We consider the integral

$I=\int_{0}^{\infty} f[x] \operatorname{Exp}[-x] d x=1$

Q1
Generate ~ 100 `configurations’ x_{i} according to the exponential distribution and make a Monte-Carlo estimate of the integral together with the statistical uncertainty defined as the standard deviation of the mean
answer
Q2
Assuming the Gaussian limit, estimate the 68\% Confidence Level interval for the value of the integral

answer
Q3
Repeat Q1 for a large (~ 10000) number of configuration samples and construct the distribution of the integral estimate. Compare its dispersion with the uncertainty computed in Q1
answer
Q4
Coverage test: what is the frequency at which the 68% CL interval contains the true value of the integral ?
answer

Q5
We now consider the quantity

$$
J=\left(\int_{0}^{\infty} f[x] \operatorname{Exp}[-x] d x\right)^{3}=1
$$

Repeat Q1-Q4 with non parametric bootstrap
answer

