1. Experiment TGV-2 – search for double beta decay of ¹⁰⁶Cd

JINR Dubna, Russia IEAP, CTU Prague, Czech Republic CU Bratislava, Slovakia LSM Modane, France

Phase III ~ 23.2 g of ¹⁰⁶Cd (99.57%) $(\sim 1.3 \times 10^{23} \text{ atoms of } {}^{106}\text{Cd})$ (Feb.2014 – Sep.2015, Apr.2016 – Aug.2021) T~47860 h

3+

0+

2+

0+

N.I. Rukhadze (JINR, Dubna)

EC/EC $2e_{b}$ -+ ${}^{106}Cd \rightarrow {}^{106}Pd$ + $(2v_{e})$ + (γ) **Observables: 2KXPd** (+ γ for e.s.) β +/EC e_b-+ ¹⁰⁶Cd \rightarrow ¹⁰⁶Pd + e+ + (2ν_e) + (γ) **Observables: KXPd + 2\gamma 511 (+ \gamma for e.s.)** β +β+ ¹⁰⁶Cd \rightarrow ¹⁰⁶Pd + e⁺ + e⁺ + (2ν_e) + (γ) **Observables:** 4γ **511** (+ γ for e.s.) 2741.0 106**Cd** 2717.6 1160 1.25% γ 2741 β+β+ γ**2229 β+/EC** EC/EC 1557.7 Q(EC/EC) = 2775.39 ± 0.10 keV 1133.8 2vEC/EC (0⁺_{a.s.}-0⁺_{g.s.}) 2KX Pd (~21 keV) 511.9 0vEC/EC Resonant Decay of ¹⁰⁶Cd $Q = 2775.39 \pm 0.10 \text{ keV}, E_{\kappa} = 24.3 \text{ keV}, E_{L} = 3.33 \text{ keV}$ $E_{1}^{*} = 2741.0 \text{ keV}$ KL observables $\gamma - 2741 (2229+512) \text{ keV}$ $E_{2}^{*}= 2717.6 \text{ keV KK}$ observables $\gamma - (1160 + 1046 + 512) \text{ keV}$ $E_{3}^{*}= 2737 \text{ keV}$ (?) KL observables $\gamma -$ 106Pd Phase III - Search for 0ν EC/EC decay of 106 Cd \rightarrow Obelix det.

E, keV

KK TGV signal patterns KK-pair

1D method

A signal in the 19–22 keV energy window in one detector, while a signal from another face-to-face neighbor detector was collected in another. A final accumulated spectrum was fitted with a 1D-model which included the KXPd multiplet as signal, and the Cadmium KX-ray (KXCd) multiplet with linear underlay as background.

2D method

The double coincidence events from neighboring face-to-face detectors, both in the 16-30 keV energy range, were collected in a 2Dhistogram. The final 2D-spectrum was fitted by a 2D-model consisting of the 2D-Gaussian KXPd multiplet as signal, and the KXCd 2D-Gaussian multiplet together with the 2D-background slope as background

* N.I. Rukhadze et al. / Nuclear Physics A 852 (2011) 197–206

Suppression of TGV-2 background by using coincidence techniques.

One dimensional spectra of double coincidence events, obtained in measurement of enriched ¹⁰⁶Cd in phase III of experiment TGV-2 during 47860 h

TGV-2 Limits on double beta decay of ¹⁰⁶Cd (90%CL)

Decay mode	Final level of ¹⁰⁶ Pd	T _{1/2} , y Phase II* (2012)	T _{1/2} , y Phase III (T=42500h)*	T _{1/2} , y Phase III (T=47860h)*	T theor (2) EC/EC
2vEC/EC	0+g.s.	4.2×10^{20}	7.2×10^{20}	1.2×10 ²¹	$\sim 10^{20} - 10^{22} \text{ v}$
	2+,511.9 keV	1.2×10^{20}	8.9×10 ²⁰	1.2×10^{21}	
	0 ⁺ ₁ ,1134 keV	1.0×10^{20}	7.2×10^{20}	9.6× 10 ²⁰	
$2\nu\beta^+/EC$	0+g.s.	1.1×10 ²⁰	6.6×10 ²⁰	8.4× 10 ²⁰	
	2+,511.9 keV	1.1×10 ²⁰	7.9×10 ²⁰	1.0×10^{21}	
	0 ⁺ ₁ ,1134 keV	1.6× 10 ²⁰	9.0×10 ²⁰	1.2×10^{21}	
$2\nu\beta^+\beta^+$	0+g.s.	1.4×10^{20}	3.9×10 ²⁰	4.9×10^{20}	
	2+,511.9 keV	1.7×10^{20}	4.7×10 ²⁰	6.0×10 ²⁰	

*N.I.Rukhadze et al., *Journal of Physics: Conference Series* 375 (2012) 042020 *N.I.Rukhadze et al., *Journal of Physics: Conference Series* 2156 (2022) 012134 * N.I.Rukhadze on behalf of TGV collaboration, LXXII International conference Nucleus-2022, Moscow, 2022

We see some events of possible EC/EC decay of ¹⁰⁶Cd. To detect this effect with good confidence level we need to restore TGV spectrometer in working conditions, upgrade electronics and software, and continue measurement. To realize this plans we need to have permission from LSM to come in Modane.

2. Search for double beta decay of ⁸²Se to excited states of ⁸²Kr with low-background highly sensitive HPGe detector Obelix (JINR-IEAP-LNGS-LSM-ITEP)

Double beta decay to excited states of daughter nuclei are accompanied by emission of γ -quanta in de-excitation of excited states. These γ -quanta may be detected by low background HPGe detectors with high efficiency and good energy resolution.

 $2\nu2\beta^{-}$ decay to excited states was detected in $^{100}Mo - ^{100}Ru (0^{+}_{1}, 1130.3 \text{ keV})$ the most accurate result was obtained with the Obelix HPGe spectrometer (R. Arnold et al. Nucl. Phys. A 925 (2014) 25) and $^{150}Nd - ^{150}Sm (0^{+}_{1}, 740.4 \text{ keV})$.

Investigations of ⁵⁸Ni-⁵⁸Fe, and ⁷⁴Se-⁷⁴Ge $\beta\beta$ processes were also performed using the Obelix spectrometer

Detector Obelix*

P type coaxial HPGe detector Canberra in U-type ultra low background cryostat located at LSM, France (4800 m w.e.) Sensitive volume 600 cm³ Efficiency ~160% Peak / Compton 83 Energy resolution ~1.2 keV at 122 keV (⁵⁷Co), ~2 keV at 1332 keV (⁶⁰Co) Distance from cap 4 mm Entrance window Al, 1.6 mm *JINST 12 (2017) P02004.

Passive Shielding ~12 cm arch. Pb ~20 cm low active Pb, Radon free air

Measurement of ⁸²Se with the Obelix detector

(JINR-IEAP-LNGS-LSM-ITEP)

Sample of enriched ⁸²Se (enrichment ~95%) with a mass of 6019.9g of ⁸²Se was prepared in Marinelli of Obelix detector in Gran Sasso in July 2020.

Recently there were two attempts to measure DBD of ⁸²Se to excited states of ⁸²Kr but positive signal was not detected:

1) by CUPID-0 collaboration (O. Azzolini et al., Eur.Phys.J. C78 (2018) no.11, 888), $T_{1/2} > 4x10^{21}$ years;

2) By NEMO-3 collaboration (R. Arnold, arXiv: 2001.06388 [physics .ins-det]), $T_{1/2} > 1.3 \ x 10^{21}$ years.

According to our estimation we can reach a level of sensitivity $T_{1/2} \sim 6 \ge 10^{22}$ y with the Obelix detector and ~6 kg of ⁸²Se sample and hope to detect DBD of ⁸²Se to excited states of ⁸²Kr for the first time.

Before sending the ⁸²Se sample in LSM short test measurement of ⁸²Se was performed in LNGS during 62 days but previous limits on DBD of ⁸²Se to excited states of ⁸²Kr were not improved. Our measurement of ⁸²Se was started with the Obelix detector 10.12.2021

ββ decay of ⁸²Se to the first 0+ excited state of ⁸²Kr will accompanied by 2 γ-lines,
711.1 keV and 776.5 keV.
Expected half-life can be (3.3-5.6)*10²² γ.

Measurement of ⁸²Se sample with the Obelix detector

Spectrum in the region of interest with linear background.

Limits $T_{1/2}$ (90 CL), 10²² y, for $\beta\beta$ decays of ⁸²Se

Level of ⁸² Kr	Gammas ,keV with efficiencies	Obelix, Modane, T=8776h	MPI, Gran Sasso T=1488h	[1]
2 ⁺ ₁ (776.5 keV)	776.5 (2.416%)	5.89	1.19	1.3
2 ⁺ ₂ (1474.9 keV)	776.5 (1.341%) + 1474.9 (0.756%)	4.53	1.02	1.0
0 ⁺ ₁ (1487.6 keV)	711.1 (2.129%)	2.39	0.95	
0 ⁺ ₁ (1487.6 keV)	776.5 (2.076%)	5.06	1.10	
0 ⁺ ₁ (1487.6 keV)	711.1 (2.129%) + 776.5 (2.076%)	4.29	1.38	3.4

[1] J. W. Beeman et al., Eur. Phys. J. 75 (2015) 591.

Sensitive volume of HPGe (MPI) = 400 cm³, T_{meas} =1488h Sensitive volume of HPGe (Obelix) = 600 cm³, T_{meas} =8776 h

After 1 year of measurement with Obelix we improved existing experimental limits of $\beta\beta$ decay of ⁸²Se to exited states of ⁸²Kr and reached the level of ~4.2*10²² y for half-life of the process. To detect this process or to reach the sensitivity $T_{1/2} \sim 6 \ge 10^{22}$ y we need to continue the measurement for one year more.

In addition we are interested what is the situation with our second detector Idefix, as we have not information about it.