y Electroweal

Photons, hadrons, jet: 0000 Heavy quarks/quarkonia

Conclusion 0000000

Nuclear PDFs after 10 years of LHC data¹

Michael Klasen

ITP, University of Münster

DIS 2024 Grenoble, April 8, 2024

GEFÖRDERT VOM

¹MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. (2024) [2311.00450]

dology Elec

Electroweak bosons

Photons, hadrons, je 0000 Heavy quarks/quarkonia

Conclusion 0000000

Nuclear structure at high energies

Important current research topic:

- Understand fundamental q, g dynamics of p, n bound in nuclei
- Determine initial conditions in creation of new state of matter: Color-glass condensate (CGC) \rightarrow quark-gluon plasma (QGP)

dology Elec

Electroweak bosons

Photons, hadrons, je 0000 Heavy quarks/quarkonia

Conclusion 0000000

Nuclear structure at high energies

Important current research topic:

- Understand fundamental q, g dynamics of p, n bound in nuclei
- Determine initial conditions in creation of new state of matter: Color-glass condensate (CGC) → quark-gluon plasma (QGP)

Knowns and (known) unknowns:

- Evolution of PDFs f_{q,g}(x, Q²) with squared energy Q²: Calculable at NLO and beyond through DGLAP equations
- Dependence on longitudinal momentum fraction x: QCD factorization theorem → global fits to experimental data
- Fundamental dynamics of nuclear modifications: Parameterized, but remain to be fully understood

logy Electrow

bosons Photon 0000 Heavy quarks/quarkonia

Conclusion 0000000

Key processes and open questions

Deep-inelastic scattering (NC, CC, dimuon production):

blogy Electrow

Photons, hadrons, 0000 Heavy quarks/quarkonia

Conclusion 0000000

Key processes and open questions

Deep-inelastic scattering (NC, CC, dimuon production):

Hadronic collisions: Leading twist, higher-twist

[J.w. Qiu, 0305161]

• Transv. size, jet mass, rescattering: $O\left(r_T^2 \sim \frac{1}{p_\tau^2}, \frac{m_J^2}{p_\tau^2}, \frac{\alpha_s(Q^2)\Lambda^2}{Q^2}\right)$

• Enhanced in nuclear collisions by $A^{1/3}$ due to many soft partons

ogy Electro 000

Electroweak bosons

Photons, hadrons, jet 0000 Heavy quarks/quarkonia

Conclusion 0000000

Nuclear modification factor

y Electrowe

Photons, hadrons, je 0000 Heavy quarks/quarkonia

Conclusion 0000000

Nuclear modification factor

- Shadowing: Surface nucleons absorb $q\bar{q}$ dipole, cast shadow
- Antishadowing: Imposed by momentum sum rule
- EMC effect: q_v suppression due to nuclear binding, pions, quark clusters, Nachtmann scaling, short-range correlations, ...
- Fermi motion: Nucleons move, $F_2^A = \int_x^A dz \ f_N(z) \ F_2^N(\frac{x}{z})$

00000

Methodology

(Perturbative) Quantum Chromodynamics

Nuclear structure function(s) in deep-inelastic scattering (DIS):

$$F_2^A(x, Q^2) = \sum_i f_i^{(A,Z)}(x, Q^2) \otimes C_{2,i}(x, Q^2)$$

QCD factorization theorem, Wilson coefficients $C_{2,i}$ at (N)NLO

Methodology

00000

(Perturbative) Quantum Chromodynamics

Nuclear structure function(s) in deep-inelastic scattering (DIS):

$$F_2^A(x, Q^2) = \sum_i f_i^{(A,Z)}(x, Q^2) \otimes C_{2,i}(x, Q^2)$$

QCD factorization theorem, Wilson coefficients $C_{2,i}$ at (N)NLO Nuclear parton density functions (nPDFs):

$$f_i^{(A,Z)}(x,Q^2) = \frac{Z}{A} f_i^{p/A}(x,Q^2) + \frac{A-Z}{A} f_i^{n/A}(x,Q^2)$$

Methodology

00000

(Perturbative) Quantum Chromodynamics

Nuclear structure function(s) in deep-inelastic scattering (DIS):

$$F_2^A(x, Q^2) = \sum_i f_i^{(A,Z)}(x, Q^2) \otimes C_{2,i}(x, Q^2)$$

QCD factorization theorem, Wilson coefficients $C_{2,i}$ at (N)NLO Nuclear parton density functions (nPDFs):

$$f_i^{(A,Z)}(x,Q^2) = \frac{Z}{A} f_i^{p/A}(x,Q^2) + \frac{A-Z}{A} f_i^{n/A}(x,Q^2)$$

DGLAP evolution equations:

$$\frac{\partial f_i(x, Q^2)}{\partial \log Q^2} = \int_x^1 \frac{dz}{z} P_{ij}\left(\frac{x}{z}, \alpha_s(Q^2)\right) f_j(z, Q^2)$$

00000

Methodology

(Perturbative) Quantum Chromodynamics

Nuclear structure function(s) in deep-inelastic scattering (DIS):

$$F_2^A(x, Q^2) = \sum_i f_i^{(A,Z)}(x, Q^2) \otimes C_{2,i}(x, Q^2)$$

QCD factorization theorem, Wilson coefficients $C_{2,i}$ at (N)NLO Nuclear parton density functions (nPDFs):

$$f_i^{(A,Z)}(x,Q^2) = \frac{Z}{A} f_i^{p/A}(x,Q^2) + \frac{A-Z}{A} f_i^{n/A}(x,Q^2)$$

DGLAP evolution equations:

$$\frac{\partial f_i(x, Q^2)}{\partial \log Q^2} = \int_x^1 \frac{dz}{z} P_{ij}\left(\frac{x}{z}, \alpha_s(Q^2)\right) f_j(z, Q^2)$$

Sum rules, but also isospin symmetry:

$$f_{d,u}^{n/A}(x,Q^2) = f_{u,d}^{p/A}(x,Q^2)$$

000000

Theoretical input and experimental data

Analysis	nCTEQ15HQ	EPPS21	nNNPDF3.0	TUJU21	KSASG20
Theoretical input:					
Perturbative order	NLO	NLO	NLO	NNLO	NNLO
Heavy-quark scheme	$SACOT - \chi$	$SACOT - \chi$	FONLL	FONLL	FONLL
Data points	1484	2077	2188	2410	4353
Independent flavors	5	6	6	4	3
Free parameters	19	24	256	16	18
Error analysis	Hessian	Hessian	Monte Carlo	Hessian	Hessian
Tolerance	$\Delta \chi^2 = 35$	$\Delta \chi^2 = 33$	N/A	$\Delta \chi^2 = 50$	$\Delta \chi^2 = 20$
Proton PDF	\sim CTEQ6.1	CT18A	\sim NNPDF4.0	\sim HERAPDF2.0	CT18
Deuteron corrections	$(\checkmark)^{a,b}$	√ ^c	\checkmark	\checkmark	\checkmark
Fixed-target data:					
SLAC/EMC/NMC NC DIS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
– Cut on Q^2	4 GeV ²	1.69 GeV ²	3.5 GeV ²	3.5 GeV ²	1.2 GeV ²
– Cut on W^2	12.25 GeV ²	3.24 GeV ²	12.5 GeV ²	12.0 GeV ²	
JLab NC DIS	(√) ^a	\checkmark			\checkmark
CHORUS/CDHSW CC DIS	(√/-) ^b	√/-	√/-	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$
NuTeV/CCFR 2μ CC DIS	$(\sqrt{})^b$		√/-		
pA DY	\checkmark	\checkmark	\checkmark		\checkmark
Collider data:					
Z bosons	\checkmark	\checkmark	\checkmark	\checkmark	
W^{\pm} bosons	\checkmark	\checkmark	\checkmark	\checkmark	
Light hadrons	\checkmark	√ ^d			
Jets		\checkmark	\checkmark		
Prompt photons			\checkmark		
Prompt D ⁰	\checkmark	\checkmark	√ ^e		
Quarkonia $(J/\psi, \psi', \Upsilon)$	\checkmark				

Methodology

Theoretical input and experimental data

Analysis	nCTEQ15HQ	EPPS21	nNNPDF3.0	TUJU21	KSASG20			
Theoretical input:								
Perturbative order	NLO	NLO	NLO	NNLO	NNLO			
Heavy-quark scheme	$SACOT - \chi$	$SACOT - \chi$	FONLL	FONLL	FONLL			
Data points	1484	2077	2188	2410	4353			
Independent flavors	5	6	6	4	3			
Free parameters	19	24	256	16	18			
Error analysis	Hessian	Hessian	Monte Carlo	Hessian	Hessian			
Tolerance	$\Delta \chi^2 = 35$	$\Delta \chi^2 = 33$	N/A	$\Delta \chi^2 = 50$	$\Delta \chi^2 = 20$			
Proton PDF	\sim CTEQ6.1	CT18A	\sim NNPDF4.0	\sim HERAPDF2.0	CT18			
Deuteron corrections	(√) ^{a,b}	√ ^c	\checkmark	\checkmark	\checkmark			
FIXED-TARGET DATA:								
SLAC/EMC/NMC NC DIS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
– Cut on Q^2	4 GeV ²	1.69 GeV ²	3.5 GeV ²	3.5 GeV ²	1.2 GeV ²			
– Cut on W^2	12.25 GeV ²	3.24 GeV ²	12.5 GeV ²	12.0 GeV ²				
JLab NC DIS	(√) ^a	\checkmark			\checkmark			
CHORUS/CDHSW CC DIS	(√/-) ^b	√/-	√/-	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$			
NuTeV/CCFR 2μ CC DIS	$(\sqrt{\sqrt{3}})^b$		√/-					
pA DY	\checkmark	\checkmark	~		\checkmark			
Collider data:								
Z bosons	\checkmark	\checkmark	\checkmark	\checkmark				
W^{\pm} bosons	\checkmark	\checkmark	\checkmark	\checkmark				
WED 09:10 M. Costantini (IL Cambridge) MCMC for PDEs								
WED 00:50 T Giani (NIKHEE) Bayesian inference for PDEs								
WED 09.30 T. Grant (WINIEL) Dayestall Interence for FDIS								
WED 10:10 P. R1S	se (U Mui	ister) M	UNC TOP I	UFS				
WED 11:20 N. Der	akhshania	an (IFJ	PAN) MCM	C for nPDF:	S			

Methodology Electrow

Photons, hadrons, 0000 Heavy quarks/quarkonia

Conclusion 0000000

Perturbative order

Required precision:

- Protons: Wealth of HERA, LHC pp data \rightarrow 1% accuracy, NNLO
- Nuclei: Mostly FT, some LHC pA, no EIC ightarrow 10% accuracy, NLO ok

Methodology Electrow

Photons, hadrons, jet

Heavy quarks/quarkonia

Conclusion 0000000

Perturbative order

Required precision:

- Protons: Wealth of HERA, LHC pp data \rightarrow 1% accuracy, NNLO
- Nuclei: Mostly FT, some LHC pA, no EIC \rightarrow 10% accuracy, NLO ok

Available precision:

- Fast NNLO for DIS: APFEL(++), $QCDNUM \rightarrow xFitter$
- Slow NNLO for pA: V (FEWZ, MCFM, Vrap, DYNNLO→Matrix), jets (NNLOjet), t (top++, Matrix) [, b (top++, Matrix)]
- Bottleneck: Grids (fastNLO, APPLgrid, PineAPPL \rightarrow Ploughshare)

Methodology Electrow

Photons, hadrons, jet: 0000 Heavy quarks/quarkonia

Conclusion 0000000

Perturbative order

Required precision:

- Protons: Wealth of HERA, LHC pp data \rightarrow 1% accuracy, NNLO
- Nuclei: Mostly FT, some LHC pA, no EIC \rightarrow 10% accuracy, NLO ok

Available precision:

- Fast NNLO for DIS: APFEL(++), $QCDNUM \rightarrow xFitter$
- Slow NNLO for pA: V (FEWZ, MCFM, Vrap, DYNNLO→Matrix), jets (NNLOjet), t (top++, Matrix) [, b (top++, Matrix)]
- Bottleneck: Grids (fastNLO, APPLgrid, PineAPPL \rightarrow Ploughshare)

Open heavy quarks (important for pA):

- FFNS \rightarrow FONLL
- VFNS ZM \rightarrow GM (ACOT, RT)

Methodology

Perturbative order

Required precision:

000000

- Protons: Wealth of HERA, LHC pp data $\rightarrow 1\%$ accuracy, NNLO
- Nuclei: Mostly FT, some LHC pA, no EIC \rightarrow 10% accuracy, NLO ok

Available precision:

- Fast NNLO for DIS: APFEL(++), QCDNUM \rightarrow xFitter
- Slow NNLO for pA: V (FEWZ, MCFM, Vrap, DYNNLO \rightarrow Matrix), jets (NNLOjet), t (top++, Matrix) [, b (top++, Matrix)]
- Bottleneck: Grids (fastNLO, APPLgrid, PineAPPL \rightarrow Ploughshare) Open heavy guarks (important for pA):
 - FFNS → FONLL
 - VFNS ZM \rightarrow GM (ACOT, RT)

Heavy quarkonia (important for pA):

- CFM [R. Vogt et al., PRC 105 (2022) 055202: J.P. Lansberg et al., PLB 807 (2020) 135559]
- NRQCD [K.T. Chao et al., JHEP 08 (2021) 111; M. Butenschön, B. Kniehl, PRL 130 (2023) 041901]

Introduction	Methodology	Electroweak bosons	Photons, hadrons, jets	Heavy quarks/quarkonia	Conclusion
000	000000	000	0000	0000000	0000000

A. Accardi et al., Phys. Rev. D 93 (2016) 114017 [1602.03154]; E.P. Segarra et al., Phys. Rev. D 103 (2021) 114015 [2012.11566]

Introduction	Methodology	Electroweak bosons	Photons, hadrons, jets	Heavy quarks/quarkonia	Conclusion
000	000€00	000	0000	0000000	

A. Accardi et al., Phys. Rev. D 93 (2016) 114017 [1602.03154]; E.P. Segarra et al., Phys. Rev. D 103 (2021) 114015 [2012.11566]

Deuteron:

- Loosely bound \rightarrow often isoscalar (*pn*) assumed, fitted with *p*
- Fermi motion, nucl. binding, off-shell effects (few %) [CJ15,CJ22]

Introduction	Methodology	Electroweak bosons	Photons, hadrons, jets	Heavy quarks/quarkonia	Conclusion
000	000000	000	0000	0000000	0000000

A. Accardi et al., Phys. Rev. D 93 (2016) 114017 [1602.03154]; E.P. Segarra et al., Phys. Rev. D 103 (2021) 114015 [2012.11566]

Deuteron:

- Loosely bound \rightarrow often isoscalar (*pn*) assumed, fitted with *p*
- Fermi motion, nucl. binding, off-shell effects (few %) $_{\rm [CJ15,CJ22]}$ Target mass corrections (TMCs):
 - Nachtmann: $\xi_N = 2x_N/(1 + r_N)$ with $r_N = \sqrt{1 + 4x_N^2 M_N^2/Q^2}$

Introduction	Methodology	Electroweak bosons	Photons, hadrons, jets	Heavy quarks/quarkonia	Conclusion
000	000000	000	0000	0000000	0000000

A. Accardi et al., Phys. Rev. D 93 (2016) 114017 [1602.03154]; E.P. Segarra et al., Phys. Rev. D 103 (2021) 114015 [2012.11566]

Deuteron:

• Loosely bound \rightarrow often isoscalar (*pn*) assumed, fitted with *p*

• Fermi motion, nucl. binding, off-shell effects (few %) [CJ15,CJ22] Target mass corrections (TMCs):

• Nachtmann: $\xi_N = 2x_N/(1 + r_N)$ with $r_N = \sqrt{1 + 4x_N^2 M_N^2/Q^2}$ Higher twist (HT) corrections: [CJ15,CJ22]

•
$$F_2^A(x,Q) \to F_2^A(x,Q) \left[1 + \frac{A^{1/3}h_0 x^{h_1}(1+h_2 x)}{Q^2} \right]$$

Introduction	Methodology	Electroweak bosons	Photons, hadrons, jets	Heavy quarks/quarkonia	Conclusion
000	000000	000	0000	000000	0000000

A. Accardi et al., Phys. Rev. D 93 (2016) 114017 [1602.03154]; E.P. Segarra et al., Phys. Rev. D 103 (2021) 114015 [2012.11566]

Deuteron:

- Loosely bound \rightarrow often isoscalar (*pn*) assumed, fitted with *p*
- Fermi motion, nucl. binding, off-shell effects (few %) [CJ15,CJ22]

```
TUE 12:00 W. Henry (JLab) F_2^D/F_2^p Hall C
TUE 12:20 C. Keppel (JLab) F_2^n
WED 11:40 R. Ruiz (IFJ PAN Cracow) TMCs
WED 12:00 M. Cerutti (Hampton U) D and HT at large x
WED 12:20 R. Petti (S Carolina U) nDIS and HT at large x
WED 14:10 C. Cotton (U Virginia) nDIS and EMC at Hall C
```

ction Methodology

gy Electrowe 000 Photons, hadrons, jet

Heavy quarks/quarkonia

Conclusion 0000000

Compatibility of neutrino DIS data

MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. (2024) [2311.00450]

Are CC DIS data compatible with NC DIS and DY data?

• No (in particular high-precision NuTeV data)

[nCTEQ Coll., PRD 77 (2008) 054013, PRL 106 (2011) 122301, PRD 106 (2022) 074004; also prel. HKN]

• Yes (if taken without correlations, normalized)

[H. Paukkunen, C.A. Salgado, JHEP 07 (2010) 032, PRL 110 (2013) 212301; also DSSZ]

Methodology E 000000 0

Electroweak bosor

Photons, hadrons, jets 0000 Heavy quarks/quarkonia 0000000 Conclusion 0000000

Compatibility of neutrino DIS data

MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. (2024) [2311.00450]

Are CC DIS data compatible with NC DIS and DY data?

No (in particular high-precision NuTeV data)

[nCTEQ Coll., PRD 77 (2008) 054013, PRL 106 (2011) 122301, PRD 106 (2022) 074004; also prel. HKN]

• Yes (if taken without correlations, normalized)

[H. Paukkunen, C.A. Salgado, JHEP 07 (2010) 032, PRL 110 (2013) 212301; also DSSZ]

Consolidated perspective:

Methodology El 000000 00

Electroweak boson

Photons, hadrons, jets 0000 Heavy quarks/quarkonia 0000000 Conclusion 0000000

Compatibility of neutrino DIS data

MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. (2024) [2311.00450]

Are CC DIS data compatible with NC DIS and DY data?

No (in particular high-precision NuTeV data)

[nCTEQ Coll., PRD 77 (2008) 054013, PRL 106 (2011) 122301, PRD 106 (2022) 074004; also prel. HKN]

• Yes (if taken without correlations, normalized)

[H. Paukkunen, C.A. Salgado, JHEP 07 (2010) 032, PRL 110 (2013) 212301; also DSSZ]

Consolidated perspective:

Methodology Electronic Contraction Contrac

Electroweak boson

Photons, hadrons, jets 0000 Heavy quarks/quarkonia 0000000 Conclusion 0000000

Compatibility of neutrino DIS data

MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. (2024) [2311.00450]

Are CC DIS data compatible with NC DIS and DY data?

No (in particular high-precision NuTeV data)

[nCTEQ Coll., PRD 77 (2008) 054013, PRL 106 (2011) 122301, PRD 106 (2022) 074004; also prel. HKN]

• Yes (if taken without correlations, normalized)

[H. Paukkunen, C.A. Salgado, JHEP 07 (2010) 032, PRL 110 (2013) 212301; also DSSZ]

Consolidated perspective:

Methodology

000000

Kinematic coverage in x and Q^2

Experimental data on W/Z bosons

Analysis	nCTEQ15HQ	EPPS21	nNNPDF3.0	TUJU21	KP16
RUN-I:					
ATLAS Z	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CMS Z	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ALICE Z			✓ ^b		
LHCb Z	\checkmark		✓ ^b		
ATLAS W^{\pm}	\checkmark				\checkmark
CMS W^{\pm}	\checkmark	\checkmark	\checkmark		
ALICE W^{\pm}	\checkmark		✓ ^b		
RUN-II:					
CMS Z			√ ^b		
ALICE Z			✓ ^b		
LHCb Z					
CMS W^{\pm}	\checkmark	√ ^a	\checkmark	\checkmark	
ALICE W^{\pm}					

 $^{\rm a}$ added in EPPS21; $^{\rm b}$ added in nNNPDF3.0.

Run-II W^{\pm} boson production in pPb from CMS

MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. (2024) [2311.00450]

Run-II W^{\pm} boson production in pPb from CMS

MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. (2024) [2311.00450]

- nCTEQ/nNNPDF fit absolute cross sections, EPPS ratios
- Limited impact on s quark, since mostly evolved from gluon

 duction
 Methodology
 Electroweak bosons
 Photons, hadrons, jets
 Heavy quarks/quarkonia
 Con

 000000
 00●
 0000
 000000
 0000000
 0000000

Run-II Z boson production in pPb from CMS

I. Helenius, W. Vogelsang, M. Walt, Phys. Rev. D 105 (2022) 094031

Run-II Z boson production in pPb from CMS

I. Helenius, W. Vogelsang, M. Walt, Phys. Rev. D 105 (2022) 094031

Low-mass data in tension w/ NLO (also nNNPDF) → NNLO?

Run-II isolated photon production in pPb from ATLAS

ATLAS Coll., PLB 796 (2019) 230; nNNPDF Coll., EPJC 82 (2022) 507

Pre-LHC data: E706 (pBe); PHENIX, STAR (DAu)

Introduction	Methodology	Electroweak bosons	Photons, hadrons, jets	Heavy quarks/quarkonia	Conclusion
000	000000	000	0000	0000000	0000000

Run-II isolated photon production in pPb from ATLAS

ATLAS Coll., PLB 796 (2019) 230; nNNPDF Coll., EPJC 82 (2022) 507

Pre-LHC data: E706 (pBe); PHENIX, STAR (DAu)

Introduction	Methodology	Electroweak bosons	Photons, hadrons, jets	Heavy quarks/quarkonia	Conclusion
000	000000	000	•000	0000000	0000000

Run-II isolated photon production in pPb from ATLAS

ATLAS Coll., PLB 796 (2019) 230; nNNPDF Coll., EPJC 82 (2022) 507

Pre-LHC data: E706 (pBe); PHENIX, STAR (DAu)

NB: Absolute cross sections underestimated at NLO \rightarrow NNLO?

 Introduction
 Methodology
 Electroweak bosons
 Photons, hadrons, jets
 Heavy quarks/quarkonia
 Conclusion

 000
 000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000

Run-II isolated photon production in pPb from ALICE

F. Jonas, talk at "Hard Probes 2023" and PhD thesis, U Münster (2023)

 Introduction
 Methodology
 Electroweak bosons
 Photons, hadrons, jets
 Heavy quarks/quarkonia
 Conclusion

 000
 00000
 000
 000000
 0000000
 0000000
 0000000

Run-II isolated photon production in pPb from ALICE

- High-p_T ALICE data ~ ATLAS data w/in uncertainties
- New low-p_T ALICE data has sensitivity → publish!
- Gluons: nCTEQ15HQ > nCTEQ15, EPPS21 \sim EPPS16
- New ALICE FoCal will cover $3.2 < \eta < 5.8$ in Run-IV

dology Elect

k bosons Photo 0000

Photons, hadrons, jets 0000

Heavy quarks/quarkonia

Conclusion 0000000

Single inclusive hadrons

P. Duwentäster, MK et al. [nCTEQ Coll.], PRD 104 (2021) 094005

(In-)sensitivity to fragmentation functions:

DSS unmodified data	DSS modified data	KKP	BKK	NNFF	JAM20
0.461	0.412	0.401	0.420	0.456	0.553

dology Elect

ons Photons, hadrons, jets

Heavy quarks/quarkonia

Conclusion 0000000

Single inclusive hadrons

P. Duwentäster, MK et al. [nCTEQ Coll.], PRD 104 (2021) 094005

(In-)sensitivity to fragmentation functions:

DSS unmodified data	DSS modified data	KKP	BKK	NNFF	JAM20
0.461	0.412	0.401	0.420	0.456	0.553

Impact of (RHIC+) LHC (ALICE) data:

χ^2/N_{dof} for selected experiments and processes												
	ST	AR	PHENIX		ALICE			DIS	DY	WZ	SIH	Total
	π^0	π^{\pm}	π^0	$5 \text{ TeV} \pi^0$	$5 \text{ TeV} \pi^{\pm}$	$5 \text{ TeV } K^{\pm}$	$8{\rm TeV}\ \pi^0$					
nCTEQ15	0.13	2.68	0.30	2.53	0.62	0.71	1.96	0.86	0.78	(3.74)	(1.23)	1.28
nCTEQ15SIH	0.16	0.69	0.41	0.48	0.13	0.29	0.58	0.87	0.72	(2.32)	0.38	1.00
nCTEQ15WZ	0.17	3.24	0.23	0.67	0.21	0.41	1.58	0.90	0.78	0.90	(0.81)	0.90
nCTEQ15WZ+SIH	0.14	0.75	0.30	0.47	0.13	0.26	0.79	0.91	0.77	1.02	0.41	0.85

odology Elec

Electroweak bosons

Photons, hadrons, jets

Heavy quarks/quarkonia

Conclusion 0000000

Single inclusive hadrons

P. Duwentäster, MK et al. [nCTEQ Coll.], PRD 104 (2021) 094005

(In-)sensitivity to fragmentation functions:

DSS unmodified data	DSS modified data	KKP	BKK	NNFF	JAM20
0.461	0.412	0.401	0.420	0.456	0.553

Impact of (RHIC+) LHC (ALICE) data:

χ^2/N_{dof} for selected experiments and processes												
	ST	AR	PHENIX	ALICE			DIS	DY	WZ	SIH	Total	
	π^0	π^{\pm}	π^0	$5 \text{ TeV} \pi^0$	$5 \text{ TeV} \pi^{\pm}$	$5 \text{ TeV } K^{\pm}$	$8{\rm TeV}\ \pi^0$					
nCTEQ15	0.13	2.68	0.30	2.53	0.62	0.71	1.96	0.86	0.78	(3.74)	(1.23)	1.28
nCTEQ15SIH	0.16	0.69	0.41	0.48	0.13	0.29	0.58	0.87	0.72	(2.32)	0.38	1.00
nCTEQ15WZ	0.17	3.24	0.23	0.67	0.21	0.41	1.58	0.90	0.78	0.90	(0.81)	0.90
nCTEQ15WZ+SIH	0.14	0.75	0.30	0.47	0.13	0.26	0.79	0.91	0.77	1.02	0.41	0.85

Little impact of η data, also no FF uncertainty available.

logy Electro

osons Photons, hadrons, jets

Heavy quarks/quarkonia

Conclusion 0000000

Run-I dijet production from CMS

CMS Coll., PRL 21 (2018) 062002; K. Eskola et al., EPJC 82 (2022) 413 Specific to nuclear collisions:

- Large background from Underlying Event
- $7\pm5\,pN\,interactions\,(Glauber)\,$ [Loizides, Kamin, d'Enterria, PRC 97 (2018) 054910]
- Requires subtraction of MPIs and sufficiently large p_T /small R

ology Electi o ooo Photons, hadrons, jets

Heavy quarks/quarkonia

Conclusion 0000000

Run-I dijet production from CMS

CMS Coll., PRL 21 (2018) 062002; K. Eskola et al., EPJC 82 (2022) 413 Specific to nuclear collisions:

- Large background from Underlying Event
- $7\pm5\,\text{pN}\,\text{interactions}\,(\text{Glauber})\,$ [Loizides, Kamin, d'Enterria, PRC 97 (2018) 054910]
- Requires subtraction of MPIs and sufficiently large p_T /small R

blogy Electr

Electroweak bosons 000

Photons, hadrons, jets 0000

Heavy quarks/quarkonia

Conclusion 0000000

Run-I dijet production from CMS

CMS Coll., PRL 21 (2018) 062002; K. Eskola et al., EPJC 82 (2022) 413 Specific to nuclear collisions:

- Large background from Underlying Event
- $7\pm5\,\text{pN}\,\text{interactions}\,(\text{Glauber})\,$ [Loizides, Kamin, d'Enterria, PRC 97 (2018) 054910]
- Requires subtraction of MPIs and sufficiently large p_T /small R

NB: CMS Run-I pp rapidity ratios in tension with NLO \rightarrow NNLO?

ntroduction Methodology Electroweak bosons Photons, hadrons, jets Heavy quarks/quarkonia Conclusion

Methodology for heavy quark/quarkonium production

P. Duwentäster, MK et al. [nCTEQ Coll.], Phys. Rev. D 105 (2022) 114043 [2204.09982]

Data-driven approach (Crystal Ball function):

$$\overline{\left|\mathcal{A}_{gg \to \mathcal{Q} + X}\right|^{2}} = \frac{\lambda^{2} \kappa \hat{s}}{M_{\mathcal{Q}}^{2}} e^{\hat{s}|y|} \times \begin{cases} e^{-\kappa} \frac{p_{T}^{2}}{M_{\mathcal{Q}}^{2}} & \text{if } p_{T} \leq \langle p_{T} \rangle \\ e^{-\kappa} \frac{\langle p_{T} \rangle^{2}}{M_{\mathcal{Q}}^{2}} \left(1 + \frac{\kappa}{n} \frac{p_{T}^{2} - \langle p_{T} \rangle^{2}}{M_{\mathcal{Q}}^{2}}\right)^{-n} & \text{if } p_{T} > \langle p_{T} \rangle \end{cases}$$

- Originally proposed for J/Ψ pairs and double parton scattering [C.H. Kom, A. Kulesza, J. Stirling, PRL 107 (2011) 082002]
- Impact on nPDFs demonstrated with reweighting studies
 [A. Kusina, J.P. Lansberg, I. Schienbein, H.S. Shao, PRL 121 (2018) 052004 and PRD 104 (2021) 014010]
- New rapidity dependence allows to cover also LHCb data

Methodology for heavy quark/quarkonium production

P. Duwentäster, MK et al. [nCTEQ Coll.], Phys. Rev. D 105 (2022) 114043 [2204.09982]

Data-driven approach (Crystal Ball function):

$$\overline{\left|\mathcal{A}_{gg \to \mathcal{Q} + X}\right|^{2}} = \frac{\lambda^{2} \kappa \hat{s}}{M_{\mathcal{Q}}^{2}} e^{\hat{s}|y|} \times \begin{cases} e^{-\kappa} \frac{p_{T}^{2}}{M_{\mathcal{Q}}^{2}} & \text{if } p_{T} \leq \langle p_{T} \rangle \\ e^{-\kappa} \frac{\langle p_{T} \rangle^{2}}{M_{\mathcal{Q}}^{2}} \left(1 + \frac{\kappa}{n} \frac{p_{T}^{2} - \langle p_{T} \rangle^{2}}{M_{\mathcal{Q}}^{2}}\right)^{-n} & \text{if } p_{T} > \langle p_{T} \rangle \end{cases}$$

- Originally proposed for J/Ψ pairs and double parton scattering [C.H. Kom, A. Kulesza, J. Stirling, PRL 107 (2011) 082002]
- Impact on nPDFs demonstrated with reweighting studies

[A. Kusina, J.P. Lansberg, I. Schienbein, H.S. Shao, PRL 121 (2018) 052004 and PRD 104 (2021) 014010]

• New rapidity dependence allows to cover also LHCb data

Choice of proton PDF (nCTEQ15) and factorization scales:

	D^0	J/ψ	$B \rightarrow J/\psi$	$\Upsilon(1S)$	$\psi(2S)$	$B \rightarrow \psi(2S)$
μ_0^2	$4M_D^2 + p_{T,D}^2$	$M_{J/\psi}^2 + p_{T,J/\psi}^2$	$4M_B^2 + \frac{M_B^2}{M_{J/\psi}^2} p_{T,J/\psi}^2$	$M_{\Upsilon(1S)}^2 + p_{T,\Upsilon(1S)}^2$	$M^2_{\psi(2S)} + p^2_{T,\psi(2S)}$	$4M_B^2 + \frac{M_B^2}{M_{\psi(2S)}^2}p_{T,\psi(2S)}^2$

n Methodology Electroweak bosons Photons, hadrons, jets Heavy quarks/quarkonia

Conclusion 0000000

Fit to pp data and validation with NLO predictions

P. Duwentäster, MK et al. [nCTEQ Coll.], Phys. Rev. D 105 (2022) 114043 [2204.09982]

Crystal Ball fit parameters: Cut data with $p_T < 3$ GeV and |y| > 4

	D^0	J/ψ	$B \to J/\psi$	$\Upsilon(1S)$	$\psi(2S)$	$B \rightarrow \psi(2S)$	
κ	0.33457	0.47892	0.15488	0.94524	0.21589	0.45273	
λ	1.82596	0.30379	0.12137	0.06562	0.07528	0.13852	
$\langle p_T \rangle$	2.40097	5.29310	-7.65026	8.63780	8.98819	7.80526	
n	2.00076	2.17366	1.55538	1.93239	1.07203	1.64797	
a	-0.03295	0.02816	-0.08083	0.22389	-0.10614	0.06179	
N_{points}	34	501		375		55	
χ^2/N_{dof}	0.25	0.88		0.92	0.77		

Fit to pp data and validation with NLO predictions

P. Duwentäster, MK et al. [nCTEQ Coll.], Phys. Rev. D 105 (2022) 114043 [2204.09982]

Crystal Ball fit parameters: Cut data with $p_T < 3$ GeV and |y| > 4

-						
	D^0	J/ψ	$B \to J/\psi$	$\Upsilon(1S)$	$\psi(2S)$	$B \to \psi(2S)$
κ	0.33457	0.47892	0.15488	0.94524	0.21589	0.45273
λ	1.82596	0.30379	0.12137	0.06562	0.07528	0.13852
$\langle p_T \rangle$	2.40097	5.29310	-7.65026	8.63780	8.98819	7.80526
n	2.00076	2.17366	1.55538	1.93239	1.07203	1.64797
a	-0.03295	0.02816	-0.08083	0.22389	-0.10614	0.06179
$N_{\rm points}$	34	501		375	55	
χ^2/N_{dof}	0.25	0.88		0.92	0.77	

Heavy quarkonia in NRQCD:

[M. Butenschön, B. Kniehl, PRL 106 (2011) 022003]

Open heavy quarks in GM-VFNS:

[B. Kniehl et al., PRD 71 (2005) 014018]

Fit to pp data and validation with NLO predictions

P. Duwentäster, MK et al. [nCTEQ Coll.], Phys. Rev. D 105 (2022) 114043 [2204.09982]

Crystal Ball fit parameters: Cut data with $p_T < 3$ GeV and |y| > 4

	D^0	J/ψ	$B \to J/\psi$	$\Upsilon(1S)$	$\psi(2S)$	$B \rightarrow \psi(2S)$
κ	0.33457	0.47892	0.15488	0.94524	0.21589	0.45273
λ	1.82596	0.30379	0.12137	0.06562	0.07528	0.13852
$\langle p_T \rangle$	2.40097	5.29310	-7.65026	8.63780	8.98819	7.80526
n	2.00076	2.17366	1.55538	1.93239	1.07203	1.64797
a	-0.03295	0.02816	-0.08083	0.22389	-0.10614	0.06179
$N_{\rm points}$	34	501		375	55	
χ^2/N_{dof}	0.25	0.88		0.92	0.77	

Heavy quarkonia in NRQCD:

[M. Butenschön, B. Kniehl, PRL 106 (2011) 022003]

Open heavy quarks in GM-VFNS:

[B. Kniehl et al., PRD 71 (2005) 014018]

hodology Electroweak bosons

Photons, hadrons, jet

Heavy quarks/quarkonia

Conclusion 0000000

Impact of heavy quark and quarkonium data

P. Duwentäster, MK et al. [nCTEQ Coll.], Phys. Rev. D 105 (2022) 114043 [2204.09982] Cut D^0 data with $p_T > 15$ GeV (no p), 2 high- p_T LHCb Υ points

n Methodology Electroweak bosons Photons, hadrons, jets Heavy quarks/quarkonia

Impact of heavy quark and quarkonium data

P. Duwentäster, MK et al. [nCTEQ Coll.], Phys. Rev. D 105 (2022) 114043 [2204.09982] Cut D^0 data with $p_T > 15$ GeV (no p), 2 high- p_T LHCb Υ points

Comparison with incl. D^0 (LHCb Run-II) and excl. J/ψ data:

gy Electrow

Photons, hadrons, j 0000 Heavy quarks/quarkonia

Conclusion 0000000

Heavy-quark and quarkonium data

MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. (2024) [2311.00450]

Observable \mathcal{O}	D^0	J/ψ	$\Upsilon(1S)$	$\psi(2S)$	B^0,B^\pm	c jet	b jet
Run-I:							
ATLAS		$(240, 241)^{a}$	$(241)^{a}$	$(241)^{a}$			
CMS		$(242)^{a}$	(243)	$(244)^{a}$		(245)	(246)
ALICE	$(247, 248, 249)^{a}$	$(250, 251)^{\rm a}, (252)$	(253)	$(254)^{a}$			(255)
LHCb	$(256)^{a,b,c}$	$(257)^{a}$	(258)				
RUN-II:							
ALICE		$(259)^{\mathrm{a}}, (260)$	$(261)^{a}$	$(262)^{a}$			
LHCb	(263)	$(264)^{a}$	$(265)^{a}$		(266)		
Fixed target:							
LHCb	(267, 268)	(267, 269)		(269)			

^a included in nCTEQ15HQ (50); ^b included in EPPS21 (51); ^c included in nNNPDF3.0 (52).

lology Elect

Electroweak bosons 000 Photons, hadrons, jet 0000 Heavy quarks/quarkonia

Conclusion 0000000

Nuclear PDFs after 10 years of LHC data

MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. (2024) [2311.00450]

dology Elect

Electroweak bosons

Photons, hadrons, jet: 0000 Heavy quarks/quarkonia

Conclusion 0000000

nCTEQ24 (prel.) vs. EPPS21

T. Jezo, talk at DIS24 (WED 11:00)

ogy Electrowe

Photons, hadrons, 0000 Heavy quarks/quarkonia

Conclusion •000000

Conclusion

Nuclear PDFs:

- QCD factorization, DGLAP evolution, HT enhancement
- Shadowing (LTA?), antishadowing, EMC effect, Fermi motion
- Dynamics: Partonic, hadronic, duality?
- Non-linear effects, initial-state phase transition to QGP

ogy Electrowe

ectroweak bosons

Photons, hadrons, jets 0000 Heavy quarks/quarkonia

Conclusion •000000

Conclusion

Nuclear PDFs:

- QCD factorization, DGLAP evolution, HT enhancement
- Shadowing (LTA?), antishadowing, EMC effect, Fermi motion
- Dynamics: Partonic, hadronic, duality?
- Non-linear effects, initial-state phase transition to QGP

Recent developments in fixed-target experiments:

- NC DIS: JLab at high $x \rightarrow \text{TMC}$, HT, deuteron
- CC DIS: CHORUS (CDHSW, dimuon) ((CCFR/NuTeV))
- Neutrino data constrain in particular the strange quark

ogy Electrowe

ns Photons, had 0000 Heavy quarks/quarkonia

Conclusion •000000

Conclusion

Nuclear PDFs:

- QCD factorization, DGLAP evolution, HT enhancement
- Shadowing (LTA?), antishadowing, EMC effect, Fermi motion
- Dynamics: Partonic, hadronic, duality?
- Non-linear effects, initial-state phase transition to QGP

Recent developments in fixed-target experiments:

- NC DIS: JLab at high $x \rightarrow \text{TMC}$, HT, deuteron
- CC DIS: CHORUS (CDHSW, dimuon) ((CCFR/NuTeV))
- Neutrino data constrain in particular the strange quark 10 years of LHC data:
 - Electroweak bosons ightarrow nCTEQ, EPPS, nNNPDF, TUJU, KP
 - Heavy quarks/quarkonia ightarrow Gluon down to $x=10^{-5}$
 - Photons/light hadrons/jets \rightarrow Need for NNLO?

ogy Electrowe

Photons, hadrons, jets

Heavy quarks/quarkonia

Conclusion •000000

Conclusion

Nuclear PDFs:

- QCD factorization, DGLAP evolution, HT enhancement
- Shadowing (LTA?), antishadowing, EMC effect, Fermi motion
- Dynamics: Partonic, hadronic, duality?
- Non-linear effects, initial-state phase transition to QGP

Recent developments in fixed-target experiments:

- NC DIS: JLab at high $x \rightarrow \text{TMC}$, HT, deuteron
- CC DIS: CHORUS (CDHSW, dimuon) ((CCFR/NuTeV))
- Neutrino data constrain in particular the strange quark 10 years of LHC data:
 - Electroweak bosons ightarrow nCTEQ, EPPS, nNNPDF, TUJU, KP
 - Heavy quarks/quarkonia ightarrow Gluon down to $x=10^{-5}$
 - Photons/light hadrons/jets \rightarrow Need for NNLO?

Lattice QCD:

[LP3 Coll., NPLQCD Coll.]

• Large x, low A, m_{π} , quasi-/pseudo-PDFs etc., R_{u-d} , p_g/p_A

ogy Electrowe

Photons, hadrons, jets 0000 Heavy quarks/quarkonia

Conclusion •000000

Conclusion

Nuclear PDFs:

- QCD factorization, DGLAP evolution, HT enhancement
- Shadowing (LTA?), antishadowing, EMC effect, Fermi motion
- Dynamics: Partonic, hadronic, duality?
- Non-linear effects, initial-state phase transition to QGP

Recent developments in fixed-target experiments:

- NC DIS: JLab at high $x \rightarrow \text{TMC}$, HT, deuteron
- CC DIS: CHORUS (CDHSW, dimuon) ((CCFR/NuTeV))
- Neutrino data constrain in particular the strange quark 10 years of LHC data:
 - Electroweak bosons \rightarrow nCTEQ, EPPS, nNNPDF, TUJU, KP
 - Heavy quarks/quarkonia ightarrow Gluon down to $x=10^{-5}$
 - Photons/light hadrons/jets \rightarrow Need for NNLO?

Lattice QCD:

[LP3 Coll., NPLQCD Coll.]

FRI 09:00 H.W. Lin (MSU) PDFs in LQCD

odology Elect

Electroweak bosons 000 Photons, hadrons, jets 0000 Heavy quarks/quarkonia

Conclusion

ology Electrov o ooo

lectroweak bosons

Photons, hadrons, jets 0000 Heavy quarks/quarkonia

Conclusion

lology Electro

lectroweak bosons

Photons, hadrons, jets 0000 Heavy quarks/quarkonia

Conclusion

x

ology Electro o ooo

Electroweak bosons

Photons, hadrons, jets 0000 Heavy quarks/quarkonia

Conclusion

Methodology Electroweal

Photons, hadrons, jets 0000 Heavy quarks/quarkonia

Conclusion

lology Electro

Electroweak bosons

Photons, hadrons, jets 0000 Heavy quarks/quarkonia

Conclusion

28 / 31

EPPS16 vs. Run-I CMS dijet data

K. Eskola, P. Paakinen, H. Paukkunen, Eur. Phys. J. C 79 (2019) 511

Introduction	Methodology	Electroweak bosons	Photons, hadrons, jets	Heavy quarks/quarkonia	Conclusion
000	000000		0000	0000000	0000000

nNNPDF3.0 vs. Run-II CMS low- and high-mass Z data

R. Abdul Khalek et al. [nNNPDF Coll.], Eur. Phys. J. C 82 (2022) 507

logy Electro 000

roweak bosons

Photons, hadrons, jet 0000 Heavy quarks/quarkonia

Conclusion

TUJU21 NNLO vs. KSASG20 NNLO

I. Helenius, W. Vogelsang, M. Walt, Phys. Rev. D 105 (2022) 094031; H. Khanpour et al., Phys. Rev. D 104 (2021) 034010

dology Elec

Electroweak bosons

Photons, hadrons, je 0000 Heavy quarks/quarkonia

Conclusion

KP16 model components

P. Ru, S.A. Kulagin, R. Petti, B.W. Zhang, Phys. Rev. D 94 (2016) 113013

