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e Now we can factor out the QED part and solve it directly
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QED Mass Corrections

e Based on the change in (O.(T,0)0.(—T,0)),

1
Am, = 9 /d4XHW(X)SW(X)’

where Hyp,(x) = 1342 DAL @O T)
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e We can represent this correction diagrammatically as

T

on the lattice.
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e Based on the change in (O,(T,0)0,(—T,0)),
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where H,,,(x) = L® <O(tZLOT)(J;i§T))O( () T)(> D) on the lattice.

e We can represent this correction diagrammatically as

Rt

e Unfortunately, if we simply calculate this integral on the lattice, we

get significant finite volume effects.
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e At large distances, H,,(x) = L3 (o
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e For t >> |x]|, this is order 1.
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e For t >> |x|, this is order 1.

e On the other hand, the photon propagator S,,,(t,X) is not
exponentially suppressed at large t because the photon is massless.
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e At large distances, H,,(x) = L3 <O(t<+oc)é‘f;);é(ﬂo()?;§;T)> scales like
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For t >> |X], this is order 1.

On the other hand, the photon propagator S, (t, X) is not
exponentially suppressed at large t because the photon is massless.

Therefore, our finite volume errors in Amy = 3 [ d*xH,,,,(x) S, (x)

will only be power-law suppressed.
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e To get exponentially suppressed finite volume effects, we can
reconstruct the large-distance contributions to Am,.*

* Xu Feng, Luchang Jin (2019)
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e To get exponentially suppressed finite volume effects, we can
reconstruct the large-distance contributions to Am,.*

e While we only have data for 7, (x) within the lattice volume, we
know that its large-distance behavior is dominated by the lowest
energy state.

e For large t, we get

How(t,X) = / d*3H,.,(ts, X)

3—»
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m

where t; is a reference time large enough that 1, (ts, X) is
dominated by the lowest-energy state, but small enough to be
computed on the lattice.

* Xu Feng, Luchang Jin (2019)
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Figure 1: Am versus t, for various mesons on a 64 x 128 lattice using the

Iwasaki gauge action
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