Highlights and prospects on electroweak and top physics at the (HL)-LHC

Kajari Mazumdar, TIFR, Mumbai, India.
on behalf of
ATLAS, CMS \& LHCb Collaborations, CERN-LHC

Physics performance at the LHC

pp collision data collected by each of the ATLAS and CMS experiments:

- Run-1 at $\sqrt{ } \mathrm{s}=7,8 \mathrm{TeV}(2010-2012): \mathcal{L} \sim 20 \mathrm{fb}^{-1}$
- Run-2 at $\sqrt{ }=13 \mathrm{TeV}(2015-2018): \mathcal{L} \sim 140 \mathrm{fb}^{-1}$
- Run-3 at $\sqrt{ } \mathrm{s}=13.6 \mathrm{TeV}(2022+2023): \mathcal{L} \sim 70 \mathrm{fb}^{-1}$

Run-3 continues till 2025, expect at 13.6 TeV total $\mathcal{L} \sim 250 \mathrm{fb}^{-1}$

- No direct evidence for physics beyond standard model (SM)
\rightarrow can access higher mass scale physics in terms of virtual contribution.
- Compare measurements of the observables with precise SM predictions and look for deviations.
- New physics at high scale \Rightarrow effectively modify couplings in various processes observed.
- Study the impact of higher dimension operators as a function of energy.
- Effective Field Theory (EFT) describes possible pattern of deviations introduced by new physics

$$
\mathcal{L}_{\mathrm{Eff}}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \mathcal{L}_{5}+\frac{1}{\Lambda^{2}} \mathcal{L}_{6}+\frac{1}{\Lambda^{3}} \mathcal{L}_{7}+\frac{1}{\Lambda^{4}} \mathcal{L}_{8}+\cdots, \quad \mathcal{L}_{d}=\sum_{i} c_{i}^{(d)} \mathcal{O}_{i}^{(d)}
$$

Prospects at the HL-LHC

Start of the HL-LHC is ~ 5 years away, will continue till mid-2040s at least \Rightarrow 20 times more data compared to current volume in about 20 years time to be collected with new avatars of the ATLAS and CMS detectors.

With more data :

- Rare processes
- (Multi-) differential measurements
- Explore corners of phase space

With more time:

- More powerful analysis techniques
- More accurate theoretical tools
- Other "technological" breakthroughs (computing, AI, ...)
- New ideas!

Results from studies for Snowmass Workshop, 2021-22 and CERN Yellow Report
Assuming ultimate performance of experiments comparable to that achieved during the LHC Run 2.

Uncertainties considered in the projections studies:

- 1% in luminosity.
- Experimental uncertainties: scaled down with $\sqrt{ } \mathcal{L}$.
- Theoretical uncertainties: halved with respect to current value.

This presentation is NOT an exhaustive discussion of the full electroweak and top physics projections at the HL-LHC.
More details in "Future physics with CMS detector at HL-LHC " by Jyothsna Rani Komaragiri

Electroweak physics

Milestones by 2023:

- Neutral currents: 50 yrs
- QCD: 50 yrs
- W, Z turns 40
- Top: 28
- Higgs: 11

SM input parameters for predictions

- W Mass
- Top Mass
- Higgs Mass
$M_{W}^{2}\left(1-\frac{M_{W}^{2}}{M_{Z}^{2}}\right)=\frac{\pi \alpha_{\mathrm{EM}}\left(M_{Z}\right)}{\sqrt{2} G_{F}(1-\Delta r)}$

Eg. theoretical uncertainty of

$$
\begin{aligned}
& \Delta \mathrm{M}_{\mathrm{top}}=2.1 \mathrm{GeV} \Rightarrow \\
& \Delta \mathrm{M}_{\mathrm{w}}=1.9 \mathrm{GeV}
\end{aligned}
$$

\Rightarrow Precision measurements at the LHC crucial
W, Z measurements are the experimental candles always.
LHC unraveling in productions of

- Multiple bosons
- Multiple top quarks

LHC achieving much more than anticipated \rightarrow able to mention only few.

Measurement of W mass

Precise M_{w} value provides sensitive test for the consistency of the model.

- W/Z production described by differential xsec + angular coefficients (say, A_{i}^{\prime} 's) driven by polarization.
- Unpolarized cross-section \& A_{i} 's can be determined in pQCD calculations \rightarrow depends on paton density function (PDF)
\rightarrow Known at NNLO QCD + NLO EWK,
Resummation-improved calculations available at N3LL+NNLO. arXiv:2207.07056
- M_{w} extracted from fit of data to MC-based templates.

Current uncertainty of m_{H} $(\sim 0.1 \%) \rightarrow \Delta M_{w} \sim 8 \mathrm{MeV}$

- Measurements limited by model-uncertainties: PDFs, $\mathrm{p}_{\mathrm{T}}{ }^{\ell}$ and A_{i}

CDF-II : $\mathbf{8 0 . 4 3 3 5} \mathbf{\pm} \mathbf{0 . 0 0 9 4} \mathbf{G e V}$ Science 376 (2022)
ATLAS : $80.3665 \pm 0.0159 \mathrm{GeV}[9.8$ (stat.) $\pm \mathbf{1 2 . 5}$ (syst.) MeV] arXiv:2403.15085
LHC EW WG: $\mathbf{8 0 . 3 7 7} \mathbf{\pm} \mathbf{0 . 0 1 2} \mathbf{G e V}$ arXiv:2308.09417

- LHC EW WG average and the published CDF result , when considered on equal footing but statistically incompatible (difference ~ 3.6 s.d.).
- Latest reanalysis of 7 TeV ATLAS data

$$
\Gamma_{W}=2202 \pm 32 \text { (stat.) } \pm 34 \text { (syst.) } \mathrm{MeV}=2.202 \pm 0.047 \mathrm{GeV} .
$$

New, independent measurements required.

W mass measurement at the HL-LHC

Requirements for future improvements:

- May be a low instantaneous luminosity ? Likely to enable reconstruction of the missing transverse momentum with sufficient precision.
- Enhanced detector coverage in higher rapidity regions \rightarrow forward lepton reconstruction.
- \quad Since M_{w} determined from template fit \Rightarrow huge amount of simulation $\sim \boldsymbol{O}\left(10^{10}\right) W$ events.
arXiv:2308.09417

Expected ΔM_{w} (stat.): 10 MeV with $200 \mathrm{pb}^{-1}$
3 MeV with $1 \mathrm{fb}^{-1}$.

Measurement of effective weak mixing angle $\sin ^{2} \theta_{\text {eff }}^{\ell}$

Leptonic effective mixing angle: key SM parameter

$$
\sin ^{2} \theta_{\text {eff }}^{\ell}=\left(1-\mathrm{m}_{\mathrm{w}}^{2} / \mathrm{m}_{\mathrm{z}}^{2}\right) \mathrm{k} \quad(\mathrm{k} \sim 1.037)
$$

Two most precise measurements of $\sin ^{2} \theta^{\ell}$ eff from LEP \& SLC, differ by $\sim 3 \sigma$. CDF II estimation of m_{w} prefers lower value.
LHC: use pp $\rightarrow Z /+X \rightarrow \ell+\ell-+X$: angular distribution of leptons in Collin-Soper frame

$$
\frac{16 \pi}{3 \sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \cos \theta \mathrm{~d} \phi}=1+\cos ^{2} \theta+\sum_{i=0}^{7} A_{i} f_{i}(\theta, \phi)
$$

2 methods for measurements using large \# of bins and 7 PDF sets
i) $\mathrm{A}_{\mathrm{FB}}=\left(\sigma_{\mathrm{F}}-\sigma_{\mathrm{B}}\right) /\left(\sigma_{\mathrm{F}}+\sigma_{\mathrm{F}}\right)$ where $\sigma_{\mathrm{F}, \mathrm{B}}: \cos \theta_{\mathrm{CS}}>0,<0$
\rightarrow detector effects cancel out
ii) $A_{F B}=3 / 8 A_{4}(y, m)$ before final state radiation
\rightarrow fit A_{4} coeff. using measured differential distributions after unfolding
\rightarrow small theory and PDF uncertainties

$$
\begin{aligned}
\sin ^{2} \theta_{\text {eff }}^{e} & =0.23157 \pm 0.00010(\text { stat }) \pm 0.00015 \text { (syst) } \pm 0.00009 \text { (theo) } \pm 0.00027 \text { (PDF) } \\
& =0.23157 \pm 0.00031 \text { using } A_{\text {FB }} \text { method } \quad \text { for CTZ18 PDF set } \\
& =.23155 \pm 0.00032 \text { using } A_{4} \text { method } \quad
\end{aligned}
$$

$$
\cos \theta_{\mathrm{CS}}=\frac{2\left(P_{1}^{+} P_{2}^{-}-P_{1}^{-} P_{2}^{+}\right)}{\sqrt{m_{\ell \ell}^{2}\left(m_{\ell \ell}^{2}+p_{\mathrm{T}, \ell \ell}^{2}\right)}} \frac{y_{\ell \ell}}{\left|y_{\ell \ell}\right|} .
$$

W/Z productions Run3 data, $\sqrt{ } \mathbf{s}=13.6 \mathrm{TeV}$

Evolution with energy matches well with prediction.

Ratio of fiducial cross sections:

$$
\begin{aligned}
& R_{W+/ W-}=1.286 \pm 0.022 \\
& R_{W \pm / Z}=10.17 \pm 0.25 \\
& R_{t t / W \pm}=0.112 \pm 0.003
\end{aligned}
$$

Fiducial cross sections
ATLAS: $\sigma\left(\mathrm{pp} \rightarrow \mathrm{W}^{+}+\mathrm{X}\right)^{*} \mathcal{B}\left(\mathrm{~W}^{+} \rightarrow \ell^{+} \boldsymbol{v}\right)=4250 \pm 150 \mathrm{pb} \quad \& \quad \sigma\left(\mathrm{pp} \rightarrow \mathrm{W}^{-}+\mathrm{X}\right) \mathcal{B}\left(\mathrm{W}^{-} \rightarrow \boldsymbol{\ell} \boldsymbol{v}\right)=3310 \pm 120 \mathrm{pb}$

$$
\sigma(\mathrm{pp} \rightarrow Z+X)^{*} B\left(Z \rightarrow \ell^{+} \ell^{\prime}\right)=744 \pm 20 \mathrm{pb}, \mathrm{~m}_{\propto}:[66,116] \mathrm{GeV}
$$

CMS: $\sigma(\mathrm{pp} \rightarrow \mathrm{Z}+\mathrm{X})^{*} \mathcal{B}(Z \rightarrow \mu+\mu-)=763.5 \pm 4$ (stat) ± 6.9 (syst) ± 17.6 (lumi) pb $\quad \mathrm{m}_{\mu \mu}:[60,120] \mathrm{GeV}$
$\sigma^{*} \mathbb{B}$ (pred. $)_{\mu \mu}=766.6 \pm 6.5$ (PDF) ${ }^{+2.1}{ }_{-4.5}($ scale $) \mathrm{pb} @ N 2 L O$ of QCD + NLO of EW

Z production at $\sqrt{s}=5.02 \mathrm{TeV}$

LHCb measurement, complementary phase space to ATLAS and CMS
$\sigma(p p \rightarrow Z+X) * B(Z \rightarrow \mu+\mu-)=39.6 \pm 0.7$ (stat) ± 0.6 (syst) ± 0.8 (lumi) pb
Measurements validates theoretical calculations accurate to $\boldsymbol{O}\left(\boldsymbol{a}_{\mathrm{s}}{ }^{2}\right)$.
Measurements probe nPDFs @Bjorken-x values of $10^{-4}<x<10^{-3}$

Extraction of nuclear modification factor using measurements from $\mathrm{p}-\mathrm{Pb}$ collision dataset $@ \sqrt{ } \mathrm{~s}_{\mathrm{NN}}=5.02 \mathrm{TeV}$ (208 binary NN collisions) for forward [1.53 < $\mathrm{y}_{\mu}{ }_{\mu}<4.03$] and backward regions [-4.97 < $\mathrm{y}_{\mu}{ }_{\mu}<-2.47$] $y_{\mu}^{*}: \mu$ rapidity in CM frame.

$$
\begin{gathered}
2.0<\eta<4.5 \\
\mathrm{pT}>20 \mathrm{GeV}, \\
\mathrm{~m}_{\mu \mu}:[60,120] \mathrm{GeV}
\end{gathered}
$$

Acceptance correction

$$
\begin{gathered}
R_{p \mathrm{~Pb}}^{\mathrm{F}}=k_{p \mathrm{~Pb}}^{\mathrm{F}} \cdot \frac{\sigma_{\left(p \mathrm{~Pb}, 1.53<y_{\mu}^{*}<4.03\right)}}{208 \cdot \sigma_{(p p, 2.0<\eta<4.5)}} \\
\mathbf{R}_{\mathrm{pPb}}^{\mathrm{F}}=1.2^{+0.5}{ }_{-0.3} \text { (stat) } \pm \mathbf{0 . 1} \text { (syst) } \\
\mathbf{R}_{\mathrm{pPb}}^{\mathrm{F}}=\mathbf{3 . 6}^{\boldsymbol{+ 1 . 6}} \text { (stat) } \pm \mathbf{0 . 2} \text { (syst) }
\end{gathered}
$$

Inclusive ZZ, WW productions at $\sqrt{ } \mathbf{s}=13.6 \mathrm{TeV}$

Important for Higgs and gauge coupling studies; also BSM searches.

ZZ

arXiv:2311.09715

$$
\sigma(4 l+X)_{\text {fid }}=16.8 \pm 1.1 \mathrm{pb}
$$

$$
66<m_{z}<116 \mathrm{GeV}, \mathrm{l}=\mathrm{e}, \mu
$$

Detailed presentation of vector boson scattering results in parallel session: Costanza Carnvale

$$
\sigma(\mathrm{WW}+\mathrm{X})_{\mathrm{tot}}=25.7 \pm 5.6 \mathrm{pb}
$$

WZ productions at $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$

- WZ polarisation measurements probe the nature of EW symmetry breaking. Polarization energy dependent.

EW

QCD
arXiv:2402.16365

- Analysis identifies 2 fiducial regions with different longitudinal (L) polarization.
- For low (high) p_{T} bosons polarization is mostly transverse (longitudinal).

Study rapidity difference ΔY between
i) lepton from the W boson decay and the Z boson
ii) the W boson and the Z boson.

Significant suppression of events in both cases for $\Delta Y=0$

$\boldsymbol{\theta}_{v}$: scattering angle of the W boson in the $W Z$ rest frame with respect to the z-axis.

Fiducial $\sigma\left(W Z j j \rightarrow \ell^{\prime} \nu \ell \ell j\right)_{\mathrm{EW}}=0.368 \pm 0.037$ (stat.) ± 0.059 (syst.) ± 0.003 (lumi.) fb

$W_{\gamma}+j j$ at $\sqrt{s}=13 \mathrm{TeV}$

EW production probes quartic gauge coupling and related to CP nature $W W \gamma Z$ and $W W \gamma \gamma$ couplings \Rightarrow sensitive to
 the EWSB.

CMS measurements:
The interference term with QCD (~1 to 3\% of EW signal depending on Mjj range)

$$
\sigma_{\mathrm{EW}}^{\text {fid }}=23.5 \pm 2.8(\text { stat })_{-1.7}^{+1.9}(\text { theo })_{-3.4}^{+3.5}(\text { syst }) \mathrm{fb}=23.5_{-4.7}^{+4.9} \mathrm{fb}
$$

$$
\sigma_{\mathrm{EW}+\mathrm{QCD}}^{\text {fid }}=113 \pm 2.0(\text { stat })_{-2.3}^{+2.5}(\text { theo })_{-13}^{+13}(\text { syst }) \mathrm{fb}=113 \pm 13 \mathrm{fb}
$$

Effective field theory with dim-8 operators involving 2 types of operators: only field strengths (eg, $\mathrm{B}_{\mu \mathrm{v}}$) and both field strength \& covariant derivative $\left(D_{\mu} \varphi\right)$,

PRD 74 (2006) 073005

ATLAS: $\mathrm{W} \gamma+\mathrm{jj}$ process observed with 6.3 s.d.
\rightarrow studied various kinematic observables:
$\mathrm{p}_{\mathrm{T}}{ }^{\mathrm{jj}}$ most sensitive to the tensor-type operators

\rightarrow first LHC limits

arXiv:2403.02809
$\mathrm{p}_{\mathrm{T}}^{\ell}$ most sensitive to the mixed scalar operators.
PRD 108 (2023) 032017

EW results in two-photon collisions

Photons can be simultaneously emitted by charged particles during $\mathrm{p}-\mathrm{p} / \mathrm{p}-\mathrm{Pb} / \mathrm{Pb}-\mathrm{Pb}$ collisions
Cross section $\sim Z^{4} \Rightarrow$ large rate of diphoton production in heavy ion runs.
At very high masses of $\mathrm{m}_{y, \mathrm{p}}$, diffracted protons can be tagged by the forward detectors \Rightarrow study diffractive production of WW / $\boldsymbol{\tau} \boldsymbol{\tau}$

Utilize excellent tracking capability of experiments
CMS: $\sim 30 \%$ of the 1 mm window around the beamspot not contain any pileup track.

- 2 back-to-back objects
- No hadronic activity close to the di-W/ $\boldsymbol{\tau}$ vertex
- Ntracks $=0, \mathrm{pT}>0.5 \mathrm{GeV},|\eta|<2$

First observation of $\boldsymbol{\gamma \gamma} \rightarrow \boldsymbol{\tau} \boldsymbol{\tau}$ in pp collisions by CMS
$\sigma_{\text {fid }}($ obs $)=11.2+3.1-2.4$ (syst) $+2.2-2.1$ (stat) fb, Significance 5.3 s.d. (6.5 exp.)

Constraints on the anomalous electromagnetic moments of r :
$a_{T}=0.0009^{+0.0032}$
Dirac $\mathrm{a}_{\mathrm{T}}: 0.0$
Schwinger (SM) $\mathrm{a}_{\mathrm{T}}=0.00116(9)$
Dipole moment: -1.7 < $\mathrm{d}_{\mathrm{T}}<1.7 \times 10^{-17} \mathrm{e} \mathrm{cm}$.

Exclusive production of high mass diphoton at 13 TeV

Also called light-by-light (LbyL) scattering .
Protons tagged in TOTEM precision proton spectrometer
Anomalous 4γ interaction in dim-8 EFT:

$$
\mathcal{L}_{4 \gamma}=\zeta_{1} F_{\mu \nu} F^{\mu \nu} F_{\rho \sigma} F^{\rho \sigma}+\zeta_{2} F_{\mu \nu} F^{\nu \rho} F_{\rho \lambda} F^{\lambda \mu},
$$

Study differential cross section:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{1}{16 \pi^{2} s}\left(s^{2}+t^{2}+s t\right)^{2}\left[48 \zeta_{1}^{2}+40 \zeta_{1} \zeta_{2}+11 \zeta_{2}^{2}\right]
$$

Only 1 event found in relevant phase-space, expected background: 1.1 event
CMS $\sigma(\mathrm{pp} \rightarrow \mathrm{pq} p \mathrm{p})<0.61 \mathrm{fb}$
for $\mathrm{p}_{\mathrm{T}}{ }^{\nu>} 100 \mathrm{GeV},\left|\eta^{\gamma}\right|<2.5, \mathrm{~m}_{\gamma^{\nu}}>350 \mathrm{GeV}$
fractional proton energy loss of $0.035<\xi p<0.150(0.180)$ for the $+z(-z)$ arm of PPS.

Limits on axion-like particle (ALP) production in s-channel $\gamma \gamma \rightarrow \mathrm{a} \rightarrow \gamma \gamma$ Coupling: $\mathrm{f}^{-1} \geq 0.03$ to $1 \mathrm{TeV}^{-1}$ for $\mathrm{m}_{\mathrm{a}}=500-2000 \mathrm{GeV}$

Physics of the top quark

- Heaviest known elementary particle
- Abundant production at the LHC (in Run $2 \sim 10^{8}$ per expt.)
- Extremely short-lived, decays before hadronizing \rightarrow allows to observe properties of the bare quark

Top quark production in pairs, singly (EW), or associate

CERN-LPCC-2023-002 arXiv:2402.08713 CMS-PAS-TOP-022-001

- Top mass must be measured with precision.

ATLAS \& CMS combination of 15 measurements using Run1 data ($\sqrt{ } \mathrm{s}=7 \& 8 \mathrm{TeV}$) uses top pair and single top productions:
$\mathrm{m}_{\mathrm{t}}=172.52 \pm 0.33$ [0.14 (stat), $\mathbf{0 . 3 3 \text { (syst) }] \mathrm { GeV } \rightarrow \text { impressive precision of } 0 . 1 8 \% ~}$
Currently, best measurement in a single channel: $m_{t}=171.77 \pm 0.37 \mathrm{GeV}$
CMS-PAS-TOP-022-008

Issue: difference of $\sim 0.5 \mathrm{GeV}$ between direct measurement of $\mathrm{m}_{\mathrm{t}}^{\mathrm{MC}}$ (parameter in event generation tool), indirect measurement from cross section corr. $m_{t}{ }^{\text {pole }}$ (top-mass renormalization scheme in field-theory) A.Hoang: 2004.01915

HL-LHC projection for $\Delta \mathrm{m}_{\mathrm{t}} \sim 200 \mathrm{MeV}$ Ultimate precision expected $\sim 0.1 \%$

More details in Recent highlights of the top quark production from CMS by Jeremy Andrea

Cross section for top quark pair production

Compatibility with theory predictions at high order in perturbation theory

Measurement of $t t$ roduction cross section:
\rightarrow Test QCD predictions \& extract SM parameters
\rightarrow Constrain top quarks as background process

Measurements at $\sqrt{ } \mathrm{s}=13.6 \mathrm{TeV}$ tests the scaling with energy \& other experimental improvements
$\sigma($ theo $)=924^{+32}{ }_{-40} \mathrm{pb}$
ATLAS: $\sigma(\mathrm{tt}+\mathrm{X})=850 \pm 3$ (stat) ± 18 (syst) ± 20 (lumi) pb
Total uncertainty $\sim 3.2 \%$ using $29 \mathrm{fb}-{ }^{1}$
PLB 848 (2024) 138376

CMS: $\sigma(\mathrm{tt}+\mathrm{X})=881 \pm 23$ (stat \pm syst) $\pm \mathbf{2 0}$ (lumi) pb
Total uncertainty $\sim 3.5 \%$ _using 1.21 fb-- ${ }^{1}$
JHEP 08(2023) 204

New ATLAS result at 13 TeV reaches precision of 1.8% !

Measurements of tW production

Removed processes of tW production at NLO in simulation

CMS: $\sigma\left(\right.$ tW) $=84.1 \pm 2.1$ (stat) ${ }^{+9.8}{ }_{-10.2}$ (syst) ± 3.3 (lumi) pb at 13.6 TeV \rightarrow total relative uncertainty $\sim 13 \%$
t-channel measurement with $\sim 6 \%$ uncert. by ATLAS at 13 TeV

HCTopWGSummaryPlots

arXiv:2403.02126

Ratio of tq to tbar-q productions can potentially differentiate between different PDF sets.

CMS-PAS-TOP-23-008

ttZ, ttW, tZq productions at 13 TeV

arXiv:2312.04450
CMS-PAS-TOP-23-004
arXiv:2401.05299
JHEP 07 (2023) 219

ATLAS:

- Measured total cross section: $\sigma($ ttZ $)=0.86 \pm 0.04$ (stat) ± 0.04 (syst) pb SM: $\boldsymbol{\sigma}(\mathrm{ttZ})=0.86 \pm 0.09 \mathrm{pb}$ at $\mathrm{NLO}(\mathrm{QCD}+E W)+\mathrm{NNLL}$

EPJC 79 (2019) 249

- Spin correlations of the top quarks consistent with the SM
1.8 s.d. difference from the hypothesis of no spin correlations
- Recent measurement $\sigma(\mathrm{tty})_{\text {fid }}=793 \pm 38 \mathrm{fb}=793 \pm 5$ (stat) ${ }^{+38}$ (syst) fb.
- Combined EFT analysis for ttZ and tty measurements
- Measured total cross section: $\boldsymbol{\sigma}(\mathrm{ttW})=0.88 \pm 0.08 \mathrm{pb}$ SM: $\boldsymbol{\sigma}(\mathrm{ttW})=0.75 \pm 0.05 \mathrm{pb}$ at NNLO(QCD)+NLO(EW))

PRL 131 (2023) 231901

CMS:

$\sigma(t t W)=0.868 \pm 0.040$ (stat) ± 0.051 (syst) pb.
$\sigma(\mathrm{tZq})=0.81 \pm 0.10 \mathrm{pb}$

Evidence of tWZ production

Measured $\boldsymbol{\sigma}(\mathrm{tWZ})=354 \pm 54$ (stat) ± 95 (syst) fb
statistical significance 3.4 s.d. (expected: 1.4 s.d.)
2σ above the $S M$ prediction of $136 \pm 9 \mathrm{fb}$ at NLO(QCD)
Main background ttZ process

$$
\sigma(\mathrm{ttZ}+\mathrm{tWZ})=1.14 \pm 0.07 \mathrm{pb}
$$

Likelihood scan of signal strengths $\boldsymbol{\mu}(\mathrm{ttZ}+\mathrm{tWZ})$ vs. $\boldsymbol{\mu}(\mathrm{tZq})$

arXiv:2312.11668

Observation of 4t production

- Heaviest final state \Rightarrow expect about 2 k events @13 TeV

Observed (expected) significance
6.1(4.7) s.d. : ATLAS
5.6 (4.9) s.d.: CMS

EPJC 83 (2023) 496
PLB 847 (2023) 138290

- Possible enhancement in BSM : \Rightarrow Several constraints on new physics.
- Cross section sensitive to top Yukawa coupling, its CP properties.

Derive limits in 2d parameter space of $\left.|\kappa t \cos (\alpha)|,\left|k_{t} \sin (\alpha)\right|\right), \kappa_{t}=y_{t} / y^{s M}$

Assuming a pure CP-even coupling ($\alpha=0$), observed upper limit on

$$
\left|k_{t}\right|=1.9 \text { at } 95 \% \text { CL }
$$

EPJC 84 (2024) 156

- EFT: constrain 4-fermion interactions of dim-6
- Observed constraint on Higgs boson oblique parameter <0.2 at 95% CL \rightarrow coincides with the maximum allowed value compatible with perturbation theory

Top quark production in heavy ion collisions

First observation of tops in $\mathrm{p}-\mathrm{Pb}$ collisions at $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=8.16 \mathrm{TeV}$ by CMS $45 \pm \mathbf{8} \mathbf{n b}$ PRL119(2017)242001
New measurement by ATLAS : $=\mathbf{5 7 . 9} \mathbf{\pm 2 . 0 (s t a t)}{ }^{\boldsymbol{+ 4 . 9}}{ }_{-4.5}(\mathbf{s y s t}) \mathbf{n b} \quad$ at $\sqrt{ } \mathbf{s}_{\mathrm{NN}}=\mathbf{8 . 1 6} \mathbf{~ T e V}$ ATLAS-CONF-2023-063
Total uncertainty in integrated cross section: ~9\%

Measurement paves a new way to constraint nPDFs in the high- x region

Evidence for top quark production in $\mathrm{Pb}-\mathrm{Pb}$ collisions (CMS)
\rightarrow Precise probe of nuclear gluon density
PRL 125 (2020) 222001

Precision of the measurement in the individual $t t$ decay channel limited by systematic uncertainties in both channels fr ATLAS, but for CMS the $\ell+j e t s ~ c h a n n e l ~$ uncertainty is mainly due to systematics while the dilepton region is dominated by
 statistics.

Quantum entanglement (observed at the highest energy so far)

- Entanglement explored for the first time between a pair of quarks at relativistic energies.

$$
\left|\mathcal{M}\left(\mathrm{q} \overline{\mathrm{q}} / \mathrm{gg} \rightarrow \mathrm{t} \overline{\mathrm{t}} \rightarrow\left(\ell^{+} \nu \mathrm{b}\right)\left(\ell^{-} \bar{\nu} \overline{\mathrm{b}}\right)\right)\right|^{2} \sim \operatorname{tr}[P R \bar{P}] . \quad \begin{aligned}
& \mathrm{R}: \text { production spin density matrix } \\
& \mathrm{P}: \text { decay spin density matrix of top }
\end{aligned}
$$

- In pair production of tt spin information is correlated and transferred to decay products.
- Spin correlations at low $m(t t)$ used as a proxy to estimate the entanglement.
- Study two-qubit states at tt production threshold (system is spin-singlet, rotationally invariant), with well-specified fiducial phase-space.

Degree of entanglement depends on tt kinematics
$\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega_{+} \mathrm{d} \Omega_{-}}=\frac{1+\mathbf{B}^{+} \cdot \hat{\mathbf{q}}_{+}-\mathbf{B}^{-} \cdot \hat{\mathbf{q}}_{-}-\hat{\mathbf{q}}_{+} \cdot \mathbf{C} \cdot \hat{\mathbf{q}}_{-}}{(4 \pi)^{2}}$
Observable dependent on the angle between the
$D=\frac{\operatorname{Tr}[\mathbb{C}]}{3} \Rightarrow D<-\frac{1}{3}$
B : top polarization
C. spin correlation matrix Tr. [C] <-1

ATLAS: $\mathrm{D}=-0.547 \pm 0.002$ (stat) ± 0.020 (syst)
CMS: $\mathrm{D}=-0.478^{+0.025}$
-0.027 charged leptons in the rest frame of their parents
arXiv:2311.07288
CMS PAS-TOP-23-001
Significance more than $\mathbf{5}$ s.d. compared to null hypothesis of no-entanglement.

Conclusion

Presented a non-exhaustive (personal) selection of topics to highlight the breadth of the electroweak and top physics analyses being performed at the LHC. Accurate measurements supported by precision theoretical work and better simulations.

Looking forward eagerly for healthy data collection during 2024 and 2025 to improve results from Run 3 . This is critical to resolve some of the disagreements between measurements and predictions; eg., cross sections for ttW, tWZ, tttt etc.

Technical advancements are hard to predict \Rightarrow Expectations are often exceeded.
Hence did not delve much into the projection studies for HL-LHC, performed few years back,

The diversity of analyses after more than a decade of the start of the LHC indicates that the mining of interesting physics will continue for next several decades.

On behalf of the LHC experimental community we congratulate the CERN accelerator team and the WLCG.

Backup

Differential measurement of $p_{T}{ }^{\text {recoil }}, p_{T}{ }^{\text {miss }}$

arXiv:2403.02793

$$
R^{\mathrm{miss}}=\frac{\sigma_{\mathrm{fid}}\left(p_{\mathrm{T}}^{\mathrm{miss}}+\mathrm{jets}\right)}{\sigma_{\mathrm{fid}}\left(\ell^{+} \ell^{-}+\mathrm{jets}\right)} \quad \text { This ratio won't reveal contribution of } D M
$$

Search for dark matter (DM) in events with $p_{T}^{\text {miss }}+$ jets or 1,2 leptons + jets or 1 photon + jets

Electroweak production of tribosons $\mathbf{W}_{\gamma \gamma}$

$\mathrm{W}_{\gamma \gamma}$ process: 5.6 s.d. observation (e $+\mu$ channel) $\sigma \sim 12.2 \pm 2 \mathrm{fb}$

All measurements match with SM

Source of uncertainty	Impact [\%]
Data-driven background estimates	13
Photon efficiency	4.5
Signal MC theoretical modeling	3.5
Background MC theoretical modeling	3.0
Monte Carlo statistics	2.8
Jet efficiency and calibration	2.4
Top normalization	2.4
Pileup reweighting	1.6
$E_{\mathrm{T}}^{\text {miss calibration }}$	1.4
Muon efficiency and calibration	1.4
Luminosity	1.0
Electron and photon calibration	0.7
Flavor tagging efficiency	0.6
Systematic	15
Statistical	8.3
Total	17

VBS: Same-sign W pair using one $\boldsymbol{\tau}$ lepton at 13 TeV

- Measurement statistically limited.
- EFT interpretation of dim-6 and dim-8 coefficients

Total systematic uncertainty	+0.344	-0.302
Data statistical uncertainty	+0.522	-0.477
Total uncertainty	+0.625	-0.564

Observed (expected) EW signal strength (fixing QCD part to SM) : 1.44 ${ }^{+0.63}$
significance: 2.7 (1.9) s.d.

Vector boson scattering: WW, WZ at HL-LHC

VBS insight into EWSB of the SM
cross section can be modified via BSM contributions

- Two gauge bosons + two jets w/ large mjj and large $|\Delta \eta j j|$
- Three $(\mathrm{WL} \pm \mathrm{WL} \pm, \mathrm{WL} \pm \mathrm{WT} \pm$ and $\mathrm{WT} \pm \mathrm{WT} \pm)$ polarization states
- Sensitivity to VBS \& WL $\pm W L \pm$ as a function of luminosity
- Based on 13 TeV measurements, projected with the similar S/B raeo o uncertainty for inclusive measurements: $\boldsymbol{O}(20-30 \%)$
o estimated significance for observation of EW WL \pm WL \pm

Top Quark Spin Correlation at HL-LHC

Spin information can be used to search for new physics. eg.,: production of top squark pair \Rightarrow spin of daughter top quarks uncorrelated unlike the ttbar production in the Standard Model

- HL-LHC projection at 14 TeV and $3000 \mathrm{fb}^{-1}$ of angular distribution of leptons from the decay of top quark.

Spin correlation fraction $f_{\text {SM }}$:fraction of SM-like spin correlation events as opposed to events with no spin correlation \Rightarrow represents the strength of the given measure of spin correlation relative to the SM prediction.
$f_{\mathrm{SM}}=0 \rightarrow$ no correlation

- The most accurate laboratory-frame observable can be measured with a 3% total uncertainty
- Can be utilised to extend the ultimate LHC reach to discover top squarks or exclude a mass above 600 GeV .

Invisible width of \mathbf{Z} boson

ATLAS, using 2015+2016 data $\mathcal{L}=37 \mathrm{fb}-1 @ \sqrt{ }=13 \mathrm{TeV}$
Use ratio of $Z \rightarrow v v+X$ to $Z \rightarrow \ell \ell+X$
506 ± 2 (stat.) ± 12 (syst.) MeV

$$
R^{\mathrm{miss}}\left(p_{\mathrm{T}, \mathrm{Z}}\right) \equiv \frac{\frac{d \sigma(Z(\rightarrow \text { inv })+\text { jets })}{d p_{\mathrm{T}, \mathrm{Z}}}}{\frac{d \sigma(Z(\rightarrow \ell \ell)+\text { jets })}{d p_{\mathrm{T}, \mathrm{Z}}}}=\frac{\frac{d \sigma(Z+\text { jets }) \times B R(Z \rightarrow \text { inv })}{d p_{\mathrm{T}, \mathrm{Z}}}}{\frac{d \sigma(Z+\text { jets }) \times B R(Z \rightarrow \ell \ell)}{d p_{\mathrm{T}, \mathrm{Z}}}}
$$

Top related measurements at the HL-LHC

Measurements possible at higher rapidity with upgraded detectors
Huge pile up issue can be tackled efficiently.
Differential distributions: ultimate precision: $\sim 5 \%$ due to improved jet energy calibration and a reduced uncertainty in the b-jet ident \Rightarrow Constrain PDFs

Measurement of 4 top production cross section constraints EFT parameter space CMS-PAS-FTR-18-031

Vector boson fusion process: novel tool for BSM search

- Same sign dilepton in central region of detector in

VBF-like event topology
==> lepton number violation
i) Heavy, Majorana neutrino (N) production
ii) Process mediated by Weinberg operator (dim-5) with flavour-dependent coefficients

- Best limit on mixing element $\left|\mathrm{V}_{\mathrm{mN}}\right|^{2}$ puts the best constraint so far: $\mathrm{m}_{\mathrm{N}}>650 \mathrm{GeV}$
- Effective $\mu \mu$ Majorana neutrino mass associated with W-operator excluded : 10.8 GeV

W/Z production in Run3 data, $\sqrt{ } \mathrm{s}=13.6 \mathrm{TeV}$

W,Z processes marked by clear experimental signatures:
\rightarrow standard candles
\rightarrow ideal tools for QCD, EW studies
\rightarrow determination of SM parameters
\rightarrow extraction of PDFs
\rightarrow testbed for state-of-the-art predictions
\rightarrow important backgrounds to Higgs, BSM searches etc.

Precision EW measurements provide insight into BSM realm.

Ratio of fiducial cross sections:

$$
\begin{aligned}
& R_{W+/ W-}=1.286 \pm 0.022 \\
& R_{W \pm / Z}=10.17 \pm 0.25 \\
& R_{t t / W \pm}=0.112 \pm 0.003
\end{aligned}
$$

arXiv:2403.12902

Fiducial cross sections
ATLAS: $\sigma\left(\mathrm{pp} \rightarrow \mathrm{W}^{+}+\mathrm{X}\right)^{*} B\left(\mathrm{~W}^{+} \rightarrow \boldsymbol{l}^{+} v\right)=4250 \pm 150 \mathrm{pb} \quad \sigma\left(\mathrm{pp} \rightarrow \mathrm{W}^{-}+X\right) B\left(\mathrm{~W}^{-} \rightarrow \boldsymbol{t} \boldsymbol{v}\right)=3310 \pm 120 \mathrm{pb}$

$$
\sigma(\mathrm{pp} \rightarrow Z+X)^{*} B\left(Z \rightarrow \ell^{+} \ell^{-}\right)=744 \pm 20 \mathrm{pb}, \mathrm{~m}_{\mathscr{C}}:[66,116] \mathrm{GeV}
$$

CMS: $\sigma(\mathrm{pp} \rightarrow \mathrm{Z}+\mathrm{X}) * \mathcal{B}(Z \rightarrow \mu+\mu-)=763.5 \pm 4$ (stat) ± 6.9 (syst) ± 17.6 (lumi) pb, $\mathrm{m}_{\mu \mu}:[60,120] \mathrm{GeV}$
$\sigma^{*} B($ pred. $)=766.6 \pm 6.5(\text { PDF })^{+2.1}{ }_{-4.5}($ scale $) \mathrm{nb} @ N 2 L O$ of QCD + NLO of EW

$Z Z+$ jets at $\sqrt{s}=13 \mathrm{TeV}$

Differential cross-section measurements of 4 charged leptons +2 jets production in various kinematic variables:
i) VBS sensitive $\Rightarrow m_{41}, p_{T}(4 I), m_{\mathrm{j} j}, \Delta y_{\mathrm{jj}}, \mathrm{p}_{\mathrm{T}}(\mathrm{j})$.
ii) Polarization and CP structure of WWZ \& WWZZ self-interactions $\Rightarrow \cos \theta^{*}{ }_{12}, \cos \theta^{*}{ }_{34}, \mathrm{~m}_{\mathrm{jj}}, \Delta \varphi_{\mathrm{ij}}, \mathrm{p}_{\mathrm{T}}(\mathrm{jj})$.

Test EFT dim-8 and dim-6 operators for aQGC.

$$
|\mathcal{M}|^{2}=\left|\mathcal{M}_{\mathrm{SM}}\right|^{2}+2 \operatorname{Re}\left(\mathcal{M}_{\mathrm{SM}}{ }^{*} \mathcal{M}_{\mathrm{d} 8}\right)+\left|\mathcal{M}_{\mathrm{d} 8}\right|^{2}
$$

Note-1: NNLO + PS prediction improves the data / prediction agreement in the 1-jet and high jet multiplicity regions,

Note-2: Jet multiplicity description better than NLO samples generated with the event generators MADGRAPH5 aMC@NLO and POWHEG.

Note-3: Electroweak corrections improves the description of the m_{41} distribution.

Required: better MC modeling for events with complex multiboson final

JHEP 01(2024) 04 states and extra jets.

Constraints on the dim-8 aQGC by including/ excluding the pure dim- 8 contributions for cut-off scale ($m_{41}<E$ cutoff) using 2D $\left(m_{i j}, m_{4}\right)$ fit.

CMS-PAS-SMP-22-001 , in arXiv soon

Observation of WW γ (and search for $\mathrm{H} \gamma$) process

- Anomalous coupling between Higgs and quarks can disturb the balance and create large cross sections at high energies.
- First observation by CMS with significance 5.6 s.d. (5.1 s.d. exp.)
- Measured fiducial cross section for $\mathbf{W W} \boldsymbol{\gamma}$ process: $6.0 \pm 1.2 \mathrm{fb}$.
- Upper limits for H production and derived limits on Yukawa couplings of light quarks.

Note: recent constraint on anomalous Hcc coupling $1.1<\left|\boldsymbol{\kappa}_{\mathrm{c}}\right|<5.5$

Process	σ upper limits obs. (exp.) [fb]	κ_{q} limits obs. (exp.) at 95\% CL	$\bar{\kappa}_{\mathrm{q}}$ limits obs. (exp.) at 95\% CI
$\mathrm{u} \overline{\mathrm{L}} \rightarrow \mathrm{H}+\gamma \rightarrow \mathrm{e} \mu v_{e} v_{\mu} \gamma$	$85(67)$	$\left\|\kappa_{\mathrm{u}}\right\| \leq 16000(13000)$	$\left\|\overline{\bar{\kappa}}_{\mathrm{u}}\right\| \leq 7.5(6.1)$
$\mathrm{d} \overline{\mathrm{d}} \rightarrow \mathrm{H}+\gamma \rightarrow \mathrm{e} \mu v_{e} v_{\mu} \gamma$	$72(58)$	$\left\|\kappa_{\mathrm{d}}\right\| \leq 17000(14000)$	$\left\|\bar{\kappa}_{\mathrm{d}}\right\| \leq 16.6(14.7)$
$\mathrm{s} \overline{\mathrm{s}} \rightarrow \mathrm{H}+\gamma \rightarrow \mathrm{e} \mu v_{e} v_{\mu} \gamma$	$68(49)$	$\left\|\kappa_{\mathrm{s}}\right\| \leq 1700(1300)$	$\left\|\bar{\kappa}_{\mathrm{s}}\right\| \leq 32.8(25.2)$
$\mathrm{c} \overline{\mathrm{c}} \rightarrow \mathrm{H}+\gamma \rightarrow \mathrm{e} \mu v_{e} v_{\mu} \gamma$	$87(67)$	$\left\|\kappa_{\mathrm{c}}\right\| \leq 200(110)$	$\left\|\bar{\kappa}_{\mathrm{c}}\right\| \leq 45.4(25.0)$

