Heavy Jons at LHC

Friederike Bock, ORNL April 8, 2024, Grenoble, France, DIS2024

10-5 10-4 10-3

10-1

 10^{-2}

Coherent J/ Ψ production in Pb-Pb collisions

⋧

- Completing the picture of coherent J/Ψ production in UPC vs y & p_T complementing ALICE measurement
- Coherent J/Ψ production vs centrality w/o significant centrality dependence
- Strong *y*-dependence predicted at high *y*
- \rightarrow Better differentiation of models
- 70-90% Raw yield excess in all rapidity intervals \rightarrow hadronic yield
- 70-90% rapidity dependence not reproduced by models, but overall x-section
- Inclusion of nuclear overlap doesn't solve the problem

ε Ο Δ Κ

Coherent J/ Ψ production in Pb-Pb collisions

New measurments by CMS & LHCb at forward rapidity

- Completing the picture of coherent J/Ψ production in UPC vs y & p_T complementing ALICE measurement
- Coherent J/Ψ production vs centrality w/o significant centrality dependence
- Strong y-dependence predicted at high y
- ightarrow Better differentiation of models
- 70-90% Raw yield excess in all rapidity intervals \rightarrow hadronic yield
- 70-90% rapidity dependence not reproduced by models, but overall x-section
- Inclusion of nuclear overlap doesn't solve the problem

Coherent Ψ (2S) production in UPC events

- First precise coherent Ψ(2S) prod in UPC y & p_r
- Complementing ALICE measurement at mid-rapidity
- First cross-section ratio vs rapidity in UPC events at LHC
- → Strong contrains to nPDF from coherent quarkonia production

LHC HI Summary

${\rm J}/\Psi$ polarization in UPC events

- S-channel helicity conservation
- $\rightarrow\,$ Photon heilicity transfered to vector meson
 - $\bullet~$ First polarization measurement of coherently photo-produced J/ ψ
- $\rightarrow\,$ Tranverse polarization of J/Ψ observed in UPC
 - $\, \bullet \,$ Hint for J/ Ψ tranverse polarized in 70-90%
- ightarrow Coherent photo-production dominant

OAK

J/Ψ polarization in UPC events

^{4/28}

Differential J/ Ψ photo-production

Pb-Pb - probing the Pb-pdf

- Measured J/Ψ as function of additional neutron production in ZDCs
- → Constrain kinematic of exchange-photon & access to small x in nucleus
- Are we reaching the black disk limit?
- Lowest × so far, data favor saturation and shadowing models

Differential J/ Ψ photo-production

Pb-Pb - probing the Pb-pdf

- Lowest x so far, data favor saturation and shadowing models
- Coherent & incoherent J/Ψ vs |t|
- $\rightarrow\,$ Coherent: favor nuclear shadowing/ gluon saturation similar to HERA
- → Incoherent: probing gluonic "hot spots" in Pb, slope of data favors subnucleon fluctuations

p-Pb - probing the proton-pdf

- No change in behaviour compared to HERA
- First measurement of J/Ψ dissociative production, consistent with HERA

Imaging the Nuclei/Nucleus: Light flavor particles

• $\pi^0 \& \eta R_{\rm PA}$ imposes strong constraints on nPDF

Forward/Backward-rapidity

- π^0 low x suppression ($\eta > 0$) & excess at high x ($\eta < 0$)
- η & η' similar suppresion as $\pi^{\rm 0},$ nearly no mass effect
- Complementary to D mesons & charged particles
- $\rightarrow\,$ Constraints on QGP effects in small collision systems

Imaging the Nuclei/Nucleus: Isolated Photons

Low momentum iso. γ Pb-Pb

- $\bullet ~\gamma$ iso. spectra reproducted by theory within uncertainties for both radii
- $R_{\scriptscriptstyle {AA}}=1$ for >50% centrality
- $R_{\rm AA}$ for 50 90% in agreement with cent. selection bias (\sim 0.91)
- Consistent with CMS
- NLO predicts stronger suppression at low p_{T}

Imaging the Nuclei/Nucleus: Isolated Photons

Low momentum iso. γ Pb-Pb

- $\bullet ~\gamma$ iso. spectra reproducted by theory within uncertainties for both radii
- $R_{\scriptscriptstyle {AA}}=1$ for >50% centrality
- $R_{\rm AA}$ for 50 90% in agreement with cent. selection bias (\sim 0.91)
- Consistent with CMS
- NLO predicts stronger suppression at low $p_{\rm T}$

Low momentum iso. γ p-Pb

- Consistent with nPDFs and FF (JETPHOX)
- Hint of suppression in $R_{\rm pA}$ at low $p_{\rm T}$
- \rightarrow CNM effect?
- $\rightarrow\,$ Favors gluon shadowing
 - Consistent with ATLAS

Imaging the Nuclei/Nucleus: Jets

- Charged-jet *R*_{pA} at 5 TeV consistent with unity & POWHEG expectation
- Centrality dependence for inclusive jets in p-Pb, due to color fluctuations in proton
- \rightarrow Can we scan x_p ?
- Di-jets as probes for pdfs
 - Di-jets in p-Pb R_{CP} jets scales with p_T cosh((y^x)) (GeV)
 - \rightarrow Probe primarily x_{i}
 - UPC di-jets can adjust probed photon energy by cutting in H-
 - \rightarrow Probe primarily x_{Pb}

Imaging the Nuclei/Nucleus: Jets

 $2m_T \times \sinh v^{CM}$

√<u>5</u>NN

 $x_{E} =$

- Charged-jet R_{pA} at 5 TeV consistent with unity & POWHEG expectation
- Centrality dependence for inclusive jets in p-Pb, due to color fluctuations in proton
- \rightarrow Can we scan x_p ?
- Di-jets as probes for pdfs
 - ► Di-jets in p-Pb R_{CP} jets scales with p_T cosh(⟨y^x⟩) (GeV)
 - \rightarrow Probe primarily x_p
 - UPC di-jets can adjust probed photon energy by cutting in H-
 - \rightarrow Probe primarily x_{Pb}

LHC HI Summary

Imaging the Nuclei/Nucleus: Jets

- Charged-jet *R*_{pA} at 5 TeV consistent with unity & POWHEG expectation
- Centrality dependence for inclusive jets in p-Pb, due to color fluctuations in proton
- \rightarrow Can we scan x_p ?
- Di-jets as probes for pdfs
 - ► Di-jets in p-Pb R_{CP} jets scales with p_T cosh(⟨y^x⟩) (GeV)
 - \rightarrow Probe primarily x_p
 - ► UPC di-jets can adjust probed photon energy by cutting in H_T
 - \rightarrow Probe primarily x_{Pb}

F. Bock (ORNL)

LHC HI Summary

Imaging the Nucleus: Z+c jets in pp

- Z + c-jet production at forward rapidity probes high x region sensitive to intrinsic charm (IC)
 LHCb data favors calculations allowing IC at most forward rapidity
- Recent global PDF analysis finds 3σ evidence for IC in proton [NNPDF collab, Nature 608 (2022)]
- $\rightarrow\,$ Similar behavior as for valence quark
- $\bullet\,$ Current analysis primarily limited by statistics New Run 3+ data allows future exploration

Imaging the Nuclei/Nucleus: LHCb fixed target

- Complementary to other LHC experiments and energies $\sqrt{s_{\rm NN}} = 41
 ightarrow 115~{\rm GeV}$
- Unique access to high Bjorken x and low Q² phase space

• Variety of nuclear targets

- ► Constrain nPDF
- Study nuclear absorption

🕊 ОАК Imaging the Nuclei/Nucleus: HF production in p-Ne **RIDGE**

- $D^0 p_{\tau}$ spectra not reproduced by standard calculations
 - \rightarrow Needs intrinsic charm or recombination
- $D \overline{D}$ production asymmetric vs y not reproduced in any calculation
- Measured J/Ψ x-section consistent with $\sqrt{s_{\rm NN}}$ dependence
- Differential J/Ψ x-sections
 - \rightarrow No differentiation between w/ or w/o IC, LO fails
- $\Psi(2S)/J/\Psi$ ratio consistent with light nucl. collision

LHC HI Summary

Imaging the Nuclei/Nucleus: HF production in Pb-Ne

- No significant recombination expected as $N_{car{c}} pprox 1$
- $\sigma_{J/\Psi}/\sigma_{D^0}$ little dependence on y*, strong $p_{\rm T}$ dependence
- Ratio decreases similarly as $N_{\rm Coll}$
- $\rightarrow~J/\Psi$ experiences additional nuclear effects

Understanding Hadronization Processes

Parton Shower Hadronization Are there other states?

Does factorization hold in dense environments?

F. Bock (ORNL)

LHC HI Summary

Hadronization - Light nuclei production

- Success of coalescence model for light-nuclei production
 - d/p & ³He/p ratios vs. multiplicity and system size well described
 - ${}^{3}_{\Lambda}H/p$ support coalescence model
 - Successful description of d spectrum with coalescence model w/o free parameters

Hadronization - Light nuclei production

- Success of coalescence model for light-nuclei production
 - d/p & ³He/p ratios vs. multiplicity and system size well described
 - ${}^{3}_{\Lambda}H/p$ support coalescence model
 - Successful description of d spectrum with coalescence model w/o free parameters

- $\rightarrow\,$ Results agree with hypothesis of excited states
 - Testing the dependence of the yields of the SHM with the spin-degeneracy

F. Bock (ORNL)

LHC HI Summary

Ap/NF

10

April 8, 2024

14 / 28

Exploring the resonance states: f⁰(980)

- ► v₂ scales with n-quarks
- \rightarrow Scale E_T with n_q
- \rightarrow consistent with 2 quark assumption
- ightarrow 4-quark or KK molecule excluded with 7.7 σ
- ightarrow baryon excluded with 3.5 σ
- ► R_{pA} shows no cronin peak at low p_T
- \rightarrow Ordinary meson structure?
- CSM underestimate f^0/π in pp, consistent with |S| = 0

 $v_2^{\rm sub}/n_q$

• f^0/K^{*0} indicates |S| = 0 based on CSM

Hadronization - Multi-strange particle production 🌂

- Average yield increases stronger than linear increase vs. multiplicity for multiple strange hadrons, trend described by Pythia with ropes
- 1 strange meson/event described better than higher orders
- 2 & 3 Λ/K_s^0 increase with multiplicity \rightarrow baryon related effect

F. Bock (ORNL)

nPDFs vs. Hadronization: D_s^+ production in p-Pb

- D⁺_s x-section well reproduced in forward y
 Unexpected suppression in backward rap.
- R_{FB} :
 - \rightarrow Suppressed at low $p_{\rm T}$ consistent with nPDFs
 - ightarrow Increases at high $p_{\scriptscriptstyle \mathsf{T}}$

nPDF calculations cannot describe forward/backward ratio for D⁺_s

- \rightarrow Final state effects?
- \rightarrow Hadronization modified?
- D⁺_s/D⁺ strong y-dependence, increased in backward region
 - \rightarrow Increased coalescence contribution?
- Strangeness enhancement in charm sector observed in p-Pb collisions

nPDFs vs. Hadronization: D_s^+ production in p-Pb

- D⁺_s x-section well reproduced in forward y
 Unexpected suppression in backward rap.
- *R_{FB}*:
 - \rightarrow Suppressed at low $p_{\rm T}$ consistent with nPDFs
 - ightarrow Increases at high $p_{\scriptscriptstyle \mathsf{T}}$

nPDF calculations cannot describe forward/backward ratio for D⁺_s

- \rightarrow Final state effects?
- \rightarrow Hadronization modified?
- D⁺_s/D⁺ strong y-dependence, increased in backward region
 - \rightarrow Increased coalescence contribution?
- Strangeness enhancement in charm sector observed in p-Pb collisions

Testing FSE: Higher Charmonia production in p-Pb

Test melting vs comover breaking scenarios

- \rightarrow Use R_{nA} ratios between mesons to cancel ISE
- \rightarrow J/ Ψ suppression largely dominated by ISE

Testing FSE: Higher Charmonia production in p-Pb 🂐

AK RIDGE

Test melting vs comover breaking scenarios

- $\rightarrow~{\rm Use}~R_{\rm pA}$ ratios between mesons to cancel ISE
- $\rightarrow~J/\Psi$ suppression largely dominated by ISE
- $\bullet\,$ Double ratio $\Psi(2S)/J/\Psi;\,\,\Psi(2S)$ affected by FSE
 - $\rightarrow~$ Only for prompt ratio affected not feeddown contribution
 - \rightarrow Comover expectation most promissing explanation
- $\chi_c/{\mathsf{J}}/{\Psi}$ no ISE
 - \rightarrow consistent with pp at forward
 - → backward larger at low p_T, no final state effects
- $\Upsilon(3S)$ suppressed vs $\Upsilon(1S)$, slower & heavier than χ_c
 - \rightarrow Comover breaking scenario?

Testing FSE: Higher Charmonia production in p-Pb

OAK RIDGE

Test melting vs comover breaking scenarios

- $\rightarrow~{\rm Use}~R_{\rm pA}$ ratios between mesons to cancel ISE
- $\rightarrow~J/\Psi$ suppression largely dominated by ISE
- $\bullet\,$ Double ratio $\Psi(2S)/J/\Psi;\,\,\Psi(2S)$ affected by FSE
 - $\rightarrow~$ Only for prompt ratio affected not feeddown contribution
 - \rightarrow Comover expectation most promissing explanation
- $\chi_c/{\rm J}/{\rm \Psi}$ no ISE
 - $\rightarrow~$ consistent with pp at forward
 - $\rightarrow\,$ backward larger at low $p_{\rm T},$ no final state effects
- $\Upsilon(3S)$ suppressed vs $\Upsilon(1S)$, slower & heavier than χ_c
 - → Comover breaking scenario?

F. Bock (ORNL)

LHC HI Summary

April 8, 2024

18 / 28

Testing FSE: Higher Charmonia production in p-Pb 🌂

OAK RIDGE

Test melting vs comover breaking scenarios

- $\rightarrow~{\rm Use}~R_{\rm pA}$ ratios between mesons to cancel ISE
- $\rightarrow~J/\Psi$ suppression largely dominated by ISE
- $\bullet\,$ Double ratio $\Psi(2S)/J/\Psi;\,\,\Psi(2S)$ affected by FSE
 - $\rightarrow~$ Only for prompt ratio affected not feeddown contribution
 - \rightarrow Comover expectation most promissing explanation
- $\chi_c/{\rm J}/{\rm \Psi}$ no ISE
 - $\rightarrow~$ consistent with pp at forward
 - $\rightarrow\,$ backward larger at low $p_{\rm T},$ no final state effects
- $\Upsilon(3S)$ suppressed vs $\Upsilon(1S)$, slower & heavier than χ_c
 - \rightarrow Comover breaking scenario?

Hadronization: Λ_c production in p-Pb & Pb-Pb

Λ_C^+/D^0 pp

- Prompt Λ_c production not described using Belle FF, needs PYTHIA8 with ropes
- pp Λ_C^+/D^0 underpredicted by PYTHIA8, coalescence model or stat. had. model describes reasonably well

Hadronization: Λ_c production in p-Pb & Pb-Pb

Λ_C^+/D^0 pp

- Prompt Λ_c production not described using Belle FF, needs PYTHIA8 with ropes
- pp Λ⁺_C/D⁰ underpredicted by PYTHIA8, coalescence model or stat. had. model describes reasonably well

Λ_C^+/D^0 Pb-Pb

- Prompt Λ_c Pb-Pb systematically suppressed in all centralities
- c quark e-loss, follows other HF meas.
- pp and Pb-Pb consistent, recombination not really relevant?

National Laboratory

Hadronization: Λ_c production in p-Pb & Pb-Pb

Λ_C^+/D^0 pp

- Prompt Λ_c production not described using Belle FF, needs PYTHIA8 with ropes
- pp Λ⁺_C/D⁰ underpredicted by PYTHIA8, coalescence model or stat. had. model describes reasonably well

Λ_C^+/D^0 Pb-Pb

- Prompt Λ_c Pb-Pb systematically suppressed in all centralities
- c quark e-loss, follows other HF meas.
- pp and Pb-Pb consistent, recombination not really relevant?

Λ_C^+/D^0 p-Pb

- Nearly no multiplicity dependence
- Coalescence process saturates early from quark-quark scattering with mult.?

Hadronization: Charm fragmentation in pp & p-Pb

- pp: Prompt $\Lambda_C^+/D^0 in$ not described with pure e^+e^- FF
- p-Pb: Prompt shift of peak to higher p_{T}
- → Recombination with lighter quarks in p-Pb?
- Ξ_c^0 & Ξ_c^+ production in pp
- Ξ_c^0 in p-Pb: slight enhancement , not consistent with recombinaton alone
- p_{τ} integrated Λ_C^+/D^0 consistent for pp to A-A vs. mult.
- ightarrow redistribution of momentum
- 3x more baryons produced than measured in ee/ep-collisions
- $\rightarrow\,$ Are there additional processes at play?

F. Bock (ORNL)

April 8, 2024

Hadronization: Charm fragmentation in pp & p-Pb

- pp: Prompt $\Lambda_C^+/D^0 in$ not described with pure e^+e^- FF
- p-Pb: Prompt shift of peak to higher p_{T}
- → Recombination with lighter quarks in p-Pb?
- Ξ_c^0 & Ξ_c^+ production in pp
- Ξ_c^0 in p-Pb: slight enhancement , not consistent with recombinaton alone
- p_{τ} integrated Λ_C^+/D^0 consistent for pp to A-A vs. mult.
- ightarrow redistribution of momentum
- 3x more baryons produced than measured in ee/ep-collisions
- $\rightarrow\,$ Are there additional processes at play?

April 8, 2024

20/28

F. Bock (ORNL)

LHC HI Summary

Hadronization: Polarization transfer

• pp prompt D*+:

- No polarization
- ► Non prompt ρ₀₀ > 1/4 helicity conservation from B (S= 0)
- $\rightarrow~\mathsf{D}^{*+}(\mathsf{S}=1)+\mathsf{X}$ described by <code>PYTHIA</code>

• Pb-Pb J/Ψ:

- $\rightarrow~$ Small polarization observed at low $\textit{p}_{\rm T}$
- $\rightarrow\,$ In agreement with quark-recombination scenario

• **Pb-Pb D***⁺:

- $\rightarrow~$ 0-10% $\sim 1/3$ & 30-50% > 1/3 at high $\textit{p}_{\rm T}$
- $\label{eq:high_pt} \begin{array}{l} \rightarrow \mbox{ High } p_{\rm T} \ \rho_{00} \ \mbox{consistent with quark} \\ \mbox{ fragmentation through polarization by} \\ \mbox{ magnetic field?} \end{array}$

April 8, 2024

Оа к

Jational Laborator

Hadronization - b-Hadron production in pp & p-Pb

B⁺ p-Pb

- Constraining FONLL, unc. smaller
- Multiplicity dependence similar to other HF particle

 Λ_b^0/B^0 pp

- Consistent with previous p-Pb measurements
- Data favor enhancement from so far unobserved excited b-baryon decays
- ${\ensuremath{\,\circ}}$ Lowest multiplicity bin similar to e^+e^-
- $\rightarrow\,$ Coalescence additional hadronization meachnism for higher mult. events
- High $p_{\rm T}$ value approaches e^+e^-
- \rightarrow Dominance of fragmentation?

Understanding Quark Fragmentation!

Jet splittings

Focus on distribution of radiation within the jet (hadron level)

Focus on hard substructure (parton level)

How does the fragmentation process work?

Is the fragmentation process modified in presence of a medium?

F. Bock (ORNL)

Understanding fragmentation: EECs

- Energy-Energy-Correlators(EECs) well defined probe w/o need for grooming
- Probing fixed scale with fixed R_L:
 - ► Large $R_L \rightarrow$ perturbative, partonic degrees of freedom
 - ▶ Small $R_L \rightarrow$ non perturbative scales, free hadron scaling $\propto R_L$
- Transition to confinement region at $R_L \sim O(\Lambda_{QCD})/p_{T,jet}$
- $\bullet~$ E3C access 1 \rightarrow 3 splittings, NP effects cancelled in E3C/EEC ratio
- Similar shape for E3C, but different pQCD scaling behavior
- E3C/EEC ratio $\propto \alpha_{S}(Q) \ln(R_{L}) + O(\alpha_{S}^{2})$
 - \rightarrow High precision contraint on $\alpha_{S},$ jet- $p_{\rm T}{\rm proxy}$ for Q
 - \rightarrow Larger $p_{\rm T}$, smaller slope, running coupling

24 / 28

Understanding fragmentation: au declustering

- Probe temporal structure of jet at boundary between parton shower & hadronization
- In Pb—Pb could be used to probe time structure of jet quenching
- No strong p_{T} dependence
- $\bullet~\tau$ declustering selects wider splittings in R_{g}

Understanding fragmentation: Jet substructure Pb-Pb RIDGE

Jet shape $ho(\Delta r)$

 $x_j = p_T^{sub} / p_T^{lead}$

- Leading jets:
 - Modifications largest in balanced events (0.8 < x_j < 1.0)
- Sub-leading jets:
 - ► Enhancement of high-*p*_T particle outside jet cone
 - $\rightarrow 3^{\it rd}$ jet needed to produce imbalance
 - $\rightarrow\,$ Medium energy loss?
 - Unbalanced events most quenched, pp reference widened by 3rd jet

Subjet distance & rg

- $\sqrt{d_{12}}$, jets with multiple subjets (R=0.2) significantly suppressed (SSJ)
- Inclusive narrow jets less suppressed than wide jets (R_{AA} vs r_g /in r_g bins)
- Similar suppression independent of $p_{\rm T}$ at same r_g

26/28

F. Bock (ORNL)

Separating quark & gluon jets in Pb-Pb

$$x_{j,\gamma} = p_T^{jet} / p_T^{\gamma}$$

- Predominantly quark jets, reduction of selection bias
- $x_{j\gamma} > 0.4$ no narrowing seen in Pb-Pb events with more jet quenching
- Large R_g suppression seen for inclusive jets not seen for photon tagged jets
- $x_{j\gamma} > 0.8$ narrowing seen when increasing selection bias

Separating quark & gluon jets in Pb-Pb

$\gamma\text{-jet}$ grooomed radius

$$x_{j,\gamma} = p_T^{jet} / p_T^{\gamma}$$

- Predominantly quark jets, reduction of selection bias
- $x_{j\gamma} > 0.4$ no narrowing seen in Pb-Pb events with more jet quenching
- Large R_g suppression seen for inclusive jets not seen for photon tagged jets
- x_{jγ} > 0.8 narrowing seen when increasing selection bias

Separating guark & gluon jets in Pb-Pb

γ -jet grooomed radius

$$x_{j,\gamma} = oldsymbol{p}_T^{jet} / oldsymbol{p}_T^\gamma$$

- Predominantly guark jets, reduction of selection bias
- $x_{i\gamma} > 0.4$ no narrowing seen in Pb-Pb events with more iet quenching
- Large R_g suppression seen for inclusive jets not seen for photon tagged jets
- $x_{i\gamma} > 0.8$ narrowing seen when increasing selection bias

$R_{AA} \gamma$ -tagged jets

- γ -jets less suppressed than incl. jets in same centrality class
- Possible origins:
 - ► q vs g medium interactions
 - ▶ Different slope in pp (possible 10% effect)
 - Isospin + nPDF (10 %) opposite direction
- γ + multijet suggests greater suppression of asymmetric pairs

$\gamma\gamma ightarrow au au$ in Pb-Pb & pp

- Search for anomalous magnetic moment & physics beyond the standard model
- CMS use of single channel $a_{\tau} = 0.001^{+0.055}_{-0.080}$ 68% CL
- ATLAS use all channels to reconstruct τ combined **a**_τ ε (-0.057, 0.024) 95% CL
- New: CMS pp $\sqrt{s} = 13$ TeV

$\gamma\gamma ightarrow au au$ in Pb-Pb & pp

Data / Exp.

- Search for anomalous magnetic moment & physics beyond the standard model
- CMS use of single channel $a_{\tau} = 0.001^{+0.055}_{-0.080}$ 68% CL
- ATLAS use all channels to reconstruct τ combined $\mathbf{a}_{\tau} \in (-0.057, 0.024)$ 95% CL
- New: CMS pp $\sqrt{s} = 13$ TeV measurement with even better precision

