PhD Seminar 2023/03/27 : Victor Levrague

Improvement of the prediction of biological effects for targeted innovative radiotherapies involving short-range ions, using a biophysical approach

PhD supervisors : <u>Rachel Delorme</u>¹, Michaël Beuve² and Etienne Testa²

1: LPSC, Grenoble 2: IP2I, Lyon

Team : Nuclear Physics and Medical Applications

Summary

Introduction

- Targeted Alpha Therapy context
- Problematics in predicting biological effects

Materials & Methods

- Biophysical model : NanOx
- Monte-Carlo model & Complex geometries : Geant4 & CPOP

Results

Parametric study of the impact of intracellular radionuclide distribution
 Conclusions

Perspectives

Targeted Alpha Therapy : an innovative internal radiotherapy

Radiotherapy: treat a disease, usually cancer, using ionizing beams

Introduction Materials & Methods Results Conclusion Perspectives 3/29

Prediction of biological effect (1/2)

External radiotherapies

- Control of the irradiation beam
- Homogeneous macroscopic dose deposition
- Physical dose prescription

					/2
Introduction	Materials & Methods	Results	Conclusion	Perspectives	4/2

9

Prediction of biological effect (2/2)

Targeted Alpha Therapy : an internal radiotherapy

- No direct control of the irradiation
- Heterogeneous tissular dose deposition
- Heterogeneous cellular dose deposition, because of short range of alpha particles (few μm)

Homemade Geant4 simulation on a cell irradiated by alpha particles

♦ Biological effects are complex to predict
 ⇒ Treatments are complex to planify

Perspectives

Introduction

Materials & Methods

Results

Materials & Methods

Introduction

- Targeted Alpha Therapy context
- Problematics in predicting biological effects

Materials & Methods

- Biophysical model : NanOx
- Monte-Carlo model & Complex geometries : Geant4 & CPOP
 Results
- Parametric study of the impact of intracellular radionuclide distribution
 Conclusions

Perspectives

The biophysical model NanOx (1/2)

Biophysical model

 \rightarrow cell survival probability prediction, with **nano-** and **micro**-dosimetry

10	+ 10	-			\frown	-	-	5
	1 T	()	(1		(· I		()	r 1
		`'	`		• • •		`'	
		-	.	•••	~ .	_	-	

The biophysical model NanOx (1/2)

7/29

The biophysical model NanOx (1/2)

The biophysical model NanOx (2/2)

Cell survival curve for low and high LET particles

- Nucleus : only sensitive volume = only damage in nucleus induce cell death
- Works for specific cell lines, depending on experimental data
- NanOx : Experimentally calibrated & validated for hadrontherapy (50 400 MeV/n)

Introduction

Materials & Methods

Results

Conclusion

Cell survival to lethal events =

$$\sum S_{\,lethal} = \; \exp\left(-\sum_{E^i_k} nig(E^i_kig)
ight) \; .$$

n = number of lethal events

$$E_k$$
 = Kinetic energy

Homemade Monte-Carlo simulation of an helium ion crossing a nucleus

Perspectives

Introduction

Materials & Methods

Results

 ${dn\over dE}(E)\,=\,$

Cell survival to lethal events =

$$\sum S_{\,lethal} = \; \exp\left(-\sum_{E^i_k} nig(E^i_kig)
ight)$$

n = number of lethal events

$$E_k$$
 = Kinetic energy

Number of lethal events per energy =

$$E_{k}^{i}(\alpha)$$

 $\frac{\ln\left(1 \,-\, \alpha(E) \cdot\, a \cdot\, LET(E)\right)}{2}$

 $L \cdot LET(E)$

Homemade Monte-Carlo simulation of an helium ion crossing a nucleus

Perspectives

Int	$r \sim \sim$		nn
11 1 L		IUUU	

Materials & Methods

Results

Cell survival to lethal events =

$$\left[S_{\,lethal} = \; \exp\left(- \sum_{E^i_k} nig(E^i_k ig)
ight)
ight)$$

n = number of lethal events

$$E_k$$
 = Kinetic energy

✤ If Ei ≈ Ef (hadrontherapy),

Homemade Monte-Carlo simulation of an helium ion crossing a nucleus

Perspectives

r										
	n	+	r	\sim	5		۱	П.	\sim	n
					н			ш		
L		L		\sim		Š	ι.	L.	\sim	4

Materials & Methods

Results

Conclusion

 $\left(rac{dn}{dE}(E) \ = \ - \ rac{\ln\left(1 \ - \ lpha(E) \cdot a \cdot \ LET(E)
ight)}{L \cdot \ LET(E)}
ight)$

 ${dn\over dE}(E) =$

Cell survival to lethal events =

$$\left[\, S_{\, lethal} = \; \exp\left(- \sum_{E^i_k} nig(E^i_k)
ight)
ight)$$

n = number of lethal events

$$E_k$$
 = Kinetic energ

• If $Ei \approx Ef$ (hadrontherapy),

$$nig(E^i_kig) \,=\, rac{dn}{dE}ig(E^i_kig)\cdot\,\Delta E_k$$

• If $Ei \neq Ef$ (internal alpha therapy),

$$n\left(E_k^i,\,E_k^f
ight) \,=\,\,\int_{E_k^f}^{E_k^i}rac{dn}{dE}(E)\,\cdot\,dE$$

 $- \; rac{\ln \left(1 \; - \; lpha(E) \cdot \, a \cdot \, LET(E)
ight)}{L \cdot \; LET(E)}$

Homemade Monte-Carlo simulation of an helium ion crossing a nucleus

Perspectives

9/29

Introduction

Materials & Methods

Results

Geant4 simulations

- Open source track-structure Monte-Carlo model
- Tracking of alpha particles until 1 keV
- Low energy electromagnetic physics list

- ***** Output :
 - > Physical doses in **nuclei** and cells
 - > $\ln (E_k^{i})$ and out (E_k^{f}) energies of alpha particles in nuclei

Homemade Monte-Carlo simulation of 10 helium ions emitted in the cytoplasm

Perspectives

Introduction

Materials & Methods

Results

Complex geometry generation: CPOP

95 μm radius Spheroid generated by CPOP

- Open-source tool that can generate highly compacted multi-cellular geometries, with realistic cell deformation management
- Based on Geant4

Maigne et al. 2021

Materials & Methods

Results

Conclusion

Complex geometry generation: CPOP

95 μm radius Spheroid generated by CPOP

Introduction

- Open-source tool that can generate highly compacted multi-cellular geometries, with realistic cell deformation management
- Based on Geant4

Maigne et al. 2021

- ◆ Available in GitHub, and soon™ in an official example of Geant4
- Collaboration with Lydia Maigne & Alexis Pereda (LPC Clermont)
- My work: enhance CPOP with new functionalities, updating the GitHub repository and adapting the model for Targeted Alpha Therapy and the Geant4 release

Results

Conclusion

Introduction

Materials & Methods

Results

Conclusion

12/29

Results

Conclusion

Perspectives

Introduction

Materials & Methods

12/29

Results

Introduction

- Targeted Alpha Therapy context
- Problematics in predicting biological effects

Materials & Methods

- Biophysical model : NanOx
- Monte-Carlo model & Complex geometries : Geant4 & CPOP

Results

Parametric study of the impact of intracellular radionuclide distribution
 Conclusions

Perspectives

Introduction

Materials & Methods

Impact of intracellular radionuclide distribution

In Targeted Alpha Therapy,

Materials & Methods

Introduction

- Radionuclides can enter in cells because of the chemical vector
- Radionuclide distribution cannot be known during treatment

Different distributions studied :

Results

Conclusion

Perspectives

14/29

Simulation parameters

Reproduction of the experimental treatment conditions of *Chouin et al. 2012*, murine treatment, 400 kBq injected

- Number of alpha particles per cell : 42
- **Studied parameters :**
 - Spheroid compaction : 25 75 %
 - Radionuclide used : ²¹⁰Po, ²¹¹At , ²¹³Bi
 - Spheroid radius : 30 95 μm

95 μm radius Spheroid generated by CPOP

Perspectives

Cell survivals calculated for the HSG cell line

Introduction

Materials & Methods

Results

Impact on nucleus physical dose

1 1 1	5 +	100	\sim		$^{+}$	 25	
			\sim	I U I	$\mathbf{\nabla}$	 ~	

Results

Impact on nucleus physical dose

Cytoplasm only distribution :

Nucleus only distribution :

Spheroid radius :	30 µm	50 µm	70 µm	95 µm
$rac{D_{nucleus} \ (cytoplasm \ source)}{D_{nucleus} \ (membrane \ source)}$	1.045	1.018	1.013	1.024
$rac{D_{nucleus}~(nucleus~source)}{D_{nucleus}~(membrane~source)}$	1.301	1.168	1.130	1.116

Physical dose results for membrane, cytoplasm and nucleus distribution, with only the study of spheroid radius. Statistical errors are below 0.001.

16/29

Introduction

Materials & Methods

Results

Conclusion

Impact on nucleus absorbed dose

Cytoplasm only distribution :

< 5 % mean nucleus absorbed dose increase compared to no internalization

Low influence of cytoplasm only internalization

- Spheroid compaction
- Alpha particles energy
- Spheroid radius

Introduction

Materials & Methods

Results

Impact on nucleus absorbed dose

Cytoplasm only distribution :

Nucleus only distribution :

< 5 % mean nucleus absorbed dose increase compared to no internalization

+ ~ 15 % mean nucleus absorbed dose compared to no internalization, in most cases

Low influence of cytoplasm only internalization

+ ~ **30** % mean **nucleus absorbed dose** for 25 % compaction spheroid and 30 μm spheroid radius

- Spheroid compaction
- Alpha particles energy
- Spheroid radius

Small effect of nucleus internalization, but **higher** for low compaction and small spheroids.

Perspectives

Introduction

Materials & Methods

Results

Cross-fire effect : explanation

Quantification of cross-fire effect (1/3)

Spheroid compaction
 Alpha particles energy
 Spheroid radius

Strong cross-fire effect, between 68 and 96 % nucleus cross-fire dose

Less % cross-fire when particles are closer to nucleus

Perspectives

High impact of low compaction spheroid on importance of radionuclide distribution

Introduction

in nuclei

% cross-fire dose

Materials & Methods

Results

Quantification of cross-fire effect (2/3)

Strong **cross-fire effect**, between **80** and **98 %** nucleus cross-fire dose

Less % cross-fire when particles are closer to nucleus

Low impact of alpha particles energy on importance of radionuclide distribution

Perspectives

Introduction

Quantification of cross-fire effect (3/3)

- Spheroid compaction
 Alpha particles energy
 Fixed
- Spheroid radius

Strong cross-fire effect, between 65 and 98 % nucleus cross-fire dose

Less % cross-fire when particles are closer to nucleus

High impact of small spheroid radius on importance of radionuclide distribution

Perspectives

Introduction

Materials & Methods

Results

Impact on biological effect (1/2)

Irradiation conditions : ²¹¹At, 95 µm spheroid radius, 75 % compaction

$$TCP = \prod_{i=1}^{n} (1 - S_i)$$

TCP = 1 for particles per cell > 10

Highest differences between distributions at ~ **5 particles per cell** \rightarrow Threshold effect

18-fold higher TCP between nucleus and membrane source

Perspectives

Introduction

Materials & Methods

Impact on biological effect (1/2)

Results

Materials & Methods

Introduction

Irradiation conditions : ²¹¹At, 95 μm spheroid radius, 75 % compaction

$$TCP = \prod_{i=1}^{n} (1 - S_i)$$

TCP = 1 for particles per cell > 10

Conclusion

Highest differences between distributions at ~ **5 particles per cell** \rightarrow Threshold effect

18-fold higher TCP between nucleus and membrane source

Impact on biological effect (2/2)

Number of alpha particles per cell	3	5	7	Irradiation conditions : ²¹¹ At,
$rac{D_{nucleus}~(nucleus~source)}{D_{nucleus}~(membrane~source)}$	1.116 + 0.002	1.116 + 0.002	1.116 + 0.002	95 µm spheroid radius, 75 % compaction

Impact of radionuclide distribution is not influenced by number of alpha particles per cell in term of physical dose, but is in term of Tumor Control Probability

Introd	ILICTION
ILLUUU	UCIUI

Materials & Methods

Results

Conclusion

Impact on biological effect (2/2)

Number of alpha particles per cell	3	5	7	Irradiation conditions : ²¹¹ At,
$rac{D_{nucleus}~(nucleus~source)}{D_{nucleus}~(membrane~source)}$	1.116 + 0.002	1.116 + 0.002	1.116 + 0.002	95 µm spheroid radius, 75 % compaction

Impact of radionuclide distribution is not influenced by number of alpha particles per cell in term of physical dose, but is in term of Tumor Control Probability

RBE μ at 10% cell survival \simeq 6.9, compared to external photon irradiation

Relative biological effectiveness =

Materials & Methods

Introduction

 $\frac{D_{reference}}{D_{TAT}}$

Results

For protons in hadrontherapy, **RBE** at 10% cell survival **≃ 1.1**

Perspectives

|--|

Take-home messages

Low impact of cytoplasm & nucleus internalization in most cases

High impact of nucleus internalization for low compaction and small (<50 µm radius) spheroids, and when few radionuclides are labeled per cell</p>

 Biological observables are mandatory to take into account in addition to classical physical ones

Introduction

Materials & Methods

Results

Conclusion

General conclusions

Combined predicting model NanOx - Geant4 developed for low energies

CPOP model adapted and improved for Targeted Alpha Therapy modeling

 Parametric study with this model: impact of intracellular radionuclide distribution in Targeted Alpha Therapy

+ 10	$\sim \sim$	110	+10	n
	()()		110	н т
		LU U		/

Materials & Methods

Results

Conclusion

- Article submission on the intracellular radionuclide distribution study
- Article writing and calculations for the NanOx adaptation at low energies ions

E.g. : validation of the NanOx hypothesis $\ Ek_i \ - \ Ek_f \ = \ Edep_{nucleus}$

Perspectives

ī		
I	ntroo	ILICTION
l	111100	

Results

- Article submission on the intracellular radionuclide distribution study
- Article writing and calculations for the NanOx adaptation at low energies ions

Materials & Methods

Introduction

Results

Conclusion

26/29

- Study of the impact of intratumoral radionuclide distribution in Targeted Alpha Therapy
 - \rightarrow variation of labeled cell %
 - \rightarrow cold regions of cells protected by fibroblasts
 - \rightarrow heterogeneous tumor penetration
 - → kinetic model of radionuclide diffusion

View of an irradiated tumor (4*6 cm) with the intra-tumoral activity distribution, Back et al. 2010

Perspectives

i.				
I	ntr	α	ICTIC	n
I	I I UI	υuι	JULIUI	

Materials & Methods

Results

Introduction

Materials & Methods

Results

Conclusion

"Mechanistic modeling of the impact of delivery order of low and high linear energy transfer ions on space radiation induced cancer risks"

Perspectives

Introduction Materia

Materials & Methods

Results

Time for questions

