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Anomalous muon magnetic moment

The anomalous magnetic moment of the muon is defined as aµ = (g − 2)/2,
where g is the Landé g-factor, proportional to the muon’s intrinsic magnetic
moment. In Dirac’s relativistic quantum theory g = 2 exactly, but in the
Standard Model (SM) of particle physics it gets tiny corrections from the
electromagnetic, strong, and weak interactions. Experimental results of
magnetic moment from Brookhaven national lab is 3.7σ larger than the
standard model prediction and the new result from Fermi lab has larger
discrepancy of 4.2σ with the Standard Model.
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Reasons

1 The reason for discrepancy between experiment and theory lies in the
computation of the quantum loop corrections – loops with photons and
leptons, electroweak contribution and hadronic contribution.

2 Hadronic contribution can be categorised into hadronic vacuum
polarization (HVP) and light-by-light scattering.

3 In HVP, a virtual photon briefly explodes into a ”hadronic blob", before
being reabsorbed, while the real photon (corresponding to magnetic field)
is simultaneously absorbed by the muon.
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Hadronic vacuum polarization

The total HVP contribution to aµ comes from both connected and
disconnected-quark line diagrams for each flavor of quark in nature. The u, d
quark-connected contributions are by far the largest, thus requiring the highest
precision

Figure 1: The quark connected diagram contributing to the hadronic vacuum
polarization contribution to the muon anomaly.
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Theoretical framework

We begin with the computation of loop graph in perturbation theory of the
vertex function without hadronic contribution. After applying Feynman rules
and taking the limit q2 → 0, the aµ from the contribution of the diagram in Fig
(1) reads

aµ = e2i
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Next step is to do Wick rotation into Euclidean spacetime and performing the
angular integrations and analytically continuing p2 → −m2

µ on shell for the
external momenta,

aµ =
α

π
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The loop does not affect the rest of the integral and also it depends only on
K2, we can insert its contribution into eq(2) to obtain the O(α2) hadronic
contribution.

aHVP
µ = 4α2

∫ ∞
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dq2f
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(3)

f
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is known, Π̂
(
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)

is subtracted HVP, Π̂
(
q2
)
= Π

(
q2
)
−Π(0), computed

directly on Euclidean space-time lattice from the Fourier transform of the
two-point current function

Πµν(q) =

∫
eiqx ⟨jµ(x)jν(0)⟩ = Π

(
q2
) (
qµqν − q2δµν) (4)
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writing everything in time-momentum representation -

Π
(
q2
)
−Π(0) =

∑
t
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cos qt− 1

q2
+
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2
t2
)
C(t) (5)

C(t) =
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3

∑
x,i

⟨ji(x)ji(0)⟩ (6)

aHV P
µ =

∑
t

w(t)C(t) (7)

Correlation function that we use in our calculation is 2-point current-current
correlation function

C(tx − ty) =
∑
x⃗,y⃗

⟨Jµ(x⃗)Jν(y⃗)⟩

= ⟨jµ(x)jν(y)⟩
=

〈
[ψ̄γµψ](x)ψ̄γνψ](y)

〉
=

〈
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−1
x,yγν

〉
(8)
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Staggered Dirac operator

The structure of staggered Dirac operator, M is

M
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no
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 (9)

For a typical size, Dirac operator is a sparse matrix. In order to improve the
convergence of conjugate gradient, we used a pre-conditioned operator. In our
case, pre-conditioned operator is just M†M. This gives us the same set of
eigenvectors but the eigenvalues would be squared of the Dirac operator.
Preconditioning is useful because it reduces the condition number of the
problem
We are interested to compute the inverse of Dirac matrix and our approach is

M−1S = ψ ⇒ ψ = (M†M)−1M†S (10)
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2-point current-current correlation function

On the lattice the current is not conserved, so we use a point-split current that
is exactly conserved,

Jµ(x) =
1

2
ηµ(x)(χ̄(x+ µ̂)U†

µ(x)χ(x) + χ̄(x)Uµ(x)χ(x+ µ̂)) (11)

The 2-point split current-current function becomes

4
∑
x⃗,y⃗

⟨Jµ(x)Jν(y)⟩ =−
∑
m,n

∑
x⃗,y⃗

1

λmλn

(
Λ†

µ(x)mnΛ
†
ν(y)nm

+Λ†
µ(x)mnΛν(y)nm + Λµ(x)mnΛ

†
ν(y)nm

+Λµ(x)mnΛν(y)nm) (12)

Here λn is short for m± iλn with
eigenvector ordering λ0,−λ0, λ1,−λ1, . . . , λNlow ,−λNlow ,
the sums of labels m and n run up to 2Nlow .
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(Λµ(t))n,m is what we called meson fields,

(Λµ(t))n,m =
∑
x⃗

⟨n | x⟩ηµ(x)Uµ(x)⟨x+ µ | m⟩(−1)(m+n)x+m (13)

where the factor (−1)(m+n)x+m arise from the odd sites sign difference
between n+ and n−. (Λµ(t))n,m is the building block for the LMA part of the
lattice computation and take the majority of the computation resources. The
low-mode eigenvectors are also used to deflate the CG for quark propagators.
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Low mode and all mode averaging

The aim of lattice calculations is to effciently obtain C(t) with as much
precision as possible. In HVP calculation, we combine AMA and full-volume
LMA as an improved estimator,

⟨O⟩ = ⟨O⟩exact − ⟨O⟩appx +
1

N

∑
i

⟨Oi⟩approx − 1

N

∑
i

⟨Oi⟩LM +
1

V

∑
i

⟨Oi⟩LM

To do this we use the techniques of LMA(low mode average) and
AMA(all-mode average)1. Both methods rely on the spectral decomposition of
the quark propagator in terms of the eigenvectors of the lattice Dirac operator.

1. Schematically, the quark propagator from source point y to sink point x,
S(x, y), is given by the inverse of the Dirac operator

S(x, y) = D−1(x, y) =
∑
λ

⟨x|λ⟩ ⟨λ|y⟩
λ

(14)

1Blum, Izubuchi, and Shintani, “New class of variance-reduction techniques using lattice
symmetries”.
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2. Then divide the summation into two parts - low modes and high modes

S(x, y) =
∑

λ≤λlow

⟨x|λ⟩ ⟨λ|y⟩
λ

+
∑

λ>λlow

⟨x|λ⟩ ⟨λ|y⟩
λ

=
∑

λ≤λlow

⟨x|λ⟩ ⟨λ|y⟩
λ

+D−1(x, y)

1−
∑

λ≤λlow

⟨x|λ⟩ ⟨λ|y⟩
λ


= SL + SH (15)
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3. And finally C(t) is determined by the sum of four parts,

Cµν =
∑
x,y

Tr γµS(x, y)γµS(y, x) = CLL + CLH + CHL + CHH (16)

In practice, the low modes are computed directly, using an effcient version of
the Lanczos algorithm and once the low modes are determined, SH is
determined by computing the inverse of the deflated Dirac operator, using the
conjugate gradient algorithm
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Computational techniques

1. Eigenvectors: The low modes of the preconditioned Dirac operator are
computed 8 with the implicitly restarted Lanczos (IRL) algorithm.

2. CLL: The LL part of the correlation function is constructed from products
of inner- products of eigenvectors and scales linearly in size of the
eigenvectors and quadratically with the number of eigenvectors2.

3. CHL/LH : We calculate the deflated (low-mode pro- jected, or high mode
part of the) quark propagator on each low mode on a time slice. We will
work to reduce this dominant cost by testing and tuning a new
block-conjugate gradient solver and the split-grid technique to speed up
the solves.

4. CHH : The high-high part of the correlation function dominates the small
Euclidean time part of C(t), which has exponentially smaller errors. Here
we simply replicate our previous AMA-style calculation with deflated,
approximate, conjugate gradient solves from the quark propagator on
source points.

2Blum et al., “Calculation of the hadronic vacuum polarization contribution to the muon
anomalous magnetic moment”.
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What am I doing currently?

The full volume average of the low modes which shows even smaller
fluctuations. This means there is still significant noise in the CHL(LH) part of
the correlation function.

1 The low modes of the preconditioned Dirac operator are computed with
the Lanczos (IRL) algorithm.

2 Using these eigenvectors we construct sources.

3 Calculate the deflated quark propagator on a time slice.

4 We have results working fine for 43 × 4 lattice. Hope to get results for
lattices ad big as like 963 × 192
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Thank you!


