

Highlights and Prospects on Higgs Physics at the (HL-)LHC

Julian Wollrath

Department of Physics & Astronomy University of California, Irvine

on behalf of the ATLAS and CMS Collaborations

8th April 2024

ATLAS and CMS experiments at the LHC

- LHC Run 2 $\sqrt{s} = 13 \text{ TeV} \sim 56 \text{ ooo Higgs bosons}$ produced per fb⁻¹
- O(0.1%) selected for physics analyses (trigger, reconstruction, identification inefficiency,...)
- HL-LHC \rightarrow 3000 fb⁻¹ of data $\sqrt{s} = 14 \text{ TeV}$

Single Higgs boson production

Higgs boson mass measurement: $H \rightarrow \gamma \gamma$

Higgs boson mass measurement: $H \rightarrow ZZ^* \rightarrow 4l$

Current best Higgs boson mass measurement

- Width precisely predicted within SM: 4.07 MeV [R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)]
- Small value \rightarrow difficult to measure
- Measure in $H \rightarrow ZZ$ compare on- and off-shell production:

$$\frac{\sigma^{\text{on-shell}}_{gg \to H \to ZZ^*} \sim \frac{g^2_{ggH}g^2_{HZZ}}{m_H \Gamma_H}}{\sigma^{\text{off-shell}}_{gg \to H^* \to ZZ} \sim \frac{g^2_{ggH}g^2_{HZZ}}{(2m_Z)^2}}$$

Higgs boson width

Julian Wollrath: Highlights and Prospects on Higgs Physics at the (HL-)LHC

Cross-section and coupling modifiers

Cross-section and coupling modifiers

Higgs boson pair-production

	bb	ww	ττ	ZZ	YY
bb	34%				
ww	25%	4.6%			
π	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

 $\sigma^{\rm SM}_{ggF+VBF} = 32.78 \, {\rm fb}$ \rightarrow ATLAS+CMS ~9000 HH events @ $\sqrt{s} = 13 \, {\rm TeV}$

11/21

Non-resonant overview results

New non-resonant results CMS $HH \rightarrow \gamma\gamma\tau\tau$ & ATLAS $HH \rightarrow$ multilepton

Non-resonant overview projections

Coupling modifier constraints: self-coupling

Julian Wollrath: Highlights and Prospects on Higgs Physics at the (HL-)LHC 15/21

Coupling modifier constraints: two vector bosons

New coupling modifier constraints VBF $HH \rightarrow 4b$ boosted

New coupling modifier constraints VBF $HH \rightarrow 4b$ boosted

 $\rightarrow \kappa_{2V} = 0$ excluded with 3.8 σ

Higgs boson self-coupling projections

Resonant Higgs boson pair-production

- Mass and width measured
- Couplings to bosons, third generations fermions & quarks observed, second generation quarks (i. e. charm) → HL-LHC
- Not mentioned: STXS
- HH production getting in reach with Run 3
- Modifiers for self-coupling and coupling to vector bosons getting constrained
- So far: everything consistent with the SM
- Not mentioned but also performed: other resonant HH-like searches
- Not mentioned but also performed: EFT interpretations
- Next: also target triple Higgs boson production:
 - Run 2 + Run 3: $\mu_{HHH} < 50$ @ 95 % CL?
 - allows to better constrain κ_4

Multiple Higgs boson production

Searches for HHH and complementarity to HH

- Pheno studies for a future 100 TeV pp collider exist [Chen, Yan, Zhao, Zhao, Zhong – PRD 93 013007] and [Fuks, Kim, Lee – PRD 93 035026]:
 - use combined with ATLAS/CMS HH numbers as starting point for estimation
 - consider $6b (\mathcal{B} = 0.2),$ $4b2\tau (\mathcal{B} = 0.06),$ $4b2\gamma (\mathcal{B} = 0.002)$
 - * assume Run 2 + Run 3 can get to μ_{HHH} < 50 @ 95 % CL

