, 12, ..., 32

Gauge fixing Landau 't Hooft or Unitary Stochastic OR

(on fixed timeslice)

Operator basis

Heatbath + OR updates

- · Cabbibo-Marinari method
- Scalar OR: rotate $\varphi(x)$ around vector $\propto \frac{\partial S}{\partial \varphi(x)}$
- Adjoint case: approx. HB/OR
 + accept/reject step

Smearing

Stout (links), APE (scalars)

Spectroscopy

variational analysis fitting to plateaus of C(t)scattering from stable states $V \rightarrow \infty$ extrapolation

Extending to the adjoint-scalar case

[work in progress]

So far: phase diagram

More interesting

multiple breaking patterns more applications to BSM physics

More difficult

massless modes challenges in taking continuum limit (even) noisier

Work in progress: spectroscopy automatising large operator basis spectroscopy, scattering analysis

Outlook and implications for BSM phenomenology

Systematic control matters

gauge invariance has a qualitative effect on nonperturbative spectra qualitative differences, even at small coupling

Results

qualitative differences from pure Yang–Mills, and from SU(2) FMS: nontrivial field theory effects can still be treated perturbatively

Applications

constraining GUTs (where lattice tests unfeasible) meson decay, LFUV...

adjoint case: multiple symmetry breaking patterns

Work in progress

better statistics → excited states adjoint spectroscopy (more complex) SSB for global U(1) symmetry

Gauge-scalar lattice spectroscopy

Elizabeth Dobson • University of Graz

Phase transition: Higgs-like \rightarrow "QCD-like"

 $[V \rightarrow \infty$, normalised to lightest mass]

Phase transition: Higgs-like \rightarrow "QCD-like"

[energy scale = αm_{eff} , $V \rightarrow \infty$]

Comparison to pure Yang–Mills $\beta = 8.353950, \kappa = 0.407782, \nu = 7.748300$ [normalised to lightest mass] SU(3) YM + scalar Pure-YM SU(3) case (deep QCD-like region) 2 3 $\overline{\Psi}$ 2 0 0

data (left) from Athenodorou and Teper, arXiv:2106.00364

SU(3) fundamental spectrum: additional U(1)-charged states

SU(3) fundamental spectrum: additional U(1)-charged states

