5. July 2023
QCD partition function \[ \mathcal{Z}\ =\ \int\mathcal{D}\bar\psi\,\mathcal{D}\psi\,\mathcal{D}U\, e^{-S[\bar\psi,\psi,U]} \]
Euclidean lattice action \(S\)
fermion fields Grassmann valued, difficult to represent on a computer
\(\Rightarrow\quad\) integrate out the fermion fields
\(\Rightarrow\quad\) integrate out the fermion fields
\[ \mathcal{Z}\ =\ \int\,\mathcal{D}U\,[\det(D)]^2\, e^{-S_g[U]} \]
and represent the determinant stochastically
\[ \mathcal{Z}\ =\ \int\mathcal{D}\phi^\dagger\,\mathcal{D}\phi\,\mathcal{D}U\, e^{-\phi^\dagger\frac{1}{D[U]^2}\phi - S_g[U]} \]
with pure gauge action \(S_g\)
\(D\) the Lattice Dirac operator
\(\phi^\dagger,\phi\) so-called pseudo-fermion (bosonic) fields
Traded Grassmann-valued fields with a highly non-local term \[ S_\mathrm{eff} = S_\mathrm{PF} + S_g\,,\qquad S_\mathrm{PF}\ =\ \phi^\dagger\,D[U]^{-2}\,\phi \] due to the matrix inverse!
\(\Rightarrow\quad\) local Metropolis updates unrealistic
random global updates?
Recall the steps for the local Metropolis algorithm
Starting from initial \(x\)
proposal needs to be ergodic
Metropolis algorithm fulfils detailed balance \[ g(x)\ P_\mathrm{acc}(x\to x') = g(x')\ P_\mathrm{acc}(x'\to x) \]
\(\Rightarrow\quad\) algorithm generates a Markov chain
this works well for pure gauge theory action local
again, with fermions this is no longer the case
Goal: smartly replace the local update by a global one!
Introduce an artificial Hamiltonian \[ \mathcal{H}(p, x)\ =\ \frac{1}{2}\sum p^2 - \ln(g(x)) \] with canonical momenta \(p\in\mathbb{R}^n\) and a one-paramter familty of deterministic maps \[ \varphi^\tau(p, x): (p, x) \to (p', x') \] with \(\tau\in\mathbb{R}\) which is reversible, i.e. for all \(p, x\) \[ \varphi^\tau(p, x)=(p', x')\quad \Rightarrow\quad \varphi^\tau(-p',x') = (-p, x) \]
Then the HMC algorithm is defined by the following steps
Starting from initial \(x\in\mathbb{R}^n\)
heatbath: \(p\ \sim\ \mathcal{N}_{0,1}\)
set \((p', x') = \varphi^\tau(p, x)\) with \(\tau\neq 0\)
accept/reject \((p', x')\) with probability \[ P_\mathrm{acc}\ =\ \min\{1, \exp(-\Delta\mathcal{H})\}\,,\quad \Delta\mathcal{H} = \mathcal{H}(p,x) - \mathcal{H}(p', x') \]
restart at 1.
Don’t need to know the normalisation: let \(g(x)\propto f(x)\)
The HMC transition probability \[ \begin{split} \mathbb{P}_\mathrm{HMC}(x, x') = \int d p\ &\mathcal{N}_{0,1}(p)\, \delta(x'-\varphi^\tau_x(p, x))\\ &\mathbb{P}_\mathrm{acc}[p, x \to \varphi^\tau(p,x)]\,.\\ \end{split} \] We can introduce an integral over \(p'\) as well, which gives \[ \begin{split} \mathbb{P}_\mathrm{HMC}(x, x') = \int d p\,d p'\ &\mathcal{N}_{0,1}(p)\, \delta((p',x')-\varphi^\tau(p, x))\\ &\mathbb{P}_\mathrm{acc}[p, x \to p',x']\,.\\ \end{split} \]
Due to the Metropolis accept/reject step, we have detailed balance with respect to \(\exp(-\mathcal{H})\), and thus \[ \begin{split} e^{-\mathcal{H}(p, x)}\,&\mathbb{P}_\mathrm{acc}[p, x \to p',x']\\ & = e^{-\mathcal{H}(p', x')}\,\mathbb{P}_\mathrm{acc}[p', x' \to p,x]\,.\\ \end{split} \] Moreover, \[ f(x)\, \mathcal{N}_{0,1}(p) = C e^{-\mathcal{H}(p, x)} \] with a normalisation factor \(C\).
Using these properties and the reversibility of \(\varphi^\tau\) it follows \[ \begin{split} f(x)\, &\mathbb{P}_\mathrm{HMC}(x, x') \\ = C\int &d p\,d p'\, e^{-\mathcal{H}(-p', x')}\, \delta((-p,x)-\varphi^\tau(-p', x'))\\ &\quad\mathbb{P}_\mathrm{acc}[-p', x' \to -p,x]\,,\\ \end{split} \] where we have also used that \(\mathcal{H}\) as well as the acceptance probability are agnostic to the sign of \(p\). Since \(d pd p' = d(-p)d(-p')\), detailed balance follows.
… so, what about this \(\varphi^\tau\)??
\(\Rightarrow\) HMC generates a Markov Chain for distribution \(g(x)\)!
The only option I know is the map \(\varphi^\tau\) induced by Hamilton’s EOM \[ \begin{split} \dot p_i \equiv \frac{d p_i}{d\tau} &= -\frac{\partial\mathcal{H}}{\partial x_i}\,,\qquad \dot x_i \equiv \frac{d x_i}{d\tau} &= \frac{\partial\mathcal{H}}{\partial p_i}\,.\\ \end{split} \]
in practice: need to solve EOMs numerically
use a symplectic, reversible integration scheme like for instance the Leap-Frog integration scheme
those conserve a shadow Hamiltonian \(\mathcal{H}_s\neq\mathcal{H}\) as correction in powers of the integration step size \(\Delta\tau\)
Perform a \(\chi^2\) fit using the HMC \[ \mathcal{H} = \frac{1}{2}(p_a^2 + p_b^2) + \chi^2\,,\qquad \chi^2 = \frac{1}{2}\frac{(y - at - b)^2}{\Delta y^2} \]
Derivatives \[ \frac{d\mathcal{H}}{da} = -t\frac{y-at-b}{\Delta y^2}\,,\qquad\frac{d\mathcal{H}}{db}=-\frac{y-at-b}{\Delta y^2} \]
Leap-Frog \[ \begin{split} p_{a,b}^{i+1/2} &= p_{a,b}^i - \frac{d\mathcal{H}}{d\{a,b\}}\,\Delta\tau/2\\ \{a,b\}^{i+1} &= \{a,b\}^{i} + p_{a,b}^{i+1/2}\Delta\tau\\ p_{a,b}^{i+1} &= p_{a,b}^{i+1/2} - \frac{d\mathcal{H}}{d\{a,b\}}\,\Delta\tau/2\\ \end{split} \]