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A sketchy (and subjective) timeline

1930: Quantum Electrodynamics

1940: Feynman diagrams, path integral

1950: Renormalization, deal with divergencies
1954: Yang-Mills theories

1973: Quantum Chromodynamics

1976: Ken Wilson, Cargese lectures
“present methods for solving field theories do not work for strong coupling”

1970+ : non-perturbative methods, lattice field theory

1977 Giorgio Parisi, Cargese lectures
““we do not know yet how to get correct answers,
but we begin to understand which are the right questions to ask “

Examples: Hadron structure
1980+: Complexity - The enigma of the muon g-2
- The strong coupling constant
1990+: String theories, CFT - Flavor Physics for BSM searches



“Lattice 88”
by Paul Mackenzie

The ability to understand the properties of the strongly interacting particles
from first principles is a 40-year-old dream which is now approaching reality.
Following the development of quantum chromodynamics (QCD) in the early
1970s, honest calculations of the masses and other properties of hadrons were
made possible by Ken Wilson’s inventions of lattice gauge theory and renor-
malization group methods. Lattice gauge theory became a major industry
around 1980, when Monte Carlo methods were introduced, and the first
prototype calculations of the hadron spectrum yielded qualitatively reasonable
results. This past year has seen the most powerful attacks yet on the theory of
the strong interactions and the richest variety of physics results.

{Fermilab photograph 88-961-9) (Fermilab photograph 88-962-22)

Peter Hasenfratz discusses the A. A. Migdal shown here "putting
bounding of the mass of the Higgs. strings on the lattice.”



QCD - why a numerical approach



QED vs QCD

* Photons do not carry charge  Gluons are charged

* Free electrons and free photons * Free quarks and gluons do not
exist exist: confinement?

* Interactions are strong at short * Interactions are faible at short

distance - Coulomb force distance: asymptotic freedom

A theory with only photons A theory with gluons only
Is free is interacting and Interesting

Eu/ — au AI/ — 8I/A/,L FIS,CL) — 8# Al — 6VAZ —\gs fabcA/bj, A;’,




QED vs QCD vs Yang-Mills

* Photons do not carry charge  Gluons are charged

* Free electrons and free photons * Free quarks and gluons do not
exist exist: confinement?

* Interactions are strong at short * Interactions are faible at short

distance - Coulomb force distance: asymptotic freedom

A theory with only photons A theory with gluons only (Yang-Mills)
Is free is interacting and Interesting

Eu/ — aqu/ — aVA[L F;SZ) — 8p,Ag — 8VAZ —|Gs fabCAf(),LAg




From QED to Yang-Mills theories

Electrodynamics:

1 _
LqED = _ZEU/FﬂV + Y(vHV, —m)y

Infinite mass

1 _
Lqep = —ZF,,,UF W (i Vg~ my  Fu = 0,4, — 0,4, Free photons
Yang-Mills Gluons
(a) (a) u . . .
L= _i W Fl% = 0,42 — 9,A2 — 9s fabcAzA,,

Self-interacting gluons



QCD : motivation for a on-perturbative approach

Confinement: quarks and gluons are not observed as asymptotic states

Breaking of chiral symmetry: due to the coupling becoming large at large distance

Topological properties: non-existent at any order in perturbation theory



Calculational schemes
from real to imaginary time

Correlators, correlation length, masses



General calculations scheme:

Rotate to imaginary time  Zg =1 — —tZy = —IT
4 = /DA,,, Dy Dy e ” <— note: Euclidean space time
S = / d'x (%FWF’“’ — M) .
A RFT in d space dimensions becomes a statistical field theory in d+1 dimensions

Integrate out fermions

Z = / DA, detM el v (CRFuwF™)

(0) = % / DA, O e ® S = Sgauge + Squarks = [ d*x (FuwF") — Y, log(DetM;)



Minkowski —> Euclidean

Green functions —> Correlation functions

In many cases correlation functions decay exponentially at large distance:

limy 0o < O(H)O(0) >oc e~ H/to

to

correlation length

Back to Minkwoski

1

. —t/tp 1
dtePote —— —
f 2t0 p(2)—|—tL2
0
—7 p0—iE =

1/ts—E?

Mass = inverse correlation length




Minkowski —> Euclidean

Green functions —> Correlation functions

limy 0o < O(H)O(0) >oc et M

M = lowest excitation in the channel which couples to O




From real time to real frequency space:

In imaginary time G(t) G(t) — fé(M — w>6—wt o e~ Mt

In real frequency space: 5(M — w)



Spectral functions and two point functions : a challenge for LFT

SO—I——I— (w)

Mixing, widths

SO-I—-I— (w)

Yang-Mills QCD

G(t) = [5(M —w)e = e G(t) = [ S(w)e "



FT Euclidean space — take home message

Complete equivalence between Minkowski FT in d space dimension with statistical field theory in d+1 dimension

Grand Canonical Partition Function defines all the observables of the theory

1 ,
(0) = E/DA,, O e

Exponential decays of Euclidean two point functions —> mass of the lowest excitation in that channel

More general functional forms may appear, which require a dedicated analysis



Computational Strategy: Lattice Gauge Theory

1) Rotation to
imaginary time +
discretisation

gj

scretize fields:
Gauge fields
/

/
U

\Matter fields
V> Vg




Lattice Gauge Theory

Computational Strategy:
1) Rotation to imaginary Discretize fields:
time + discretisation Gauge fields
1 \ U/ ‘\I\/I tter field
— -5 Matter field:
(O) = Z/’DA,J, Oe b,

2) Monte Carlo Simulation
Performing the integration —Sa
>, Ot

T (0/0]0) =




Discretising - general issues



—Discretization: from continuum space to a grid

4
2
0
—Why? Two standard motivations: . B 5 .
1. Physical system intrinsically discrete (i.e. spin models) .
2. Make it amenable to a numerical study —> QCD LSRN IR IEEE O 0 i
4
— Discretization is in principle trivial: (2) |
b b—a (fl@) & b-a\) , 1)
f(z)dz ~ — < +Y (fla+k - +—> -2 -1 0 2
/a : = ( ( )> i lllustration of the trapezoidal rule. =
— Already in this simple example: : . .
.Strategies for improvement? d
.How to check the ‘continuum limit?’ | 1
.Suppose a, b— OO -1 0 2
How to check convergence to infinite volume? e lllustration of Simpson's rule. &

— Slightly more complicated: increase the dimensionality, make the function less smooth..
Computational costs??



Matter (scalar) fields: on sites

L= %(6;@)2 - %m2¢2 + \op?.

2

S — Za4 (; Z [¢(n + 1#)2_a¢(n - 1#) 4+ 1m2¢2(n) 4+ )\q54(n))




Gauge fields
U.(n) = exp(igaT*Aj,(n))

os(y) — P(exp z'g/da:#AM)gb(a:) = U(y, z)p(x) SU(3) Matrix

S

Parallel transport: Lattice Gauge Theory : gauge invariance ‘by fiat’

Discretize fields:
Gauge fields

//
U
Viatter fields
\ ety

Tr...U2)Uy(x+f)...— Tr.. .U (z)Vi(z+ @) V(e + @)Uz + i) . ...

Gauge invariant




Build the Action ‘by guessing’..

2
S = ? Z Z Re Tr (1 — Upp()). ? Does it work?

T pu>v

Upu(x) = Up(2)U, (z + fia)Ul(z + Da)UJ(z)
Check continuum limit a-> 0

A (x+va) =A, () +a0,Au(x) + ...

Up(z) =1 +ia*F,, + ... B =2N/g"

Continuum limit OK



Continuum limit

Coming back to correlation functions:

limy 0o < O(t)O(0) >oc et M

M = dimensionless quantity, expressed in lattice units = 1/5=

M=Mphys*a =1/€

a — O, 5 — OO Continuum limit: singularity !




‘g’ in the Lattice Lagrangian is the coupling at the scale ‘a’

1 /28 1/2byg*
al; = 5 e~ 1/2bog
[ bog

Physical scale — dimensional transmutation

b() = (I—SJVC — %i\'rf) /167’!’2 Eil'ld b1 = (;—:‘\7(12 — (1—?‘\} -+ ﬁ;(;l) i\'rf) /(16’/1'2)2

QCD Asymptotic freedom allows a rigorous continuum limit

In perturbation theory, a(g) is known.



Yang-Mills, continuum and lattice

1
SCOnt- — /d4:I?— Tr FH,/F#V
4g?

Not unique — improvement

x 1 x 1 U : SU(3) matrix Det =1
.~ »e o Ur{-13 = U*
Uu(z) U_y(z+1)= Ulfl = Uj:(zzr)
Y >

a: 0.1 fm? 0.003fm? 1cm???

g only parameter. —> where is the spacing?



After discretising -

Back to the continuum



Planning a simulation

Parameters: Na, NT, 0]

Lattice Gauge Theory
Assume we have the lattice results for
some masses

B M

Digcretize fields: M2Lat
Gauge fields M3Lat
/
U
“Matter fields . . .
Vg, Vg How do we get results in physical units?




Issues
— Scale setting : one physical value needed as input!
—Scaling : how strong are the discretisation effects?

—Asymptotic scaling : are we sensitive to the g=0 singularity?




An example of scale setting

Lattice Gauge Theory

7
U

Digcretize fields:

Gauge fields

\Matter fields
(UPPRLP

Suppose Mp=M1Latt= 0.25 is the proton mass in lattice units
g=0.2

a*Mp = 0.25 Mp = 970 MeV (approx.)

a = 0.25 *970 Mev**(-1) = 0.29*970/197 = 1fm

Knowing a, M2 and M3 can be computed

Scelte correnti : a circa 0.05 fm, Ns, Nt > 48




Scaling : repeat for different couplings and check consistencies of results -
or, which is the same, check that dimensionless ratios do not depend on g

Asymptotic scaling : repeat for different couplings, and check consistency with the two-loop
universal scaling — implies scaling, but much harder to get

1 by /2b7 )
al; = ( ) e 1/2bog

b092

Improvement: in general, a program aimed at controlling lattice artifacts,
so to reach faster and with more confidence scaling (hence continuum limit)




The functional integral

Sampling the phase space



Task:



from Mike Creutz:

IR

A direct evaluation

of such an integral has pitfalls. At first sight, the basic size of the calculation
is overwhelming. Considering a 10* lattice, small by today standards, there are
40,000 links. For each is an SU(3) matrix, parametrized by 8 numbers. Thus
we have a 10* x 4 x 8 = 320, 000 dimensional integral. One might try to replace
this with a discrete sum over values of the integrand. If we make the extreme
approximation of using only two points per dimension, this gives a sum with

9320,000 _ 3 g v 1()96,329 (6)
terms! Of co ' fast, but one should remember




Monte Carlo methods:

Create a sample of configurations distributed according to

6_S

The functional integral may then be traded with an average over configurations

_LS"
g O, e 7"
.

1 _ ,
O =z [Pa0c o SEE




Monte Carlo time ‘evolution’

> New 7

Different methods use different strategies for choosing the new link

Crucial point: positive Action!



1. Metropolis
AS = S(U;) - S(U;) (all other variables kept fixed) .

If AS<0 the move is accepted

Otherwise: pick random number r 0 < r < 1 and accept if

rse_As ‘

Maximise distance between configurations, at the price of high rejection rate



2. Heath Bath

Choose new U with the appropriate weight:
exp{—S(U;")}

Accept step always satisfied by construction

It may be expensive



3. Modified Metropolis

Same as Metropolis, but make several hits
with the same link :
“n upgrading per step”

It ‘interpolates’ between the two previous cases - optimal n to be determined



A typical Monte Carlo simulation:

| month

supercomputer

analyse

measurements
4 months
Observables
MC sie

> Gr‘d . rusl ’ mnz’. mnl”

of scheduling

analyws optimation

of schedufing



Observables



Thinking in abstract terms - i.e. let us consider the discretised theory as a statistical
system in d+1 dimension — these are basic measurable quantities:

4 RxT

1) Wilson loops

2) Polyakov loop ¥
é-_:i‘-;* :";iﬁ-

3) Topological charge Difficult to draw ‘butterly operator’ %’U Koy F'F In the continuum
15 ok (more later)
k3, ’%

4) Two point functions of any of the above

5) Two point functions of composite fermion operators



Wilson loop

String tension - Interquark potential

+2.

+1,

Fig. 1. The interquark potential measured for two values 8 = 5.15
and B = 5.35 and mapped onto each other by setting the scale

V(R) = — Tl—i+r20

L ) T L ' 1 Ll L Ll I v L) ¥ L) [ ¥ L} L§ T ’ L L L L}

Confinement

Asympj0tic freedom B=5 . 35

A B=5.15

s L ' L e L A l L i 'l 1 l 'l i 1 L I i L 1

L

—

0.5 1.0 1.5 2.0
1/2
R oV

from the fitted string tension.

2.5

T

1 InW(R,T)

ViI(R) =¢co — F

String tension

S LoR

Cornell form

JT =420 MeV, Physical value



Two point functions of simple Wilson loops: Glueballs

o 3 T3
7 1) ()
L LS
<7 <7 [ > ‘—P
eyl un s
2,/ L/ L Z<_/7
v

FIG. 1. The Wilson loop shapes used in making the basic
glueball operators.

9901004

Cap(t) = S _(0[®Y (r+1) 17 (7)[0).

T

C()()(t) = ZO() {e—m(;t + e—m(;(T—t)}’

TABLE I. The glueball simulation parameters. Values for
the coupling 3, input aspect ratio parameter £, the mean-link
parameter u:, the single-link smearing weight s, the two-link
smearing weight Ay, and the lattice sizes are listed. Results
for the hadronic scale ro in terms of the lattice spacing as are
also given. The approximate spatial lattice spacings as are
determined assuming r, ' = 410(20) MeV.

B & wuf A A Lattice 7o/as as/ro as (fm)
1.7 5 0295 0.1 0.5 6° x30 1.224(1) 0.8169(9) 0.39
1.9 5 0328 0.1 0.5 6°x30 1.375(2) 0.727(1) 0.35
22 5 0.378 0.1 0.5 8 x40 1.761(2) 0.5680(5) 0.27
24 5 0409 0.1 0.5 8 x40 2.180(6) 0.459(1)  0.22
2.5 5 0.424 0.1 0.5 10° x 50 2.455(6) 0.407(1)  0.20
3.0 3 0500 0.4 0.5 15% x 45 4.130(24) 0.2421(14) 0.12




1 ZU

Spectrum of scalar and pseudoscalar glueballs from
functional methods

Markus Q. Huber®!, Christian S. Fischer”!?, Helios Sanchis-Alepuz®?>*

Hnstitut fiir Theoretische Physik, Justus-Liebig-Universitit Giessen, 35392 Giessen, Germany

2Helmholtz Forschungsakademie Hessen fir FAIR (HFHF), GSI Helmholtzzentrum fiir Schwerionenforschung, Campus
Gieflen, 35392 Gieflen, Germany

3Institute of Physics, University of Graz, NAWI Graz, Universititsplatz 5, 8010 Graz, Austria

4Silicon Austria Labs GmbH, Inffeldgasse 33, 8010 Graz, Austria

Spin-0 glueballs

LLF ¢

eV]
4

° o*nm

v
T

MG

n « BSE
« lattice [Morningstar, Peardon, 1999]
= lattice [Athenodorou, Teper, 2020]

0+ 0t 0"t 0 (0 0



Two point functions of Polyakov loop: alternative extraction of the potential

e VEDIT o POPHR) > . x e o8

R—
P(t) 4
L
it
T
As an aside:
Parametro d’ordine per Z(N.). —> Confinement as a symmetry
For two colours: Z(2): Ising model!! —> Universality
‘Build’ Polyakov loop system: it is a cube of spins!! —> dimensional reduction at Tc




Polyakov loop again : YMvs QCD

Used as order parameter for the Yang-Mills transition

No longer an order parameter with matter fields: the string can break due
to recombination with light quarks popping out of the vacuum

String



Two point functions of composite fermions: meson spectrum

Basic :

[lav)laldeliyepiedtiyite = [[aU)(Mz e [U])* (M 2 [U)det Me ™5

Asrc;nAsnk,n —_E
(OIHN(T)H(0)|0) =) on € ot Spectral decomposition
" " (generalizes asymptotic exponential decay)

Insert appropriate gamma matrices to create different quantum numbers



Example of results : Rho mass

from different fermion discretizations

| | | | | | | | | | | | I
2.0 — @ —
i ® ]
1.8 — —
R
- i _
2> - —
1.6 — + % —
i + N - r1= scale setting parameter
- i Circa 0.57GeV
- © plag./conventional KS i
1.4 — @ Sym_1loop/Asq_tad -
| % UKQCD tad_clover_wilson ]
.+ Sym_1loop/clover_wilson i
- o Wilson/DrNF | .
1.2 ! | Il | l | | | | 1 l |
0.0 0.2 0.4 0.6

(51/1'1)2



Either for Glueballs and Mesons
the task is to identify the asymptotic exponent m

G(t)t%oo — G_mt




Operator Improvement -

Smoothing a rough landscape



CERN-PH-TH/2010-143

Properties and uses of the Wilson flow in lattice QCD

Martin Liischer

CERN, Physics Department, 1211 Geneva 23, Switzerland

In a nutshell:

Evolves gauge fields towards minimum of the Action in fictitious time

Gaussian smearing over sphere with flow radius \/ 87—F



A basic proposal for illustration: smearing

Build a sequence of operators

9N (n) et () =9 (n)te) 9 (n')
Evolution in ‘smearing time T —=g¢

6(0/61' =V2¢

In momentum space

exp(—Wk?) o (W41)~ 52

Fig. 1. The smearing procedure. We substitute a link with itself
plus € times the sum of the incomplete neighboring space like



Smearing at work

Define
dIn G(t)

Mepf(t) = ——g

Meff(t)i—soo — M

Mef f

025 |
0.20 f
0.15
0.10 |
0.05 |

i ]
0.00
0 0.2 0.4 0.8 0.8

~ N0 smearing

iSmearmg)"

< smearing



Smearing at work: Glueball masses

1
G(1)=<0(1)0(0)) =0 OO 7 7 | | (1]
LS L 0T / >
LS LS
~eXp(—mI) , Note: t Euclidean time! [‘(7 /f‘/? \_’_l n_>_l
Y 7 ' N _‘7L'7
L, Lo A

G(t)= [6(M —w)e ! oc e M?

Smearing T_f<_,_,7 )_7
/ ’ ’

Gés)(t)EO(s)(x,y)+0(S)(y,2)+0(3)(x,2) O++

G ()= =209 (xy) + 0 (1,2) + O (x,2) . 2+



CERN-PH-TH/2010-143

Many variations of this idea, substantial agreement

Properties and uses of the Wilson flow in lattice QCD

Martin Luscher

CERN, Physics Department, 1211 Geneva 23, Switzerland

Comparison of the gradient flow with cooling in SU(3) pure gauge theory

Claudio Bonati* and Massimo D’Eliaf
Dipartimento di Fisica dell’Universita di Pisa and INFN - Sezione di Pisa,
Largo Pontecorvo 3, 1-56127 Pisa, Italy

The gradient (Wilson) flow has been introduced recently in order to provide a solid theoretical
framework for the smoothing of ultraviolet noise in lattice gauge configurations. It is interesting
to ask how it compares with other, more heuristic and numerically cheaper smoothing techniques,
such as standard cooling. In this study we perform such a comparison, focusing on observables
related to topology. We show that, already for moderately small lattice spacings, standard cooling
and the gradient flow lead to equivalent results, both for average quantities and configuration by
configuration.

The topological susceptibility
of the pure SU(3) Yang-Mills vacuum on the lattice *

M. Campostrini, A. Di Giacomo, Y. Giindiic ?, M.P. Lombardo,
H. Panagopoulos and R. Tripiccione

INFN, Sezione di Pisa and Dipartimento di Fisica dell’Universita, I-56 100 Pisa, Italy

Received 2 August 1990

Using a “field theoretic™ h, we pute the topological susceptibility x of the pure gauge SU(3) theory on the lattice.
We also apply an algorithm of gradual cooling, and use these two approaches as a cross-check on each other. The final value we
find for x confirms results found earlier using an abrupt-cooling algorithm.

OF SCIENCE

String tension from smearing and Wilson flow
methods

PROCEEDINGS

Antonio Gonzalez-Arroyo®
4 Instituto de Fisica Teorica UAM/CSIC, C/ Nicolas Cabrera 13-15
Universidad Autonoma de Madrid, E-28048—Madrid, Spain
”Departamento de Fisica Teorica, C-15
Universidad Autonoma de Madrid, E-28049—-Madrid, Spain
E-mail: antonio.gonzalez—arroyo@uam.es

Masanori Okawa™

“Graduate School of Science, Hiroshima University
Higashi-Hiroshima, Hiroshima 739-8526, Japan
E-mail: okawa@sci.hiroshima-u.ac.Jjp

Recently, we proposed a new method to extract the string tension from 4-dimensionally smeared
Wilson loops. In this talk, we first show that the results obtained using this smearing method
are identical to those obtained by Wilson flow, once the time step is sufficiently small. We then
demonstrate the practical advantage of our method by applying it to the calculation of string

tension in SU(3) Yang-Mills theory.



2006 data, From PDG 2022
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Unquenched spectrum - finite a
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SESAM (Ny =2, m, =490 MeV)
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WeiSun (N = 2, m; = 960 MeV)
Chen,2021 (Ny =2+ 1,m, = 140 MeV)
Gregory (Ny =2+ 1,m; = 360 MeV)
Athenodorou,2022 (N; = 4, m, = 250 MeV)
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Topology - susceptibility

Many varieties of smearing/smoothing/flowing/cooling.. good agreement at T=0 s
index nonSmear s=0.4 | 1
tholg index HYP1s=0| 2
1511.02867 — Grilli di Cortona et al. SFHYP15=00] 3
—— SFHYP5s=0.0 | 4
) spec. pro;j. M2=O.0004| 5
1512.06743 — Bonati et al. spec. proj. M2=0.0010 | 6

cFT nonSmear | 7

Direct Lattice

[aV}
1606.07494 — Borsanyi et al. g’ oFT GF Wplaq 101 8
@ ,OE) cFT GF tiSymt0 | 9
© cFT GF Iwat0 | 10
1812.01008 — Gorghetto, GV GFT cool (GF Wplaq 10) | 11
P cFT cool (GF tISym t0) | 12
70 7'2 7‘ 4 7|6 7l8 80 cFT cool (GF Iwa t0) | 13
MeV >CFT stout 0.01 (GF Wplaq t0) | 14
| cFT APE 0.5 (GF Wplaq 0) | 15
. cFT HYP (GF Wplag t0) | 16
Plot by Go VIlladorO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

definition 1

ETMC collaboration, 2017



Comparison of topological charge definitions

nr full name smearing type short name type
1 index of overlap Dirac operator s = 0.4 — index nonSmear s = 0.4 E
2 index of overlap Dirac operator s = 0.0 — index nonSmear s = 0 F
3 index of overlap Dirac operator s = 0.0 HYP1 index HYP1 s =0 F
4 Wilson-Dirac op. spectral flow s = 0.0 HYP1 SF HYP1 s = 0.0 F
5 Wilson-Dirac op. spectral low s = 0.75 HYP1 SF HYP1 s = 0.75 F
6 Wilson-Dirac op. spectral low s = 0.0 HYP5 SF HYP5 s = 0.0 F
7 Wilson-Dirac op. spectral flow s = 0.5 HYPS5 SF HYP5 s = 0.5 F
8 spectral projectors M2 = 0.00003555 — spec. proj. M? = 0.0000355 F
9 spectral projectors M2 = 0.0004 — spec. proj. M2 = 0.0004 F
10 spectral projectors M2 = 0.0010 — spec. proj. M2 = 0.0010 F
11 spectral projectors M2 = 0.0015 — spec. proj. M2 = 0.0015 F
12 field theoretic (clover) — cFT nonSmear G
13 field theoretic (plaquette) GF (Whplaq,to) pFT GF Whplaq to G
14 field theoretic (plaquette) GF (Wplaq,2t0) pFT GF Wplaq 2% G
15 field theoretic (plaquette) GF (Wplaq,3t0) pFT GF Wplaq 3to G
16 field theoretic (clover) GF (Whplaq,to) cFT GF Wplaq to G
17 field theoretic (clover) GF (Wplaq,2t0) cFT GF Whplaqg 2% G
18 field theoretic (clover) GF (Wplaq,3tg) cFT GF Wplaq 3to G
19 field theoretic (improved) GF (Wplaq,to) iFT GF Whplaq %o G
20 field theoretic (improved) GF (Wplaq,2ts) iFT GF Wplaq 2¢o G
21 field theoretic (improved) GF (Wplaq,3tp) iFT GF Whplaq 3to G
22 field theoretic (clover) GF (t1Sym,to) cFT GF tlSym tg G
23 field theoretic (clover) GF (t1Sym,2¢0) cFT GF tlSym 2¢9 G
24 field theoretic (clover) GF (t1Sym,3t0) cFT GF tlSym 3to G
25 field theoretic (clover) GF (Iwa,to) cFT GF Iwa to G
26 field theoretic (clover) GF (Iwa,2t0) cFT GF Iwa 2¢o G
27 field theoretic (clover) GF (Iwa,3%0) cFT GF Iwa 3¢9 G
28 field theoretic (clover) cool (Wplaq,tg) cFT cool (GF Whplaq %g) G
29 field theoretic (clover) cool (Wplaq,3tp) cFT cool (GF Whplaq 3tp) G
30 field theoretic (clover) cool (t1Sym,tp) cFT cool (GF tlSym %g) G
31 field theoretic (clover) cool (t1Sym,3%¢9) cFT cool (GF tlSym 3tg) G
32 field theoretic (clover) cool (Iwa,tg) cFT cool (GF Iwa tg) G
33 field theoretic (clover) cool (Iwa,3%0) cFT cool (GF Iwa 3tg) G
34 field theoretic (clover) stout (0.01,%0) cFT stout 0.01 (GF Wplaq tg) G
35 field theoretic (clover) stout (0.01,3%tg) cFT stout 0.01 (GF Wplaq 3%9) G
36 field theoretic (clover) stout (0.1,%0) cFT stout 0.1 (GF Whplaq tg) G
37 field theoretic (clover) stout (0.1,3%g) cFT stout 0.1 (GF Wplaq 3t0) G
38 field theoretic (clover) APE (0.4,t9) cFT APE 0.4 (GF Wplaq tg) G
39 field theoretic (clover) APE (0.4,3t0) cFT APE 0.4 (GF Wplaq 3tg) G
40 field theoretic (clover) APE (0.5,t9) cFT APE 0.5 (GF Wplaq tg) G
41 field theoretic (clover) APE (0.5,3t0) cFT APE 0.5 (GF Wplaq 3tg) G
42 field theoretic (clover) APE (0.6,t0) cFT APE 0.6 (GF Wplaq to) G
43 field theoretic (clover) APE (0.6,3t0) cFT APE 0.6 (GF Wplaq 3tg) G
44 field theoretic (clover) HYP (to) cFT HYP (GF Wplaq to) G
45 field theoretic (clover) HYP (3to) cFT HYP (GF Wplaq 3tg) G
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But at finite temperature topology poses specific challenges...
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A good playground for collaborations.



