Making the best use of published SUSY searches from LHC run-2

Timothée Pascal

Supervisor: Sabine Kraml (theory group)

Laboratoire de Physique Subatomique et de Cosmologie - Grenoble

PhD Student Seminars - March 16, 2023

- Inferring results from LHC Searches
 - Searching for new physics at the LHC
 - Reinterpreting Results with SModelS
 - Keeping the SModelS database up to date
- 2 Analysis Combination in SModelS
- Application to the MSSM electroweakino sector
 - The Wino-Bino Scenario
 - The Wino-Higgsino Scenario
- Search for deviations from the SM

Making the best use of published SUSY searches from LHC run-2 Inferring results from LHC Searches

- Inferring results from LHC Searches
 - Searching for new physics at the LHC
 - Reinterpreting Results with SModelS
 - Keeping the SModelS database up to date
- 2 Analysis Combination in SModelS
- 3 Application to the MSSM electroweakino sector
- 4 Search for deviations from the SM

Supersymmetry (SUSY)

The standard model (SM) of particle physics is not the full picture.

March 16, 2023 PhD Student Seminars 3/26

Searching for new physics at the LHC

Electroweakino sector of the minimal supersymmetric standrad model (MSSM)

ATL-PHYS-SLIDE-2018-785

Where do we stand?

- The standard model (SM) of particle physics is not the full picture.
- The large hadron collider (LHC) has reached unprecedented (controlled) energy and luminosity.
- A huge quantity of data has been recorded by the LHC.
- No analysis of this data led to an hint on the nature of the beyond the standard model (BSM) theory.
- Either the new physics is out of reach (energy barrier, lack of sensitivity, ...) or it has been recorded but we don't know it.

March 16, 2023 PhD Student Seminars 5/26

Data interpretation in LHC searches

arXiv:1105.2838

The ATLAS and CMS searches for supersymmerty (SUSY) interpret their data using a simplified model (minimal set of parameters).

How would such results constraint a more complex model?

March 16, 2023 PhD Student Seminars 6/26

SModelS working principle

arXiv:2112.00769 arXiv:2009.01809 arXiv:1811.10624

Public tool to confront BSM signals with a \mathbb{Z}_2 -like symmetry against simplified model results from the LHC.

35 ATLAS and 39 CMS 13 TeV analyses in the database (v.2.2.0).

March 16, 2023 PhD Student Seminars 7/26

Using efficiency maps to reinterpret results

Test phase-space points and exclude it if $r = \frac{\sigma^{\rm BSM}}{\sigma^{\rm BSM}_{\rm UL}} \geqslant 1$ with:

 $\sigma^{\mathsf{BSM}} = \epsilon \times \mathcal{A} \sum \sigma \prod \mathsf{BR} \ \, \mathsf{per} \, \mathsf{signal} \, \, \mathsf{region} \leftarrow \mathsf{input} \, \, \mathsf{file} \, \, \mathsf{and} \, \, \mathsf{exp.} \, \, \mathsf{pub}.$ $\sigma^{\mathsf{BSM}}_{\mathsf{UL}} \leftarrow \mathsf{exp.} \, \, \mathsf{pub}.$ or computed through an hypothesis test:

$$\sigma_{\rm UL}^{\rm BSM} = \mu_{\rm UL} \frac{n_{\rm signal}}{f_c}.$$

The signal strength upper limit ($\mu_{\rm UL}$) is reached when $\frac{p({\rm BSM})}{p({\rm SM~only})}=0.05$

$$L(\mu,\theta|D) = \frac{(\mu \times s + b + \theta)^{n_{obs}} e^{-(\mu \times s + b + \theta)}}{n_{obs}!} e^{-\frac{\theta^2}{2\delta^2}}$$

Efficiency maps allow SModelS to compute likelihoods for the hypothesised signal (L_{BSM} , L_{SM} , L_{max}).

March 16, 2023 PhD Student Seminars 8/26

Using efficiency maps to reinterpret results

Signal region combination is possible using full statistical models (ATLAS). The latter is encoded in a json file and is interfaced to SModelS with pyhf. The likelihood becomes:

$$L(\mu, \theta|D) = \prod_{i=1}^{N} \frac{(\mu s_i^r + b_i + \theta_i)^{n_{obs}^i} e^{-(\mu s_i^r + b_i + \theta_i)}}{n_{obs}^i!} \prod_{\theta \in \{\theta\}} c_{\theta}(a_{\theta}|\theta).$$

The correlations can otherwise be encoded in a covariance matrix (CMS), where

$$L(\mu, \theta|D) = \prod_{i=1}^{N} \frac{(\mu s_i^r + b_i + \theta_i)^{n_{obs}^i} e^{-(\mu s_i^r + b_i + \theta_i)}}{n_{obs}^i!} e^{-\frac{1}{2} \overrightarrow{\theta}^T V^{-1} \overrightarrow{\theta}}.$$

March 16, 2023 PhD Student Seminars 9/26

ATLAS-SUSY-2018-32

arXiv:1908.08215

Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum ($pp \to \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm} \to WW \to l\nu l\nu$) in $\sqrt{s}=13$ TeV pp collisions using the ATLAS detector.

March 16, 2023 PhD Student Seminars 10/26

Making the best use of published SUSY searches from LHC run-2 Analysis Combination in SModelS

- Inferring results from LHC Searches
- 2 Analysis Combination in SModelS
- 3 Application to the MSSM electroweakino sector
- Search for deviations from the SM

Combining uncorrelated analyses

From SModelS v.2.2 on, it is possible to combine uncorrelated analyses.

$$L_{\mathsf{combined}}(\mu) = \prod_{i} L_{i}(\mu, \theta_{i}|D_{i})$$

March 16, 2023 PhD Student Seminars 12/26

$$L_{\mathsf{combined}}(\mu) = \prod_i L_i(\mu, \theta_i | D_i)$$

Under-fluctuation in the background leads to negative values for $\hat{\mu}$.

Analysis Combination in SModelS

$$L_{\mathsf{combined}}(\mu) = \prod_{i} L_{i}(\mu, \theta_{i}|D_{i})$$

Excess in the data leads to positive values for $\hat{\mu}$.

- Inferring results from LHC Searches
- 2 Analysis Combination in SModelS
- Application to the MSSM electroweakino sector
 - The Wino-Bino Scenario
 - The Wino-Higgsino Scenario
- 4 Search for deviations from the SM

Electroweakino Sector of the MSSM

ATL-PHYS-SLIDE-2018-785

PoS(EPS-HEP2019)710

Why EWino sector?

Not so constrainted sector, but with some reusable published results targeting different channels and mass ranges.

ID		Short Description	\mathcal{L} [fb $^{-1}$]	likelihoods	UL_{obs}	UL_{exp}	EM	comb.
ſ	CMS-EXO-19-010	disappearing track	101.0	yes			✓	
	CMS-SUS-20-001	2 OSSF I's	137.0	yes	✓	✓		
	CMS-SUS-20-004	search for higgsinos	137.0	yes	✓	✓	✓	Cov.
Ĺ	CMS-SUS-21-002	Hadronic EWK searches	137.0	yes	✓	✓	✓	Cov.

	ID	Short Description	\mathcal{L} [fb $^{-1}$]	likelihoods	UL _{obs}	UL_{exp}	EM	comb.
ſ	ATLAS-SUSY-2018-05	$2L + jets + E_T$	139.0	yes	✓		✓	JSON
	ATLAS-SUSY-2018-06	3 I's EW-ino	139.0	yes	✓	✓	✓	
	ATLAS-SUSY-2018-23	EWK WH	139.0	yes	✓	✓		
	ATLAS-SUSY-2018-32	2 OS I's $+ E_T$	139.0	yes	✓		✓	JSON
	ATLAS-SUSY-2018-41	Boosted hadronic EWK searches	139.0	yes	✓	✓	✓	Cov.
İ	ATLAS-SUSY-2018-42	charged LLPs, dE/dx	139.0	yes	✓	✓		
İ	ATLAS-SUSY-2019-02	2L + ₺ _T	139.0	yes	✓	✓	✓	Cov.
	ATLAS-SUSY-2019-08	$1\ell + higgs + E_T$	139.0	yes	✓		✓	JSON
	ATLAS-SUSY-2019-09	3 I's EW-ino	139.0	yes	✓	✓	✓	JSON

Why EWino sector?

This sector tends to reject the SM hypothesis.

The wino-bino scenario

Scan over: $M_1 \, < \, M_2 \, \ll \, \mu = 2 \, \mathrm{TeV}$

All other SUSY particles are assumed heavy (beyond LHC reach). Mass spectra and branching ratios computed with SOFTSUSY 4.1.12. Next-to-leading-order cross-sections computed with Prospino 2.1. The kind of result we expect (with the 4 previously mentioned analyses):

The wino-higgsino scenario

Scan over: $\mu < M_2 \ll M_1 = 2 \, \mathrm{TeV}$

There are more branching ratios and no dominant decay.

The wino-higgsino scenario

Scan over: $\mu < M_2 \ll M_1 = 2 \, \mathrm{TeV}$

The ATLAS and CMS contour lines are obtained by making the assumption of a pure wino-bino scenario. Here, with more decays the sensitivity becomes much less.

For both scenarios

Next step: find the most sensible set of combinable analyses among a set of analyses. Combination matrix of the ATLAS and CMS EWino searches during run-2 with (almost) full lumi:

Making the best use of published SUSY searches from LHC run-2 Search for deviations from the SM

- Inferring results from LHC Searches
- 2 Analysis Combination in SModelS
- 3 Application to the MSSM electroweakino sector
- Search for deviations from the SM

Switch the test statistic to discovery mode

$$q_{\mu} = \begin{cases} -2\ln\left(\frac{L(\mu,\hat{\hat{\theta}})}{L(\hat{\mu},\hat{\hat{\theta}})}\right) & \hat{\mu} \leqslant \mu \\ 0 & \hat{\mu} > \mu \end{cases} \rightarrow q_{0} = \begin{cases} -2\ln\left(\frac{L(0,\hat{\hat{\theta}})}{L(\hat{\mu},\hat{\hat{\theta}})}\right) & \hat{\mu} \geqslant 0 \\ 0 & \hat{\mu} < 0 \end{cases}$$

March 16, 2023 PhD Student Seminars 24/26

The proto-model builder

https://smodels.github.io/protomodels/videos/

The number of particles, branching ratios values and cross-sections values are not fixed. Perform a MCMC-type walk over the parameter space and test the proto-model against the SM hypothesis by using the results (likelihoods) in the database. One has to choose the analyses entering in the combined likelihood, but the non-combined analyses can still be used to constraint the proto-model.

March 16, 2023 PhD Student Seminars 25/26

Conclusion

- Reinterpreted LHC results may differ from the simplified model picture.
- For precise statistical statement, one needs to evaluate likelihoods.
- Combining analyses can lead to more robust constraints.
- We hope to soon have new interesting results using SModelS in the anomaly detection regime.

March 16, 2023 PhD Student Seminars 26/26

Acknowledgments

This project was funded thanks to the ANR-15-IDEX-02 (APM@LHC), ANR-21-CE31-0023 (PRCI SLDNP) and IN2P3 master project "Théorie – BSMGA".

Run 2 - 13 TeV

In total, we have results from 35 ATLAS and 39 CMS 13 TeV searches.

- ATLAS upper limits: 32 analyses, 80 (of which 4 LLP) results
- ATLAS efficiency maps: 21 analyses, 65 (of which 11 LLP) results, 599 individual maps
- CMS upper limits: 36 analyses, 143 (of which 3 LLP) results
- CMS efficiency maps: 8 analyses, 53 results, 3186 individual maps

Run 1 - 8 TeV

In total, we have results from 15 ATLAS and 18 CMS 8 TeV searches.

- · ATLAS upper limits: 13 analyses, 34 results
- ATLAS efficiency maps: 10 analyses, 31 results, 269 individual maps
- . CMS upper limits: 16 analyses, 56 (of which 3 LLP) results
- CMS efficiency maps: 9 analyses, 47 (of which 9 LLP) results, 980 individual maps

ID	Short Description	\mathcal{L} [fb ⁻¹]	likelihoods	UL_{obs}	UL_{exp}	EM	comb.
CMS-EXO-19-001	displaced vertices	137.0	yes			✓	
CMS-EXO-19-010	disappearing track	101.0	yes			✓	
CMS-PAS-EXO-16-036	hscp search	12.9	no	✓			
CMS-PAS-SUS-16-052	soft 1, <= 2 jets	35.9	yes	✓		1	Cov.
CMS-SUS-16-009	multijets + E_T , top tagging	2.3	yes	✓	✓		
CMS-SUS-16-032	Sbottom and compressed stop	35.9	no	✓			
CMS-SUS-16-033	$0\ell + \text{jets} + \not\!\!E_T$	35.9	yes	✓	✓	✓	
CMS-SUS-16-034	2 OSSF l's	35.9	no	✓			
CMS-SUS-16-035	2 SS l's	35.9	no	✓			
CMS-SUS-16-036	$0\ell + \text{jets} + \not\!\!E_T$	35.9	yes	✓	✓		
CMS-SUS-16-037	$1\ell + \text{jets} + \not\!\!E_T \text{ with MJ}$	35.9	no	✓			
CMS-SUS-16-039	multi-l EWK searches	35.9	yes	✓		1	Cov.
CMS-SUS-16-039	multi-l EWK searches	35.9	yes			1	Cov.
CMS-SUS-16-041	multi-ls + jets + E_T	35.9	no	✓			
CMS-SUS-16-042	$1\ell + \text{jets} + E_T$	35.9	no	✓			
CMS-SUS-16-043	EWK WH	35.9	no	✓			
CMS-SUS-16-045	Sbottom to bHbH and H $\rightarrow \gamma \gamma$	35.9	no	✓			
CMS-SUS-16-046	$\gamma + E_T$	35.9	no	✓			
CMS-SUS-16-047	$\gamma + HT$	35.9	no	✓			
CMS-SUS-16-048	two soft OS l's	35.9	yes			1	Cov.
CMS-SUS-16-050	$0\ell + \text{top tag}$	35.9	yes	✓	✓	1	Cov.
CMS-SUS-16-050	$0\ell + \text{top tag}$	35.9	yes			1	Cov.
CMS-SUS-16-051	1ℓ stop	35.9	yes	✓	V		
CMS-SUS-17-001	Stop search in dil + jets + E_T	35.9	no	✓			
CMS-SUS-17-003	2 taus + E _T	35.9	no	✓			
CMS-SUS-17-004	EW-ino combination	35.9	no	✓			
CMS-SUS-17-005	1ℓ + multijets + E_T , top tagging	35.9	yes	✓	✓		
CMS-SUS-17-006	jets + boosted $H(bb) + E_T$	35.9	yes	✓	✓		
CMS-SUS-17-009	SFOS I's + E _T	35.9	yes	✓	✓		
CMS-SUS-17-010	2L stop	35.9	yes	✓	✓		
CMS-SUS-18-002	γ , jets, b-jets+ E_T , top tagging	35.9	yes	✓	✓		
CMS-SUS-18-004	two or three soft l's	137.0	yes	✓	✓		
CMS-SUS-18-007	H	77.5	yes	✓	✓		
CMS-SUS-19-006	0ℓ + jets, MHT	137.0	yes	✓	✓	1	Cov.
CMS-SUS-19-006	0ℓ + jets, MHT	137.0	yes			1	Cov.
CMS-SUS-19-008	2-3L + jets	137.0	yes	✓	✓		
CMS-SUS-19-009	$1\ell + \text{jets, MHT}$	137.0	yes	✓	✓		
CMS-SUS-19-010	Jets + top and W tag	137.0	yes	✓	✓		
CMS-SUS-19-011	Stop search in dil + jets + E_T	137.0	yes	✓	✓		
CMS-SUS-19-013	High momentum Z Boson+ E _T	137.0	yes	✓	✓		
CMS-SUS-20-001	2 OSSF I's	137.0	yes	✓	✓		
CMS-SUS-20-002	combined stop search	137.0	yes	✓	✓		
CMS-SUS-20-004	search for higgsinos	137.0	yes	✓	✓	✓	Cov.
CMS-SUS-21-002	Hadronic EWK searches	137.0	yes	✓	✓	1	Cov.

IC									
	ID	Short Description	\mathcal{L} [fb ⁻¹]	likelihoods	UL_{obs}	UL_{exp}	EM	comb.	
	ATLAS-SUSY-2015-01	2 b-jets + \mathbb{E}_T	3.2	no	✓				
	ATLAS-SUSY-2015-02	single l stop	3.2	yes	✓		✓		
	ATLAS-SUSY-2015-06	0 l's + 2-6 jets + E _T	3.2	yes			✓		
	ATLAS-SUSY-2015-09	jets + 2 SS l's or >=3 l's	3.2	no	✓				
	ATLAS-SUSY-2016-06	disappearing track	36.1	yes			✓		
	ATLAS-SUSY-2016-07	$0\ell + \text{jets} + E_T$	36.1	yes	✓		✓		
	ATLAS-SUSY-2016-08	displaced vertices	32.8	no	✓				
	ATLAS-SUSY-2016-14	2 SS or 3 l's + jets + ₺/T	36.1	no	✓				
	ATLAS-SUSY-2016-15	0ℓ stop	36.1	no	✓				
	ATLAS-SUSY-2016-16	1ℓ stop	36.1	yes	✓		✓		
	ATLAS-SUSY-2016-17	2 opposite sign l's + E _T	36.1	no	✓				
	ATLAS-SUSY-2016-19	stops to staus	36.1	no	✓				
	ATLAS-SUSY-2016-24	2-3 l's + E _T , EWino	36.1	yes	✓		✓		
	ATLAS-SUSY-2016-26	>=2 c jets + \(\mathbb{E}_T \)	36.1	no	✓				
	ATLAS-SUSY-2016-27	$jets + \gamma + E_T$	36.1	yes	✓		✓		
	ATLAS-SUSY-2016-28	2 b-jets + E _T	36.1	no	✓				
	ATLAS-SUSY-2016-32	hscp search	31.6	yes	✓	√	✓		
	ATLAS-SUSY-2016-33	2 OSSF l's + E _T	36.1	no	✓				
	ATLAS-SUSY-2017-01	EWK WH(bb) + E_T	36.1	no	✓				
	ATLAS-SUSY-2017-02	$0\ell + \text{jets} + E_T$	36.1	yes	✓	✓			
	ATLAS-SUSY-2017-03	multi-l EWK searches	36.1	yes	✓		✓		
	ATLAS-SUSY-2018-04	2 hadronic taus	139.0	yes	✓		✓	JSON	
	ATLAS-SUSY-2018-05	$2L + jets + \cancel{E}_T$	139.0	yes	✓		✓	JSON	
	ATLAS-SUSY-2018-05	2L + jets + \mathbb{E}_T	139.0	yes			✓		
	ATLAS-SUSY-2018-06	3 l's EW-ino	139.0	yes	✓	✓	✓		
	ATLAS-SUSY-2018-08	OS l's	139.0	yes	✓		✓		
	ATLAS-SUSY-2018-10	$1\ell + \text{jets} + E_T$	139.0	yes	✓		✓		
	ATLAS-SUSY-2018-12	0 l's + jets + ₺T	139.0	yes	✓	V	✓		
	ATLAS-SUSY-2018-14	displaced vertices	139.0	yes			✓	JSON	
	ATLAS-SUSY-2018-22	jets + E _T	139.0	yes	✓		✓		
	ATLAS-SUSY-2018-23	EWK WH	139.0	yes	✓	✓			
	ATLAS-SUSY-2018-31	2b + 2H(bb) + \(\mathbb{E}_T\)	139.0	yes	✓		✓	JSON	
	ATLAS-SUSY-2018-32	2 OS l's + \₹_T	139.0	yes	✓		✓	JSON	
	ATLAS-SUSY-2018-40	Sbottom to bH	139.0	yes	✓	✓	✓		
	ATLAS-SUSY-2018-41	Boosted hadronic EWK searches	139.0	yes	✓	✓	✓	Cov.	
	ATLAS-SUSY-2018-42	charged LLPs, dE/dx	139.0	yes	✓	✓			
	ATLAS-SUSY-2019-02	2L + ₽ _T	139.0	yes	✓	✓	✓	Cov.	
	ATLAS-SUSY-2019-08	$1\ell + \text{higgs} + E_T$	139.0	yes	✓		✓	JSON	
	ATLAS-SUSY-2019-09	3 l's EW-ino	139.0	yes	✓	 	✓	JSON	

Distribution of p-values of standard model hypothesis in the entire SmodelS database

Appendix

Appendix

The wino-bino scenario

Scan over: $M_1 \, < \, M_2 \, \ll \, \mu = 2 \, \mathrm{TeV}$

When combining more analyses, the exclusion power becomes harder to quantify.

Wino-Bino scenario ($m_{V^0} \approx 95$ GeV, $\mu = 2$ TeV, $\tan \beta = 10$)

The wino-bino scenario

Scan over: $M_1 \, < \, M_2 \, \ll \, \mu = 2 \, \mathrm{TeV}$

When combining more analyses, the exclusion power becomes harder to quantify.

Wino-Bino scenario $(m_{V^0} \approx 95 \text{ GeV}, \mu = 2 \text{ TeV}, \tan \beta = 10)$

The wino-higgsino scenario

Scan over: $\mu < M_2 \ll M_1 = 2 \, \mathrm{TeV}$

$$3.9~{\rm GeV} < m_{\tilde{\chi}_1^0} - m_{\tilde{\chi}_1^\pm} < 55.5~{\rm GeV}~~{\rm and}~~2.5~{\rm GeV} < m_{\tilde{\chi}_1^\pm} - m_{\tilde{\chi}_1^0} < 6.1~{\rm GeV}$$

The wino-higgsino scenario

Scan over: $\mu < M_2 \ll M_1 = 2 \, \mathrm{TeV}$

When combining more analyses, the exclusion power becomes harder to quantify. Wino-Higgsino scenario $(m_{\tilde{y}_1^0} \approx 110 \text{ GeV}, M_1 = 2 \text{ TeV}, \tan \beta = 10)$

The wino-higgsino scenario

Scan over:
$$\mu < M_2 \ll M_1 = 2 \, \mathrm{TeV}$$

When combining more analyses, the exclusion power becomes harder to quantify.

Wino-Higgsino scenario $(m_{\phi^0} \approx 110 \text{ GeV}, M_1 = 2 \text{ TeV}, \tan \beta = 10)$

