Frequentist statistics in a nutshell

From measured (random) data, frequentist statistics answers the following question:

assuming some hypothesis ${\cal H}$ is true (the null hypothesis), are the observed data likely ?

Example: assuming the Standard Model is true, is my best fit value for m_Z likely ?

 m_Z can be measured in e^+e^- collisions in the relevant invariant mass window. One can use the best fit value \hat{m}_Z of the resonance peak location as an *estimator* of the true value of m_Z . Estimators are functions of the data and thus are random variables. The estimator is said to be *consistent* if it converges to the true value when data statistics tends to infinity (*e.g.* maximum likelihood estimators are consistent). Another useful concept is the *bias*, which is defined as the difference between the average of the estimator among a large number of finite statistics experiments with the true value. Consistency implies that the bias vanishes asymptotically. Assuming one can repeat many times the same experiment, one gets a collection of $\hat{m_Z}$ values. The histogram of this random sample brings information on the most likely value of m_Z and the average accuracy of the experiments.

However in practice one only performs one (or a few) experiment(s). Thus one has to find a way to conclude whether the observation is likely from the information of a single experiment.

Repeated experiments and p-value

Whether given data are likely or not is usually quantified using a *test* statistics t, which is a function of data X such that *e.g.* low values supports the null hypothesis \mathcal{H} whereas large values go against it. Then from the distribution of X one may compute the distribution of t(X), as well as the probability $p(X_0)$ that the value t(X) of a (often fictitious) repeated experiment is larger than the observed value $t(X_0)$: if $p(X_0)$ is large (small) it means that $t(X_0)$ is small (large) with respect to 'typical' values of t(X), and thus that the observed data are in good (bad) agreement with the null hypothesis.

Confidence intervals and coverage

The hypothesis \mathcal{H} is said to be *simple* if it completely specifies the distribution of the data X. In this case the p-value constructed from t(X) is nothing else than the CDF of t, and thus the p-value is uniformly distributed with the observed value X_0 .

In case of a numeric hypothesis $\mathcal{H}: X_{\text{true}} = \mu$, the p-value curve allows the construction of *confidence intervals*: the interval of μ defined by $p \ge 1 - \text{CL}$ contains X_{true} at the frequency CL, as follows from the uniformity of p.

