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Please list in a concise way the three key developments expected for particle physics in the
next decade

As an Al, | don't predict the future, but as of my last update in September 2021, the following
are some key developments expected in the field of particle physics over the next decade

based on the direction of ongoing research and proposed experiments:

1. Completion of the High-Luminosity Large Hadron Collider (HL-LHC): This upgrade to
CERN's Large Hadron Collider (LHC) will greatly increase the collider's luminosity,
resulting in much more data for physicists to analyze. The HL-LHC could help to answer
questions about the Higgs boson, dark matter, and supersymmetry. The project started

in 2019 and is expected to be completed by the middle of this decade.

2. Progress in Neutrino Physics: Several experiments around the world, like the Deep

Underground Neutrino Experiment (DUNE) in the U.S. and the Hyper-Kamiokande in
Japan, aim to learn more about the properties of neutrinos, particularly their mass
hierarchy and charge conjugation parity (CP) violation. If neutrinos are found to violate CP
symmetry, it could provide a clue as to why the universe is made mostly of matter and not

antimatter.

3. Advancements in Dark Matter Detection: Dark matter is one of the most pressing

unsolved mysteries in physics. Experiments like the Xenon1T and its successor the
Xenon-nT in Italy, and the Large Underground Xenon (LUX) and its upgrade, LUX-ZEPLIN
(LZ) inthe U.S., aim to directly detect dark matter particles. The next decade may see a

breakthrough in our understanding of this elusive form of matter.

It's important to note that while these are major expected developments, the field of particle
physics is vast and inherently unpredictable. Unexpected discoveries could lead to entirely

new lines of inquiry.
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Experimental particle physics workflow

Connect observational data
with underlying theory:
Statistics & simulation



The rise of ML in particle physics

* Machine learning (ML) considered
In all aspects of particle physics 420 papers in 2022

* Rapid rise in publications \

and considered topics

THE USE OF NEURAL NETWORKS
IN HIGH ENERGY PHYSICS*

BRUCE DENBY
Fermi National Accelerator Laboratory
MS. 318
Batavia, Ilinois 60510 U.SA.
denby@fnal.bitnet

1992 2023
ABSTRACT Inspire: ("machine learning” or

In the past few years a wide variety of applications of neural networks to pattern recognition T . m
in experimental high energy physics has appeared. The neural network solutions are in d p I g I) d
general of high quality, and, in a number of cases, are superior to those obtained using ee earn I n Or n eu ra’ a‘n
‘traditional’ methods. But neural networks are of particular interest in high energy physics
for another reason as well: much of the pattern recognition must be performed online, i.e., (h p — h p_ p h h p _'t h)
in a few microseconds or less. The inherent parallelism of neural network algorithms, and e eX O r e Or e

the ability to implement them as very fast hardware devices, may make them an ideal
technology for this application.




The rise of ML in particle physics

* Machine learning (ML) considered
in all aspects of particle physics

Focus on LHC-style analysis but

* Rapid rise in publications underlying ideas applicable in general

and considered topics

REVIEWS I

M) Crack for updales

'Machine learning in the search for new
fundamental physics

 To maximise impact:
Solid understanding of physics an
machine learning techniques required

Georgia Karagiorgi
and David Shih®*=

**, Gregor Kasieczka®*, Scott Kravilz(>***, Benjamin Nachman©***

Abstract | Compelling experimental evidence suggests the existence of new physics beyond the
well-established and tested standard model of particle physics. Various current and upcoming
experiments are searching for signatures of new physics. Despite the variety of approaches and
theoretical models tested in these experiments, what they all have in common is the very large
volume of complex data that they produce. This data challenge calls for powerful statistical
methods. Machine leaming has been in use in high-energy particle physics for well over a decade,
but the rise of deep learning in the early 2010s has yielded a qualitative shift in terms of the scope
and ambition of research. These modern machine learning developments are the focus of the
present Review, which discusses methods and applications for new physics searches in the context
of terrestrial high-energy physics experiments, including the Large Hadron Collider, rare event
>L‘\.IIL’1L‘> and neutrino CKPL"I"\L‘"'.SV

* Domain knowledge of the physics
data — e.g. symmetries

* Phrase the actual physics task
tractable to direct optimisation

See e.g. for a broader overview:
https://arxiv.org/abs/2112.03769

6

Department of Physics,
Columbia Univ

Newe York, NY. U

nstitut fir
Experimentalphysik,
Universitat Homburg,
6. Germany.

*Physics DVision, | awrenes
Berkeley Natina! Laboratory,

e
Calforniv, Berbeley. CA. USA

INHETT, Department of
Physics and As

For several decades, the standard model (SM) of par
ticle physics has provided
to experiments, resulting in an extensive search pro-
gramme that culminated with the discovery of the Higgs
boson’~. Although the SM is now complete, there are
key experimental observations that compel the com-
munity to expand the scarch efforts for new particles
and forces of nature beyond the SM (BSM). For exam
ple, the existence of dark matter (DM) and dark ens
is well established’, as are the mass of neutrinos®
the baryon-antibaryon asymmetry in the Universe’
yet none of these observations are explained by the SM.
Additionally, ‘acsthetic’ problems plague the $M, includ-
ing the unexplained weak-scale mass of the Higgs boson,
the existence of three generations of fermions, and the
minuteness of the neutron dipole moment”. Current and
near-future high-energy physics (HEP) experiments
have the potential to shed light on all of these funda

lear theoretical guide

nd

mental challenges by creating new particles in the labo

ratory, or by ohserving interactions of new particles with
normal matter or with other new particles.

This great potential for discovery comes with con-
siderable data chall New particle i ¢ are

tens of thousands of tunable parameters) are well suited
for analysing large amounts of data in many dimensions
to find subtle patterns. Multivariate analysis has been
commonplace in HEP for decades (for example, the
TMVA ‘toolkit')", but the latest toels will qualitatively
extend the sensitivity to ‘hypervariate analysis’ whereby
the entire phase space of available experimental infor-
mation can be analysed holistically. These new tools
also allow for new analysis strategies independent of
the dimensionality (density estimation, variable length

inputs and so ¢

In tandem with the growing data volume, a rclated
challenge is the increasing need for efficient (in terms
of computational time, power and resource utilization)
and accurate data processing for high-throughput appli-
cations. Efforts to that end include the development
and acceleration of deep learning based processing

ms on power-efficient hardware platforms
ion to the growing data challenge, there is also
the compounding challenge of simulating expectations
for what experiments may observe. HEP experiments rely
heavily on simulations for all aspects of research, from
i | design all the way to data analysis. Built

expected to be rare, and their signature could be only
subtly different from the SM. This means that researchers
must collect and sift through an immense amount of
complex late potential BSM physics, Machine
learning (ML) offers a powerful solution to this chal

lenge. Deep learning techniques (used here to mean
modern ML, with deep neural networks (NNs) and
other advanced tools that contain {(much) more than

P
on a thorough understanding of the $M and the funda-
mental laws of nature, these simulations are extremely
comprehensive and sophisticated, but they are still only
to nature. It is thenefore often necessary

to combine simulations with information directly from
data to improve simulation accuracy. The corresponding
ML medels must be robust against inaccuracies and be
able to integrate uncertainties.

NATURE REVIEWS | PHYSICS

VOLUME 4 | JUNE 2022 | 399
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Loss function: Supervised

Supervised Learning:
Attempt to infer some target (truth label):
classification, regression (often also clustering/inference)

Use training data with known labels
(often from Monte Carlo simulation)

. I = predlCt I

observable features truth label predicted energy
such as kinematics, (e.g. true energy)
tracks,...

Regression: Minimize mean squared error:

L=(y—79)°



Loss function: Unsupervised

Unsupervised Learning:
No target, learn the probability
distribution (directly from data)

Can use for sampling, anomaly
detection, unfolding, ...

Learn to
predict:
p(x) = fo(x)
- p(x)
True probablity
density

Distribution learning: Maximise likelihood .
(minimize log-likelihood): L = —log (p(X))

(either directly or with approximations)



Fast simulation
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Generative Models

Simulation is crucial to
connect experimental
data with theory
predictions
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Generative Models

Simulation is crucial to
connect experimental
data with theory
predictions

but computationally
very expensive

ATLAS Preliminary

2020 Computing Model -CPU: 2030: Baseline
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over 40% of ATLAS
compute effort..
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Generative Models

Simulation is crucial to Use for Use for
connect experimental training sampling
data with theory Data / slow simulation S Generative ML .
predictions (e.g. GEANTA4) model

but computationally
very expensive

Generator

G(z)

Discriminator

D(x)

v
~

GAN: Adversarial / X —»
training

Use generative
models trained on

initial data to \ /
VAE: maximize x Encoder Z | Decoder R

- - = = > > X
aug ment statistics variational lower bound g4 (2[x) po(x|z)
Flow Inverse ’
Flow-based models: X > > Z > 1 X
Invertible transform of f(x) f(2)
distributions

Diffusion models: X0
Gradually add Gaussian === - - - - ——-——-- TR OREE * - ------
noise and then reverse




Generator

G(z)

Discriminator

GAN: Adversarial /
X X [
D(x)

training

VAE: maximize x |, Encoder | 2 Decoder N
variational lower bound 90 (2[x) po(x|z)
Flow-based models: X |—» AL - Z > Inllfrse —
Invertible transform of f(x) f(z)

distributions
Diffusion models:. X0 X1 Xo . o

Gradually add Gaussian - - - - - - - *-------- FET EEE * - ------
noise and then reverse




Generative Models

Simulation is crucial to
connect experimental
data with theory
predictions

but computationally
very expensive

Use generative models
trained on initial data
to augment statistics

Goal: simulation
of particle showers in

complex calorimeters

like for the ILD or the

CMS High Granularity

Calorimeter (HGCal)

CALICEAHCaI testbeam

ILD Detector

Incoming particle

Passive absorber
l Shower of secondary particles

)

T

Detectors

lllustration of particle shower
In @ sampling calorimeter

y [cells]

e o e e R o T i S

One data example



Large effort also exists
to learn surrogate
models of theory
simulations // event
generation

Similar techniques are
used, but different key
challenges

forward

Aside

Machine Learning and LHC Event Generation
Anja Butter’?, Tilman Plehn!, Steffen Schumann®, Simon Badger*, Sascha Caron® ©
Kyle Cranmer”-®, Francesco Armando Di Bello’, Etienne Dreyer'®, Stefano Forte!!,
Sanmay Ganguly'2, Dorival Goncalves'3, Eilam Gross'®, Theo Heimel'!, Gudrun Heinrich'4,
Lukas Heinrich!®, Alexander Held'®, Stefan Hoche!”, Jessica N. Howard!®, Philip Ilten'®,
Joshua Isaacson!’, Timo JanRen3, Stephen Jones??, Marumi Kado”?!, Michael Kagan??,
Gregor Kasieczka??, Felix Kling?*, Sabine Kraml?®, Claudius Krause?®, Frank Krauss°,
Kevin Kréninger?”, Rahool Kumar Barman'2, Michel Luchmann?, Vitaly Magerya'4,
Daniel Maitre??, Bogdan Malaescu?, Fabio Maltoni?®2?, Till Martini3°, Olivier Mattelaer?®,
Benjamin Nachman3!:32, Sebastian Pitz!, Juan Rojo3334, Matthew Schwartz3°, David Shih?>,
Frank Siegert3®, Roy Stegeman'!, Bob Stienen®, Jesse Thaler’, Rob Verheyen®?,
Daniel Whiteson'®, Ramon Winterhalder?®, and Jure Zupan'®

scattering

WX

QCD shower |fragmentation| detectors

&

Y

inverse

Butter, Plehn, Schumann, .. GK et al 2203.07460




Simulate showers
initiated by photons and

charged pions
Pions

Photons

ylcells]
y [cells]

Hallin, .., GK et al 2109.00546;



Photons

z [layers] z [layers]
0 5 10 15 20 25 0 5 10 15 20 25

I-- I fll

ILD ECal
Silicon/Tungstate

Buhmann, .., GK et al 2005.05334;
Buhmann, .., GK et al 2112.09709;

y [cells]

.

ILD AHCal
stainless steel absorber

plates and scintillator
tiles with SiPMs

10?

10!

10°

10!

102

Simulate showers
initiated by photons and
charged pions

Pion showers are
significantly more
complex



Input Intermediate Output
Latent @\Diﬁerence J
|7 ~  Critic CriticD
—| _ Post
X
Encoder 7 |—| Decoder |[|x% Processor
—| O Network
E N Critic Lyitic
KLD
\ Latent | MSE
Critic CriticL
N(0,1) .
MMD

Lpi—aE = KLD + Lcyiticr, + Lcvitic + LcritieD

Lpost = MMD + MSE

LBIB-AE - = /BC'L ’ ]EiEdiata(m) [CL(E(:E))]

— Be - Em"‘pdata(m) [C(D(E(z)))]

+ fvmp - MMD(E(z), N (0, 1)).

Buhmann, .., GK et al 2005.05334; Buhmann, .., GK et al
2112.09709; Voloshynovskiy et al 1912.00830;

Simulate showers
initiated by photons and
charged pions

Pion showers are
significantly more
complex

Use modified BIB-AE
architecture



Example

Simulate showers
initiated by photons and

Photons Pions .
N . charged pions
visible cell energy [MIPs] visible cell energy [MIPs]

101 10° 101 102 101 10! 10° 101

7 full spectrum | 1 full spectrum Pion showers are
| | o | significantly more
/ f | s ! | complex

101

o
)
5 102) /A, § Use modified BIB-AE
7 — Geant4 2 Geant4 architecture
o -- GAN BIB-AE
e WGAN = WGAN ]
/ — BIB-AE Achieves excellent
N / o 3 .| modelling of differential
1010-2 101 10° 101 1010-2 10! 10° 101 gl -
visible cell energy [MeV] visible cell energy [MeV] distributions —

first for high-granularity
calorimeter

Buhmann, .., GK et al 2005.05334;
Buhmann, .., GK et al 2112.09709;



Timing

Buhmann, .., GK et al 2005.05334;
Buhmann, .., GK et al 2112.09709;

Simulator Hardware Batch Size | 15 GeV Speed-up | 10-100 GeV Flat Speed-up
Geant4 CPU N/A 1445.05 4+ 19.34 ms - 4081.53 £+ 169.92 ms -
WGAN CPU 1 64.34 + 0.58 ms x23 63.14 + 0.34 ms x65
10 59.53 + 0.45 ms x24 56.65 + 0.33 ms xT72
100 58.31 +£0.93 ms x25 58.11 £0.13 ms x70
1000 57.99 + 0.97 ms x25 57.99 + 0.18 ms x70
BIB-AE CPU 1 426.60 £+ 3.27 ms x3 426.32 + 3.62 ms x10
10 422.60 £ 0.26 ms x3 424.71 £ 3.53 ms x10 Ph()t()ns
100 419.64 £+ 0.07 ms x3 418.04 £+ 0.20 ms x10
WGAN GPU 1 3.24 + 0.01 ms x446 3.25 4+ 0.01 ms x1256
10 6.13 + 0.02 ms x236 6.13 + 0.02 ms x666
100 5.43 +£0.01 ms x266 5.43 +£0.01 ms x752
1000 5.43 +£0.01 ms x266 5.43 +0.01 ms x752
BIB-AE GPU 1 3.14 £ 0.01 ms x460 3.19 £ 0.01 ms x1279
10 1.56 + 0.01 ms x926 1.57 £ 0.01 ms x2600
100 1.42 + 0.01 ms x1017 1.42 +0.01 ms x2874
Hardware Simulator | Time / Shower [ms| Speed-up
CPU GEANT4 2684 + 125 x1
Pi WGAN 47.923 £+ 0.089 X 56
ons BIB-AE 350.824 + 0.574 x8
GPU WGAN 0.264 £+ 0.002 x 10167
BIB-AE 2.051 £+ 0.005 x 1309




Dual conditioning

Input Intermediate Output
Latent @"\
X
—| _@" Crritic 7 Post
4 Encoder 7 |—| Decoder |[|xX|4 |— Critic Processor| |
L —| O \. Network
v, I
E, ‘ —
]
KLD _.\ rescale
Latent ‘
MMD
035 20 GeV Photo 0.6
1+ e otons : '
Additional control over one e TS 20 Gey | — Geantd
_ _ . 0.30! egree Geant | - - BIB-AE PP
iIncoming particle angle —85degree  -- BIB-AE PP 05
Reco Level — 60 degree
0.25} | — 85 degree
— f 0.4 Sim Level
§ 020 ; : 50 GeV
Té’ th T 0.3
£ 0.15} H z 90 GeV
o I o
- ¥ " 02
0.10} . '
0.05} ? 1 0.1
0.00 L —-JJ LTS L 0.0L—= ‘ -
30 40 50 60 70 80 90 100 500 1000 1500 2000 2500

Diefenbacher .. GK et al 2303.18150
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visible energy [MeV]




Flow based generation

How can we further
improve the quality of
generated distributions?
uy = fi(uy) Up =fro--ofyofi(up)

p(uy) = p(ug) |ce
Simple Complex
m /\/\ o0 mmm=p
N mm— XX R
Up

L (up, ' U1 —f_

Generate new samples

()U(;

Evaluate probability/likelihood, train flow

Flow based models learn
an exact mapping to a
Gaussian latent space,
can be trained by direct
likelihood minimisation
(no adversarial terms,
more stable!)

Diefenbacher..GK et al 2302.11594



as data space
dimension, bad scaling
with large inputs

Solution:

Two step generation,
Sequential conditioning

-<«—— Training direction <€«——

Flow based generation

Disadvantage: As
Invertible model, latent
space dimension is same

GEANT4 energies
Ei

30-dim. base ENERGY DISTRIBUTION FLOW
distribution i
[ 70 [ I
5| permut. permut.
lll 17 - 14 T 11
".\'\ MADE block MADE block
J
VYUYV Y
RQS RQS
—— > Generative direction ———>
-<—— Training direction <«——
100-dim. base — NF i
distribution E B
FC er:\bedd.
: network
,,'{ “l'l | “ee W W
f 5 permut. permut.
Y R
) \\ MADE block MADE block
iy Y by
RQS RQS

—>» Generative direction ———

Diefenbacher..GK et al 2302.11594; based on Shih/Krause
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Sampled energies
Ei
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L2L Flows
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# Showers per simulator|AUC GEANT4 vs L2LFLOWS |AUC GEANT4 vs BIB-AE.

95k 0.8518 +£0.0042 0.9947 £ 0.0025
190k 0.8768 +0.0029 —
380k 0.8962 +0.0024 —

760k 0.9402 £0.0011 =

Better generative fidelity than BIB-AE,
working on scaling up!



Point Cloud Generation

For high-resolution
detectors, images will be
very sparse and geometry
impossible to map to fixed
grid. Instead treat showers
as graphs or point clouds

y [cells]

The physics of particle
shower is simple: Point
cloud (instead of graph)
more efficient and much

faster

Z [IaYerS]

Buhmann, GK, Thaler 2301.08128;
Kansal et al 2106.11535; Kach et al
2211.13630; Buhmann, ... GK, et al

2305.04847

y [cells]



Point Cloud Generation

Q >

@

For high-resolution
detectors, images will be
very sparse and geometry
impossible to map to fixed

point attributes
Y

grid. Instead treat showers D, > 174 D,
as graphs or point clouds

+
The physics of particle =9
shower is simple: Point 8 3 @ > Q° g @
cloud (instead of graph) >F
more efficient and much Equivariant Point Cloud interaction (EPiC) block:
faster Similar to deep sets, but with additional global

information exchange.

Still permutation equivariant

Buhmann, GK, Thaler 2301.08128;
Kansal et al 2106.11535; Kach et al
2211.13630; Buhmann, ... GK, et al
2305.04847



Point Cloud Generation
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Buhmann, GK, Thaler 2301.08128; 28
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Point Cloud Generation

To improve the generative
fidelity, move from GAN to
diffusion model:

Learn step-wise demonising

Buhmann, GK, Thaler 2301.08128;

Kansal et al 2106.11535; Kach et al
2211.13630; Buhmann, ... GK, et al
2305.04847
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Point Cloud Generation

To improve the generative
fidelity, move from GAN to

diffusion model:

Learn step-wise demonising

Some additional pre-
processing needed

Buhmann, GK, Thaler 2301.08128;
Kansal et al 2106.11535; Kach et al
2211.13630; Buhmann, ... GK, et al

2305.04847
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Diffusion

CaloCloud, time stamp: tgg
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full spectrum
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visible cell energy [MeV]

First successful point-cloud model for 6k

points

Fidelity and speed can still be improved

For much more: See recent

CaloChallenge

energy sum [MeV]

Buhmann, ... GK, et al 2305.04847
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Discovering new Physics
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Searches for new physics

* Theoretical and experimental
reasons to expect new physics
beyond the Standard Model

* However, so far only negative
results in direct (model driven

searches

e Make sure that we do not miss
potential discoveries at the LHC
— Anomaly detection

t = bg; —» bW=¢}

t = (tX9/bXy — bWXY)

t — bff'Y

t = bgy — bff'g?
t—cy?

t — b+ — bvf — butz?

b — bx?
b — t¥y — tW=g}
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CMS (preliminary)

Moriond 2021

Overview of SUSY results:

137 fb~* (13 TeV)
pp — tt
Combination: SUS-20-002
0£: arXiv:1909.03460;1908.04722,2103.01290
1£: arXiv:1912.08887
2¢ opposite-sign: arXiv:2008.05936
Combination: SUS-20-002
0¢: arXiv:1909.03460;2103.01290
1£4: arXiv:1912.08887

squark pair production

2¢ opposite-sign: arXiv:2008.05936 =05

Combination: SUS-20-002

0¢: arXiv:1909.03460;2103.01290
1¢4: arXiv:1912.08887

0¢: arXiv:1909.03460:2103.01290
0f: arXiv:1909.03460:2103.01290
0¢: arXiv:2103.01290

2¢: arXiv:2008.05936

pp — bb
0£: arXiv:1909.03460:1908.04722
2¢ same-sign and > 3¢: arXiv:2001.10086

pp —+ Qq
0£: arXiv:1909.03460:1908.04722
0¢: arXiv:1909.03460:1908.04722

AM < 80 GeV (max. exclusion)

AM < 80 GeV (max. exclusion), 2 = 0.5

AM < 80 GeV (max. exclusion)

=05

Mgy =50 GeV

one light squark (i, d, &, or 5)

L L

@R+ @1(5,d.6,5)

250 500

750 1000 1250 1500
mass scale [GeV]

Selection of obscrved limits at 95% C.L. (theory uncertainties are not included). Probe up to the quoted mass limit for light LSPs unless stared otherwise.
The quantities AM and x represent the absolute mass difference hetween the primary sparticle and the ISP, and the difference hetween the intermediate
sparticle and the LSP relative ta A, respectively, unless indicated otherwise.
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What is an anomaly?




Point anomaly

* Outliers: Datapoints far away from regular
distribution

e Examples:
* Detector malfunctions
 Background-free search

X

Normal







Count

Group anomaly

39

b
Color (Mass)



¥ §

Count

Individual examples not anomalous,
but interesting collective behaviour

Group anomaly

Examples:

New physics searches, e.g. resonances

Excess in time series

SB

Pdata(T|m € SB)
= pog(zlm € SB)

SR i SB m
Pdata(T|m € SB)

ata(z|m € SR
pdt( | ) :pbg(33|m€SB)

40

b
Color (Mass)




Shape Interpolation

Can learn distributions in arbitrary
dimensions (shape) as long as interpolation in
one variable

41



Shape Interpolation

Ky ﬂqin %m WQVG,

Cow;bsf\v/ D, model P\X" Xy -«

Can be any conditional generative model
(GAN, VAE, flow, diffusion)

In practice we use a normalising flow

42



Shape Interpolation

Anc\ e.l/a(uq(t \ne,lre"
Cout =] 1@ @~ plzim)

Sampling yields an in-situ background
estimate trained on data

43



Anomalies!
“é s‘zgna&\ (wasmj“
Esj(;'\u(kt Dq&q

COun t SA

Training a binary classifier between estimate
and data can detect localised signals (e.qg.
resonant new physics)

44



Aside: Justification

Per Neyman-Pearson: Likelihood-ratio p( T | an()maly)

IS optimal test statistic LS B =

Unfortunatly, p(x|lanomaly) is not / p(x ‘ normal)
available

Build data/background ratio: T - p(CIZ)

D/B —
p(x|normal)
Approximate background density using T, - p(x)
i D/B ™~ <
control measurement (e.g. sideband) / p( x\normal)
Expand P(x) = foormal P(z|normal) + fanomaly P(x|anomaly)
| p(x|anomaly)
And insert: LD/B ~ fnormal + fanomaly =

p(x|normal)



CATHODE & Friends

Cut on classifier output to

identify possible anomali
Signal Region

. 4
Generative
model output
x 1 e
\_

Actual data

‘de
) %“
.>

"‘in

!

~

— Supervised
17.5 —— |dealized AD
w — CATHODE
GE) 15.0 CWola
g — ANODE
o 1 I | e random
o
E 10.0
Q
(@]
[
_@ 7.5 1
Y
c
2 5.0
wn
2.5
0.0

Signal Efficiency (True Positive Rate)

GK, Nachmann, Shih et al 2101.08320;

1.0

Hallin, .., GK et al 2109.00546; Hallin, GK, etal 4

2210.14924

es
Classifier

Most sensitive current resonant

anomaly detection technique:

CATHODE

Stability improvement

(LaCATHODE)

Experimental application:



LaCATHODE

AR dataset (bkg-only training), selecting 1%

* If R(x) is only calculated in fullbkg —— CATHODE
signal region, it’s extrapolation 100 - oL e SR —— LaCATHODE
Is not well-defined ] L
. ) 1071 5
e Potential problem for bump- i i
hunt if it shapes distributions : o= ]
b 103 - —
) ]
104 3

Hallin, GK, Shih, et al, 2210.14924 47



LaCATHODE

Lower Sideband Signal Region ~ Upper Sideband —_— no cut

————— medium cut

........... tight cut

log(counts)
log(counts)

_______

* If R(x) is only calculated in
signal region, it’s extrapolation
is not well-defined

e Potential problem for bump- .
hunt if it shapes distributions %
* |nstead, train classifier in 0 0
latent space L. reom sampie of z-nc01)
() 2
N\~~~
l l

I1. Classifier

Hallin, GK, Shih, et al, 2210.14924 48



LaCATHODE

AR dataset (bkg-only training), selecting 1%

e If R(X) is only calculated in fullbky —— CATHODE
signal region, it’s extrapolation 10° ; ol SR —— LaCATHODE
Is not well-defined ] 1

 Potential problem for bump- i 0
hunt if it shapes distributions : o= ]

* |nstead, train classifier in
latent space to achieve 1072 B
flat distributions ]

1074 5

Hallin, GK, Shih, et al, 2210.14924 49



Comments on anomaly

detection

* As CATHODE approximates a likelihood ratio, it should be robust

compared to methods that only use pBackground (€.9. autoencoders)

2012.03808 (Lan & Dinh), GK et al 2209.06225

. pz(2)

.8 1
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1 - Background Efficiency
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Training Data

Comments on anomaly
detection

* As CATHODE approximates a likelihood ratio, it should be robust
compared to methods that only use pBackground (€.9. autoencoders)
* However, still can be sensitive to choice of input features
* Here shown: idealised anomaly detector (perfect DE)

Max SIC

196k ESEENRERENEIA16.79617.52:217.19017.20.217.20817.93.: 18.03217.63:2

156.8k 14.99314.80515.6§316.59316.20317.19917.13:217.83.3 18.05917.203

1) 12.29711.59711.60 B NS 6:305116.47117.99-317.80.417.233

58.8k 15.09316.13317.69.317.50716.993

39.2k 14.5415.39:817.24517.41;

29.4k serRtePR:22114.39315.03217.192

19.6k 1.80311.20:312.80 2 s LR AR R LE: 1y

- 16

- 14

5.0 10.0 15.0 25.0

06 07 09 15 2.0 3.0 40
S/B (%)

No noisy features

Training Data
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Max SIC

196k R N IE114.19914.50216.29216.43916.13:817.29317.13717.293

156.8k 6.7%:2 15.09316.6915.21:016.60:16.20:317.357

98K 3,088 5.1 15,19 15,502 15.89917.5¢

58.8k 14.60716.159
39.2k 14.49216.493
29.4k 1.033 2.133 3.

1.091 2.332 3.433 2.8§3

5.283 5.503 6.8 10.45511.963

19.6k

0.6 07 09 15 20 3.0 4.0 5.0 10.0 15.0 25.0

S/B (%)

Two noisy features

- 16

- 14

12

10



Closing
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Advertisment

ML4Jets2023

Consider coming to Hamburg!
ML4Jets from November 6-10
Registration and Abstract
submission

are open under

https://indico.cern.ch/e/ml4jets

6-10 Nov 2023
DESY

Europe/Zurich timezone

Overview
Call for Abstracts
Timetable

Registration

Participant List

Code of Conduct

A milgjets2023-info@desy.de

Machine learning has become a hot topic in particle physics over the past several years. In particular,
there has been a lot of progress in the areas of particle and event identification, reconstruction,
generative models, anomaly detection and more. In this conference, we will discuss current progress in
these areas, focusing on new breakthrough ideas and existing challenges. The ML4Jets workshop will
be open to the full community and will include LHC experiments as well as theorists and
phenomenologists interested in this topic. Contributions from method scientists as well as adjacent
scientific fields facing similar challenges are welcome as well.

This year's conference is organised jointly by DESY and Universitdt Hamburg and hosted at the DESY
campus. It follows conferences in 2017, 2018, 2020, 2021, and 2022.

Registration and abstract submission are open now and close on October 6th (registration for in-
person participation) and September 10 (abstracts).

The workshop will be organised in a hybrid format (with a Zoom connection option). We expect
speakers to attend in-person.

Registration for both in-person and Zoom-participation will be free of charge and (at the minimum)
include coffee-breaks for in-person participants. We are looking into an opt-in dinner and announce
details and potential extra costs closer to the event.

Local Organizing Committee:

Freya Blekman (DESY & Universitat Hamburg)
Andrea Bremer (Universitat Hamburg)

Frank Gaede (DESY)

Gregor Kasieczka (Universitdat Hamburg, chair)
Andreas Hinzmann (DESY)

Matthias Schréder (Universitat Hamburg)

International Advisory Committee:
Florencia Canelli (University of Zurich)
Kyle Cranmer (NYU)

Vava Gligorov (LPNHE)

Gian Michele Innocenti (CERN)
Ben Nachman (LBNL)

Mihoko Nojiri (KEK)

Maurizio Pierini (CERN)

Tilman Plehn (Heidelberg)

David Shih (Rutgers)

Jesse Thaler (MIT)

Sofia Vallescorsa (CERN)
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https://indico.cern.ch/e/ml4jets

Closing

e Deep Learning for particle physics is rapidly developlng solutlons toa
wide range of problems ;,A_—;L_Ig |

e C(lassification

e Anomaly detection
 Robustness and uncertainties
e Efficient generation

e Fast processing

* Physics encounters challenges of g R
complex data and large volumes S
with potential relevance to other domains

e (Contact:

 Email: gregor.kasieczka@uni-hamburg.de

e Twitter: @GregorKasieczka

e \Webpage: https://www.physik.uni-hamburg.de/en/iexp/gruppe-

kasieczka.html ) Thank you
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