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QED Mass Corrections

• On the lattice, we can calculate hadron masses like mπ by fitting

⟨Oπ(T , 0⃗)Oπ(−T , 0⃗)⟩ ∝ e−mπ(2T ),

where Oπ is an interpolating operator for the pion.
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• On the lattice, we can calculate hadron masses like mπ by fitting

⟨Oπ(T , 0⃗)Oπ(−T , 0⃗)⟩ ∝ e−mπ(2T ),

where Oπ is an interpolating operator for the pion.

• Let ⟨Oπ(T , 0⃗)Oπ(−T , 0⃗)⟩QCD be the pure QCD correlation function.

• Then

⟨Oπ(T , 0⃗)Oπ(−T , 0⃗)⟩QCD+QED

=
1

Z

∫
e
∫
d4x[LQCD+iψ̄eγµAµψ+

1
4FµνFµν]Oπ(T , 0⃗)Oπ(−T , 0⃗)
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QED Mass Corrections

• On the lattice, we can calculate hadron masses like mπ by fitting

⟨Oπ(T , 0⃗)Oπ(−T , 0⃗)⟩ ∝ e−mπ(2T ),

where Oπ is an interpolating operator for the pion.

• Let ⟨Oπ(T , 0⃗)Oπ(−T , 0⃗)⟩QCD be the pure QCD correlation function.

• Then

⟨Oπ(T , 0⃗)Oπ(−T , 0⃗)⟩QCD+QED

=
1

Z

∫
e
∫
d4x[LQCD+iψ̄eγµAµψ+

1
4FµνFµν]Oπ(T , 0⃗)Oπ(−T , 0⃗)

≈ 1

Z

∫
e
∫
d4x[LQCD+

1
4FµνFµν]Oπ(T , 0⃗)Oπ(−T , 0⃗)

×
(
1 +

∫
d4xJµAµ +

1

2

∫
d4xd4yJµ(x)Aµ(x)Jν(y)Aν(y) + ...

)
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QED Mass Corrections

• Now we can factor out the QED part and solve it directly

⟨Oπ(T , 0⃗)Oπ(−T , 0⃗)⟩QCD+QED

≈ 1

ZQCD

∫
e
∫
d4xLQCDOπ(T , 0⃗)Oπ(−T , 0⃗)

×
(
1 +

1

2

∫
d4xd4yJµ(x)Jν(y)Sµν(x − y) + ...

)
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QED Mass Corrections

• Now we can factor out the QED part and solve it directly

⟨Oπ(T , 0⃗)Oπ(−T , 0⃗)⟩QCD+QED

≈ 1

ZQCD

∫
e
∫
d4xLQCDOπ(T , 0⃗)Oπ(−T , 0⃗)

×
(
1 +

1

2

∫
d4xd4yJµ(x)Jν(y)Sµν(x − y) + ...

)
= ⟨Oπ(T , 0⃗)Oπ(−T , 0⃗)⟩QCD

+
1

2

∫
d4xd4y⟨Jµ(x)Jν(y)⟩QCDSµν(x − y) + ...
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QED Mass Corrections

• Based on the change in ⟨Oπ(T , 0⃗)Oπ(−T , 0⃗)⟩,

∆mπ =
1

2

∫
d4xHµν(x)Sµν(x),

where Hµν(x) = L3
⟨O(t+T )Jµ(x)Jν(0)Oπ(−T )⟩

⟨Oπ(t+T )Oπ(−T )⟩ on the lattice.
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QED Mass Corrections

• Based on the change in ⟨Oπ(T , 0⃗)Oπ(−T , 0⃗)⟩,

∆mπ =
1

2

∫
d4xHµν(x)Sµν(x),

where Hµν(x) = L3
⟨O(t+T )Jµ(x)Jν(0)Oπ(−T )⟩

⟨Oπ(t+T )Oπ(−T )⟩ on the lattice.

• We can represent this correction diagrammatically as

• Unfortunately, if we simply calculate this integral on the lattice, we

get significant finite volume effects.
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QED Mass Corrections

• At large distances, Hµν(x) = L3
⟨O(t+T )Jµ(x)Jν(0)Oπ(−T )⟩

⟨Oπ(t+T )Oπ(−T )⟩ scales like

e−mπT e−mπ

√
t2+|x⃗|2e−mπT

e−mπ(2T+t)
= e−mπ(

√
t2+|x⃗|2−t).

• For t >> |x⃗ |, this is order 1.
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QED Mass Corrections

• At large distances, Hµν(x) = L3
⟨O(t+T )Jµ(x)Jν(0)Oπ(−T )⟩

⟨Oπ(t+T )Oπ(−T )⟩ scales like

e−mπT e−mπ

√
t2+|x⃗|2e−mπT

e−mπ(2T+t)
= e−mπ(

√
t2+|x⃗|2−t).

• For t >> |x⃗ |, this is order 1.
• On the other hand, the photon propagator Sµν(t, x⃗) is not

exponentially suppressed at large t because the photon is massless.
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QED Mass Corrections

• At large distances, Hµν(x) = L3
⟨O(t+T )Jµ(x)Jν(0)Oπ(−T )⟩

⟨Oπ(t+T )Oπ(−T )⟩ scales like

e−mπT e−mπ

√
t2+|x⃗|2e−mπT

e−mπ(2T+t)
= e−mπ(

√
t2+|x⃗|2−t).

• For t >> |x⃗ |, this is order 1.
• On the other hand, the photon propagator Sµν(t, x⃗) is not

exponentially suppressed at large t because the photon is massless.

• Therefore, our finite volume errors in ∆mπ = 1
2

∫
d4xHµν(x)Sµν(x)

will only be power-law suppressed.
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QED Mass Corrections

• To get exponentially suppressed finite volume effects, we can

reconstruct the large-distance contributions to ∆mπ.*

* Xu Feng, Luchang Jin (2019)
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• While we only have data for Hµν(x) within the lattice volume, we
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QED Mass Corrections

• To get exponentially suppressed finite volume effects, we can

reconstruct the large-distance contributions to ∆mπ.*

• While we only have data for Hµν(x) within the lattice volume, we

know that its large-distance behavior is dominated by the lowest

energy state.

• For large t, we get

Hµν(t, x⃗) =

∫
d3x⃗Hµν(ts , x⃗)

×
∫

d3p⃗

(2π)3
e−i p⃗·(x⃗′−x⃗)e−(En,⃗p−mπ)(t−ts ),

where ts is a reference time large enough that Hµν(ts , x⃗) is

dominated by the lowest-energy state, but small enough to be

computed on the lattice.

* Xu Feng, Luchang Jin (2019)
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QED Mass Corrections

Figure 1: ∆m versus ts for various mesons on a 643 × 128 lattice using the

Iwasaki gauge action
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