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a baroque oil painting of 
joseph fourier as DJ in a 
dance club



Experimental particle physics workflow

This is what happens in the experiment

This is what we want to knowConnect observational data 
with underlying theory: 
Statistics & simulation



The rise of ML in particle physics
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Inspire: ("machine learning" or 
"deep learning" or neural) and 
(hep-ex or hep-ph or hep-th)

420 papers in 2022
• Machine learning (ML) considered 

in all aspects of particle physics 

• Rapid rise in publications  
and considered topics 



The rise of ML in particle physics
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• Machine learning (ML) considered 
in all aspects of particle physics 

• Rapid rise in publications  
and considered topics


• To maximise impact:  
Solid understanding of physics and 
machine learning techniques required


• Domain knowledge of the physics 
data — e.g. symmetries


• Phrase the actual physics task 
tractable to direct optimisation

Focus on LHC-style analysis but 
underlying ideas applicable in general

See e.g. for a broader overview:

https://arxiv.org/abs/2112.03769

https://arxiv.org/abs/2112.03769


• Rephrase task as a minimisation problem..


• ..and “simply” solve: 
 
 

• Modern ML: function f is a deep neural network & 
minimisation carried out via gradient descent 

• Devil in the details: 

• How to map physics objective to loss function L 
• How to structure f to make maximum use of 

physics knowledge

• How learn in a robust way from minimum 

amount of data 

• …

✓⇤ = argmin✓ Ex⇠p(x) [L(f✓(x),x)]

<latexit sha1_base64="RO46pFIGOAol09qGQPC65vT/S8c="></latexit>

Micro-Intro: Machine Learning



Supervised Learning: 
Attempt to infer some target (truth label):  
classification, regression (often also clustering/inference)


Use training data with known labels 
(often from Monte Carlo simulation)

observable features 
such as kinematics, 
tracks,…

truth label  
(e.g. true energy)

Learn to predict:


predicted energy

x
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L = (y � ŷ)2
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Regression: Minimize mean squared error:

Loss function: Supervised



Unsupervised Learning: 
No target, learn the probability 
distribution (directly from data)


Can use for sampling, anomaly 
detection, unfolding, …


Learn to  
predict:

True probablity  
density

x
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<latexit sha1_base64="zOVnzhLT3MpRM2vLFWOIdKsK7sc=">AAACE3icbZBLS8NAFIUn9VXrK+rSzWARqouSSKV2IRQEcVnBPqApZTKdtEMnD2ZuxBIC/gQ3/hU3LhRx68ad/8Y0KVIfBwYO59xh7nx2ILgCw/jUcguLS8sr+dXC2vrG5pa+vdNSfigpa1Jf+LJjE8UE91gTOAjWCSQjri1Y2x6fT/v2DZOK+941TALWc8nQ4w6nBJKorx9ZIwJREJcsl8DIdqLb+BCfYadvwYgBmY/7etEoG6nwX2POTBHN1OjrH9bAp6HLPKCCKNU1jQB6EZHAqWBxwQoVCwgdkyHrJtYjLlO9KP1TjA+SZIAdXybHA5ym8zci4io1ce1kcrqi+t1Nw/+6bgjOaS/iXhAC82j2kBMKDD6eAsIDLhkFMUkMoZInu2I6IpJQSDAWUgi1VDgz1crM1MxvCK3jslkpn1xVivWLuwxHHu2hfVRCJqqiOrpEDdREFN2jR/SMXrQH7Ul71d6y0Zw2Q7iLfkh7/wJGXJ8+</latexit>

p(x)
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L = � log (p̂(x))
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Distribution learning: Maximise likelihood 
(minimize log-likelihood): 
(either directly or with approximations)

Loss function: Unsupervised



Fast simulation
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Generative Models

Complex chain 
of 

simulations


Simulation is crucial to 
connect experimental 
data with theory 
predictions




Simulation is crucial to 
connect experimental 
data with theory 
predictions

but computationally 
very expensive 

Generative Models

Simulation and 
Generation steps 
over 40% of ATLAS 
compute effort..
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Simulation is crucial to 
connect experimental 
data with theory 
predictions

but computationally 
very expensive 

Use generative 
models trained on 
initial data to 
augment statistics 

Generative Models

Data / slow simulation 
(e.g. GEANT4)

Generative ML 
model

Use for 
training

Use for 
sampling



Simulation is crucial to 
connect experimental 
data with theory 
predictions

but computationally 
very expensive 

Use generative 
models trained on 
initial data to 
augment statistics 

Data / slow simulation 
(e.g. GEANT4)

Generative ML 
model

Use for 
training

Use for 
sampling



Generative Models
Simulation is crucial to 
connect experimental 
data with theory 
predictions

but computationally 
very expensive 

Use generative models 
trained on initial data 
to augment statistics


Goal: simulation  
of particle showers in 
complex calorimeters  
like for the ILD or the 
CMS High Granularity 
Calorimeter (HGCal)

CALICE AHCal testbeam
Illustration of particle shower 

in a sampling calorimeter

One data exampleILD Detector



Aside
Large effort also exists 
to learn surrogate 
models of theory 
simulations // event 
generation


Similar techniques are 
used, but different key 
challenges

Butter, Plehn, Schumann, .. GK et al 2203.07460



Example

24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 16

Shower Dataset
Training data:

•Photons / charged Pions

•1 million / 500k showers 

•10 to 100 GeV

•Fixed incident point & angle

•Project to grid

•30×30×30 / 25×25×48

Photon shower 

Buhmann et. al. Hadrons, Better, Faster, 
Stronger: (2021) 2112.09709 

Charged pion shower

Buhmann et al.: Getting High: High Fidelity 
Simulation of High Granularity Calorimeters 
with High Speed (2020) 2005.05334 

Photons Pions

Simulate showers  
initiated by photons and 
charged pions


Hallin, .., GK et al 2109.00546;



Example
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Shower Dataset
Charged pion showers

Buhmann et. al. Hadrons, Better, Faster, 
Stronger: (2021) 2112.09709 

Pion showers significantly more complex

Photon showers 

Buhmann et al.: Getting High: High Fidelity 
Simulation of High Granularity Calorimeters 
with High Speed (2020) 2005.05334 

Training data:

•Photons / charged Pions

•1 million / 500k showers 

•10 to 100 GeV

•Fixed incident point & angle

•Project to grid

•30×30×30 / 25×25×48

Photons Pions

Simulate showers  
initiated by photons and 
charged pions


Pion showers are  
significantly more 
complex


Buhmann, .., GK et al 2005.05334; 
Buhmann, .., GK et al 2112.09709;

ILD ECal 
Silicon/Tungstate

ILD AHCal 
stainless steel absorber 
plates and scintillator 
tiles with SiPMs



Example
Simulate showers  
initiated by photons and 
charged pions


Pion showers are  
significantly more 
complex


Use modified BIB-AE 
architecture


Buhmann, .., GK et al 2005.05334; Buhmann, .., GK et al 
2112.09709; Voloshynovskiy et al 1912.00830;



Example
Simulate showers  
initiated by photons and 
charged pions


Pion showers are  
significantly more 
complex


Use modified BIB-AE 
architecture


Achieves excellent 
modelling of differential 
distributions —

first for high-granularity  
calorimeter24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 2020

Cell Energy Spectrum
Photons Pions

Buhmann, .., GK et al 2005.05334; 
Buhmann, .., GK et al 2112.09709;

Photons Pions



Timing

Buhmann, .., GK et al 2005.05334; 
Buhmann, .., GK et al 2112.09709;

Photons

Pions



Dual conditioning

Diefenbacher .. GK et al 2303.18150

Additional control over one 
incoming particle angle




Flow based generation

Diefenbacher..GK et al 2302.11594

How can we further 
improve the quality of 
generated distributions?

Flow based models learn 
an exact mapping to a 
Gaussian latent space, 
can be trained by direct 
likelihood minimisation 
(no adversarial terms, 
more stable!)



Flow based generation

Diefenbacher..GK et al 2302.11594; based on Shih/Krause 
CaloFlows I II

Disadvantage: As 
invertible model, latent 
space dimension is same 
as data space 
dimension, bad scaling 
with large inputs


Solution: 
Two step generation, 
Sequential conditioning



L2L Flows

Diefenbacher..GK et al 2302.11594

Better generative fidelity than BIB-AE,  
working on scaling up!



Point Cloud Generation
For high-resolution 
detectors, images will be 
very sparse and geometry 
impossible to map to fixed 
grid. Instead treat showers 
as graphs or point clouds


The physics of particle 
shower is simple: Point 
cloud (instead of graph) 
more efficient and much 
faster


Buhmann, GK, Thaler 2301.08128; 
Kansal et al 2106.11535; Käch et al 
2211.13630; Buhmann, … GK, et al 
2305.04847

24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 16

Shower Dataset
Training data:

•Photons / charged Pions

•1 million / 500k showers 

•10 to 100 GeV

•Fixed incident point & angle

•Project to grid

•30×30×30 / 25×25×48

Photon shower 

Buhmann et. al. Hadrons, Better, Faster, 
Stronger: (2021) 2112.09709 

Charged pion shower

Buhmann et al.: Getting High: High Fidelity 
Simulation of High Granularity Calorimeters 
with High Speed (2020) 2005.05334 



Point Cloud Generation
For high-resolution 
detectors, images will be 
very sparse and geometry 
impossible to map to fixed 
grid. Instead treat showers 
as graphs or point clouds


The physics of particle 
shower is simple: Point 
cloud (instead of graph) 
more efficient and much 
faster


Buhmann, GK, Thaler 2301.08128; 
Kansal et al 2106.11535; Käch et al 
2211.13630; Buhmann, … GK, et al 
2305.04847
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Figure 1: Equivariant Point Cloud (EPiC) layer structure. The global function � g

and point function �p are learned by neural networks. The � symbol indicates the
aggregation function ⇢p!g with both element-wise summation and average pooling.

the number of points. We find that EPiC-GAN provides fidelity of generated distributions on
par with MP-GAN, yet offers a significant speed-up in generation time and much better scal-
ing to large point cloud multiplicities. Additionally, the global attributes associated with each
EPiC-GAN layer provide an interpretable latent space that can be correlated to known physical
observables.

As a proof-of-principle case study, we apply EPiC-GAN to generate jets trained on the JetNet
benchmark dataset [17]. In comparison to earlier permutation equivariant set-based gener-
ative models [24–26], the EPiC-GAN utilizes a continuously updated global attribute vector
that allows for inter-point communication without the computational overhead of a full graph
model. A model relying on such global attributes works well for modeling particle jets, which
are defined by a number of per-jet (i.e. global) physical observables such as mass and trans-
verse momentum. The fidelity reached on such complex physical distributions suggests that
this model could also perform well for tasks like fast calorimeter simulation.

The remainder of this paper is organized as follows. In Sec. 2, we introduce the EPiC-
GAN architecture and associated loss functions. We present a case study using EPiC-GAN for
generating jets at the LHC in Sec. 3 and draw our conclusions in Sec. 4.

2 Equivariant Point Cloud GAN

In this section, we introduce equivariant point cloud (EPiC) layers, which are the founda-
tion for our generative model. By stacking multiple EPiC layers, we build our generator and
discriminator architectures. To the best of our knowledge, these architectures are a novel con-
tribution to the generative modeling literature, not just in HEP. We implement EPiC-GAN in
Pytorch [27] and the code is available on GitHub.1

2.1 EPiC Layers

Following the notation in Ref. [28], we define a 2-tuple point cloud C = (g , P) as a graph
without edges. The global attributes of the point cloud are represented by g . The set of points
are represented by P = p i=1:N , where p i are the attributes of point i and N is the set cardinality
(in jet physics terms: particle multiplicity).

1https://github.com/uhh-pd-ml/EPiC-GAN

3

Equivariant Point Cloud interaction (EPiC) block: 
Similar to deep sets, but with additional global 
information exchange. 


Still permutation equivariant
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Figure 2: Architecture implementation of the EPiC GAN. Both the (a) generator and
(b) discriminator consist of multiple EPiC layers from Fig. 1 as well as (shared) neu-
ral networks for input/output dimensionality expansion/reduction. The � symbol
represents the aggregation function ⇢p!g with both element-wise summation and
average pooling. Though not shown, there are additional residual connections be-
tween EPiC layers described in the text.

5

Can use to build 
generator and 
discriminator blocks 
for classical GAN 
architecture, but  
fully respecting  
permutation symmetry.

Buhmann, GK, Thaler 2301.08128;

Point Cloud Generation
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Good fidelity of 
distributions, very fast and 
linear scaling with number 
of particles

Buhmann, GK, Thaler 2301.08128;

Point Cloud Generation



Point Cloud Generation
To improve the generative 
fidelity, move from GAN to 
diffusion model:


Learn step-wise demonising

Buhmann, GK, Thaler 2301.08128; 
Kansal et al 2106.11535; Käch et al 
2211.13630; Buhmann, … GK, et al 
2305.04847



Point Cloud Generation

To improve the generative 
fidelity, move from GAN to 
diffusion model:


Learn step-wise demonising


Some additional pre-
processing needed

Buhmann, GK, Thaler 2301.08128; 
Kansal et al 2106.11535; Käch et al 
2211.13630; Buhmann, … GK, et al 
2305.04847



Diffusion

Buhmann, … GK, et al 2305.04847



Results

Buhmann, … GK, et al 2305.04847
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Figure 5: Per-cell (left), radial (center), and longitudinal (right) energy

distributions for both Geant4 and CaloClouds. In the per-cell energy

distribution, the region below 0.1 MeV is grayed out (see main text for details). All

distributions are calculated for a uniform distribution of incident particle energies.
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Figure 6: Position of the center of gravity of showers along the X (left), Y (center),

and Z (right) directions. All distributions are calculated for a uniform distribution

of incident particle energies.

will look di↵erent, for example, due to the local staggering of cells between layers,

the position of the impact point with respect to the cell centers, gaps in the

cell structure at the edge of silicon sensors, etc. The distribution that is most

susceptible to potential artifacts resulting from such a translation is the cell

energy distribution. This distribution is shown in Figure 8 for the validation

(left) and test data set (right) respectively, where in the case of the test data

set the generated point cloud has been translated to the new impact position

and then projected into the local cell geometry used for the full simulation with
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Figure 8: Per-cell energy distribution for the 50 GeV validation (left) data set,

created at the same position as the training data set and for a 50 GeV test (right)

data set simulated at a di↵erent position with the generated point cloud translated

to this position.

Hardware Simulator Time / Shower [ms] Speed-up

CPU Geant4 4082 ± 170 ⇥1

CaloClouds 3509 ± 220 ⇥1.2

GPU CaloClouds 38 ± 3 ⇥107

Table 2: Comparison of the computational performance of CaloClouds to the

baseline Geant4 simulator on a single core of an Intel® Xeon® CPU E5-2640

v4 (CPU) and an NVIDIA® A100 with 40 GB of memory (GPU). Showers were

generated with incident energy uniformly distributed between 10 and 100 GeV.

The batch size was set to 1 on the CPU and to 64 on the GPU. Values presented

are the means and standard deviations over 25 runs. The Geant4 time is taken

from Ref. [15].

First successful point-cloud model for 6k 
points


Fidelity and speed can still be improved


For much more: See recent 
CaloChallenge
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Searches for new physics

• Theoretical and experimental 
reasons to expect new physics 
beyond the Standard Model


• However, so far only negative 
results in direct (model driven) 
searches


• Make sure that we do not miss 
potential discoveries at the LHC 
→Anomaly detection



What is an anomaly?



Point anomaly

• Outliers: Datapoints far away from regular 
distribution


• Examples:

• Detector malfunctions

• Background-free search



And now?



Color (Mass)

Co
un

t
Group anomaly
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Color (Mass)

Co
un

t
Group anomaly

• Individual examples not anomalous, 
but interesting collective behaviour


• Examples:

• New physics searches, e.g. resonances

• Excess in time series
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= pbg(x|m 2 SB)

FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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41

↑

Te

Counts e

xew
↓" E -1

↳
m

?

Can learn distributions in arbitrary 
dimensions (shape) as long as interpolation in 
one variable



Shape Interpolation
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Te Train generative
Counts~ - model p/Xa ... (m)
van here
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W
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Can be any conditional generative model 
(GAN, VAE, flow, diffusion)

In practice we use a normalising flow
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x ⇠ p(x|m)

Sampling yields an in-situ background 
estimate trained on data



Anomalies!
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If signal present:
Estimate Data
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Training a binary classifier between estimate 
and data can detect localised signals (e.g. 
resonant new physics)



LS/B =
p(x|anomaly)

p(x|normal)

Per Neyman-Pearson: Likelihood-ratio 
is optimal test statistic 
Unfortunatly, p(x|anomaly) is not 
available 

LD/B =
p(x)

p(x|normal)

LD/B ⇡ p(x)

p̃(x|normal)
Approximate background density using  
control measurement (e.g. sideband)

Build data/background ratio: 

Expand p(x) = fnormal p(x|normal) + fanomaly p(x|anomaly)

LD/B ⇡ fnormal + fanomaly
p(x|anomaly)

p̃(x|normal)
And insert:

Aside: Justification
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 6. Background rejection (left) and significance improvement (right) of the various anomaly classifiers as a function of
the signal e�ciency. The solid lines are deduced from a median value of 10 fully independent trainings on the same training,
validation and evaluation set. The uncertainty bands quantify the variance from retraining the NNs on the same, fixed dataset
and are defined such that they contain 68% of the runs around the median.

FIG. 7. Left: Median maximum significance improvement of each method with 10 di↵erent signal injections (leading to a
di↵erent split of training, validation and evaluation sets in each run) at each decreasing value of signal/background ratios.
Here, the 68% hatched uncertainty bands quantify the variance (around the median) from both retrainings of the NN and

random realizations of the training and validation data, including di↵erent realizations of the 1,000 injected signal events.
Right: Achieved maximum significance, which is computed by multiplying the uncut significance by the maximum significance
improvement. Both plots feature the significance without any cut applied in the upper horizontal axis. The dotted lines on the
right hand side denote 3 and 5 � significance values.

• Both Cathode and Anode need to learn the
smoothly varying background. However, Anode
must also learn the sharply peaked distributions in
x where the signal is localized (the “inner” den-
sity estimator trained on the SR). This results in
a degradation of the Anode anomaly detection
method and worse performance than Cathode and
CWoLa Hunting.

• As for how Cathode is able to outperform CWoLa
Hunting, there are two reasons. Firstly, there is a
correlation at the percent level between the cho-

sen features in x within the original LHCO R&D
dataset with the search variable (mJJ). Since
CWoLa Hunting is very sensitive to correlations,
this small correlation is su�cient to degrade the
performance compared to that of Cathode. De-
tails of the correlation study can be found in
Sec. IVC. Secondly, CWoLa Hunting is limited to
only using the events within the sidebands to train
the classifier (approximately 65,000 events), while
Cathode is able to oversample events from the
background model (here 200,000 events are used).

CATHODE & Friends

Cut on classifier output to 
identify possible anomalies

GK, Nachmann, Shih et al 2101.08320; 
Hallin, .., GK et al 2109.00546; Hallin, GK, et al 
2210.14924

Actual dataGenerative  
model output

• Most sensitive current resonant 
anomaly detection technique: 
CATHODE


• Stability improvement 
(LaCATHODE) 


• Experimental application:  
coming soon



LaCATHODE

• If R(x) is only calculated in 
signal region, it’s extrapolation 
is not well-defined


• Potential problem for bump-
hunt if it shapes distributions

47Hallin, GK, Shih, et al, 2210.14924



LaCATHODE

• If R(x) is only calculated in 
signal region, it’s extrapolation 
is not well-defined


• Potential problem for bump-
hunt if it shapes distributions


• Instead, train classifier in 
latent space
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FIG. 2. Flow chart describing the di↵erent steps of the proposed LaCathode method. First, one maps the data in the SR
(denoted by the vertical gray band) to the latent space (I), and trains a classifier R(z) to distinguish data from the background
which follows the normal distribution (II). Then one maps all the data (in both SR and SB) to the latent space (III) and passes
this through R(z), selecting only those events above some threshold R(z) > Rc (IV). Finally, one plots the m distribution of
the surviving events, and looks for a bump in the SR that would signify the presence of new physics (V).

FIG. 3. Uniform distribution of m, with signal region indi-
cated in the darker band.

The features x will be sampled from N (µ = c⇥m,� =
1)2. The parameter c controls the amount of correlation
between x and m. We will consider c 2 {0.001, 0.1}.

We generate two such sets, one “data”, one “sample”.
Of the 1 million events generated in each set, half are re-
served for training, 1/6 for validation, and the remaining
events are used to evaluate the trained classifier.

A binary classifier is trained in the SR to distinguish
“data” from “samples” in x space.4 We find the cut

4The classifier is implemented using Keras [15] with a Tensor-

values R(x) > Rc that keep only the 1% most anomalous
events in the SR.
Although only trained in the SR, data on the entire

interval m 2 [�10, 10] are passed through the classifier
and subject to the cut R(x) > Rc. If the classifier is not
sculpting, it should return an m distribution that looks
uniform.
However, in the correlated case this is not necessar-

ily what happens. Shown in the right column of Fig. 4
are the m distributions after cuts on the classifier, for
di↵erent values of the correlation c and for three inde-
pendently trained classifiers on the same toy dataset. If
the correlation is very small (c = 0.001), no sculpting
is seen. Meanwhile, if the correlation is su�ciently large
(c = 0.1), we see a severe sculpting in m. In this case, the
x distributions in the SB can be OOD relative to those
in the SR, as seen in the left column of Fig. 4. This can
lead to unpredictable e↵ects on the m distribution after
a cut on R(x) > Rc.
Next we turn to the latent space, which will be an il-

lustration of the LaCathode concept using this analytic
toy model. Here we assume a perfect normalizing flow,

Flow [16] backend. It has three hidden layers with 64 nodes each
and uses the optimizer Adam [17] with a learning rate of 10�3.
Binary cross entropy is used for the loss function. It is trained for
50 epochs with a batch size of 128. The predictions of the 5 epochs
with the lowest validation loss are ensembled to form an average
prediction.

Hallin, GK, Shih, et al, 2210.14924



LaCATHODE

• If R(x) is only calculated in 
signal region, it’s extrapolation 
is not well-defined


• Potential problem for bump-
hunt if it shapes distributions


• Instead, train classifier in 
latent space to achieve  
flat distributions

49Hallin, GK, Shih, et al, 2210.14924



50

Comments on anomaly 
detection

• As CATHODE approximates a likelihood ratio, it should be robust 
compared to methods that only use pBackground (e.g. autoencoders)


2012.03808 (Lan & Dinh), GK et al 2209.06225



51

Comments on anomaly 
detection

• As CATHODE approximates a likelihood ratio, it should be robust 
compared to methods that only use pBackground (e.g. autoencoders)


• However, still can be sensitive to choice of input features

• Here shown: idealised anomaly detector (perfect DE)


No noisy features Two noisy features
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Consider coming to Hamburg!


ML4Jets from November 6-10


Registration and Abstract 
submission 
are open under 
 
https://indico.cern.ch/e/ml4jets

https://indico.cern.ch/e/ml4jets


Closing

54 Thank you

• Deep Learning for particle physics is rapidly developing solutions to a 
wide range of problems

• Classification

• Anomaly detection

• Robustness and uncertainties

• Efficient generation

• Fast processing


• Physics encounters challenges of  
complex data and large volumes  
with potential relevance to other domains


• Contact:

• Email: gregor.kasieczka@uni-hamburg.de

• Twitter: @GregorKasieczka

• Webpage: https://www.physik.uni-hamburg.de/en/iexp/gruppe-

kasieczka.html
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