

Status of the muon g-2

Antoine Gérardin

31st International Workshop on Deep Inelastic Scattering Grenoble - April 11, 2024

► Magnetic moment of charged leptons :

$$\vec{\mu} = g_\ell \left(\frac{Qe}{2m_\ell}\right) \vec{S}$$

- At the classical level (Dirac equation) : $g_{\ell} = 2$
- ▶ In the Standard Model, quantum corrections slightly shift this value

$$a_{\ell} = \frac{g_{\ell} - 2}{2} = \frac{\alpha}{2\pi} + O(\alpha^2)$$

▶ What is special with the muon?

- $\rightarrow a_{\mu}$ can be measured very precisely (0.2 ppm) ...
- ightarrow ... and can be computed with (similar) precision in the SM
- \rightarrow muons are 200 heavier than electrons (and $\tau_{\mu} = 2.2 \ \mu s \gg \tau_{\tau}$)

$$\delta a_{\ell}^{\rm NP} = \mathcal{C} \, \frac{m_{\ell}^2}{\Lambda_{\rm NP}^2}$$

This talk : focus on the Standard Model prediction

"The anomalous magnetic moment of the muon in the Standard Model " [Phys.Rept. 887 (2020) 1-166]

Contribution	$a_{\mu} \times 10^{11}$
- ${f QED}~(10^{ m th}$ order)	116 584 718.931 ± 0.104
- Electroweak	153.6 ± 1.0
- Strong interaction	
HVP (LO)	$6 931 \pm 40$
HVP (NLO + NNLO)	-85.9 ± 0.7
HLbL	92 ± 18
Standard Model	$116\ 591\ 810\pm 43$
Experiment	$116\ 592\ 059\pm 22$

"The anomalous magnetic moment of the muon in the Standard Model " [Phys.Rept. 887 (2020) 1-166]

Contribution	$a_{\mu} \times 10^{11}$
- QED $(10^{ m th} m order)$	$116\ 584\ 718.931 \pm 0.104$
- Electroweak	153.6 ± 1.0
- Strong interaction	
HVP (LO)	$6\ 931 \pm 40$
HVP (NLO + NNLO)	-85.9 ± 0.7
HLbL	92 ± 18
Standard Model	$116\ 591\ 810\pm 43$
Experiment	$116\ 592\ 059\pm 22$
Hadronic Vacuum Polarisation	Hadronic Light-by-Light scatterin
(HVP, $lpha^2$)	(HLbL, α^3)

Antoine Gérardin

"The anomalous magnetic moment of the muon in the Standard Model " [Phys.Rept. 887 (2020) 1-166]

Contribution	$a_{\mu} \times 10^{11}$
- $QED~(10^{\mathrm{th}}~\mathrm{order})$	116 584 718.931 ± 0.104
- Electroweak	153.6 ± 1.0
- Strong interaction	
HVP (LO)	$6\ 931\pm40$
HVP (NLO + NNLO)	-85.9 ± 0.7
HLbL	92 ± 18
Standard Model	116 591 810 \pm 43
Experiment	$116\ 592\ 059\pm 22$

Error budget dominated by hadronic contributions : LO-HVP and HLbL

 \rightarrow HVP / HLbL : dominated by low-energy physics (ρ meson / pion-pole contribution)

- \rightarrow first-principle calculations to have controlled uncertainties
 - Dispersive framework (data-driven)
 - Lattice QCD

Antoine Gérardin

Hadronic Light-by-Light Scattering

$$\begin{array}{l} a_{\mu}^{\rm HLbL} = (92 \pm 18) \times 10^{-11} \\ a_{\mu}^{\rm Exp.} &= (116 \ 592 \ 059 \pm 22) \times 10^{-11} \end{array} \rightarrow {\rm we \ need} < 10\% \ {\rm precision} \end{array}$$

- ► Very challenging to compute
 - \rightarrow hadronic light-by-light tensor $\Pi_{\mu\nu\lambda\sigma}(p_1, p_2, p_3) = \int_{x,y,z} \Pi_{\mu\nu\lambda\sigma}(x, y, z) e^{-i(q_1x+q_2y+q_3z)}$
 - \rightarrow multi-scale system
- ► Until 2016 : mostly based on model estimates $a_{\mu}^{\text{HLbL}} = 105(26) \times 10^{-11}$ [Prades, de Rafael, Vainshtein '09] $a_{\mu}^{\text{HLbL}} = 116(39) \times 10^{-11}$ [Jegerlehner, Nyffeler '09]
 - ▶ Precision goal : below 10% (with controlled uncertainties)
 - \rightarrow requires first principle approach : data-driven dispersive framework / lattice QCD

Dispersive framework ('21)	$a_{\mu} \times 10^{11}$
π^0 , η , η'	93.8 ± 4
pion/kaon loops	-16.4 ± 0.2
S-wave $\pi\pi$	-8 ± 1
axial vector	6 ± 6
scalar + tensor	-1 ± 3
q-loops / short. dist. cstr	15 ± 10
charm + heavy q	3 ± 1
sum (dispersive)	92 ± 19

Lattice QCD

Mainz '22	109.6 ± 15.9
RBC/UKQCD '23	124.7 ± 15.2

Dispersive framework ('21)	$a_{\mu} \times 10^{11}$	
π^0 , η , η'	93.8 ± 4	\rightarrow Improved (Lattice QCD : BMW'23 / ETM'23 / Mainz)
pion/kaon loops	-16.4 ± 0.2	
S-wave $\pi\pi$	-8 ± 1	
axial vector	6 ± 6	\longrightarrow Improved [Hoferichter et al. JHEP 08 (2023) 209]
scalar + tensor	-1 ± 3	[Colangelo et al. EPJC 81 (2021) 702]
q-loops / short. dist. cstr	15 ± 10	\longrightarrow Improved [Bijnens et al. JHEP 02 (2023) 167]
charm + heavy q	3 ± 1	\rightarrow Improved (Lattice QCD : Mainz'22)
sum (dispersive)	92 ± 19	-
		-
Lattice QCD		
Mainz '22	109.6 ± 15.9	
RBC/UKQCD '23	124.7 ± 15.2	> New

- ► First complete lattice QCD results are now published
 - ightarrow good agreement with the dispersive framework (precision $\sim~15\%$)
- ► Close to the target precision : 10%

8

 \rightarrow new lattice results expected soon

► Current situation, ignoring improvements on the HLbL calculations

Hadronic Vacuum Polarization

$$a_{\mu}^{\text{hvp}} = (6\ 931 \pm 40) \times 10^{-11}$$

 $a_{\mu}^{\text{Exp.}} = (116\ 592\ 059 \pm 22) \times 10^{-11}$

 \rightarrow we need few permil precision

Hadronic vacuum polarization : dispersive framework

$$a_{\mu}^{\text{HVP}} = 4\alpha^2 \int_0^\infty \mathrm{d}Q^2 \ f(Q^2) \ \left(\Pi(Q^2) - \Pi(0)\right)$$

1

$$\Pi_{\mu\nu}(Q) = \int d^4x \, e^{iQ \cdot x} \, \langle J_{\mu}(x) J_{\nu}(0) \rangle = \left(Q_{\mu} Q_{\nu} - \delta_{\mu\nu} Q^2 \right) \Pi(Q^2)$$

• Use analyticity

$$\Pi(s) - \Pi(0) = \frac{s}{\pi} \int_{s_{\rm th}}^{\infty} \frac{\mathrm{Im}\Pi(s')}{s'(s' - s - i\epsilon)} \mathrm{d}s'$$

• Optical theorem (unitarity)

Im
$$\sim \sum_n \sim \sum_n$$

Im $\Pi(s) \propto \sigma(e^+e^- \to \gamma^* \to \text{hadrons})$

• Insert the VP in the definition of a_{μ} to get

$$a_{\mu}^{\rm LO-HVP} = \frac{m_{\mu}^3}{12\pi^2} \int_{s_{\rm th}}^{\infty} \mathrm{d}s \frac{K(s)}{s} \sigma(e^+e^- \to \text{hadrons})$$

• R-ratio

$$R_{\rm had}(s) = \frac{\sigma^0(e^+e^- \to \gamma^* \to {\rm hadrons})}{(4\pi\alpha^2/3s)}$$

• Compilation of experimental data from many experiments

• 2020 White paper average for the dispersive approach (CMD3 data not included)

$$a_{\mu}^{\text{hvp}} = 693.1(2.8)_{\text{stat}}(0.7)_{\text{DV+QCD}}(2.8)_{\text{KLOE/BABAR}} \times 10^{-10} \quad [0.58\%]$$

[Davier et al. '19] [Keshavarzi et al. '20]

• 2020 White paper average for the dispersive approach (CMD3 data not included)

 $a_{\mu}^{\text{hvp}} = 693.1(2.8)_{\text{stat}}(0.7)_{\text{DV+QCD}}(2.8)_{\text{KLOE/BABAR}} \times 10^{-10} \quad [0.58\%]$

```
[Davier et al. '19] [Keshavarzi et al. '20]
```

- But large tensions between different experimental data sets
 - \rightarrow mostly problematic for the dominant $\pi\pi$ channel, region $\sqrt{s} \in [0.6:0.9]$ GeV

Difference pheno / exp for the g-2 : $a_{\mu}^{\rm SM} - a_{\mu}^{\rm exp.} = 28(8) \times 10^{-10}$

 $\rightarrow \pi^+\pi^-$: 73% of the total contribution

ightarrow CMD3 ('23) results remove the tension

 \rightarrow The 5σ tension should be taken with extreme caution

• 2020 White paper average for the dispersive approach (CMD3 data not included)

 $a_{\mu}^{\text{hvp}} = 693.1(2.8)_{\text{stat}}(0.7)_{\text{DV+QCD}}(2.8)_{\text{KLOE/BABAR}} \times 10^{-10} \quad [0.58\%]$

[Davier et al. '19] [Keshavarzi et al. '20]

- But large tensions between different experimental data sets
 - \rightarrow mostly problematic for the dominant $\pi\pi$ channel, region $\sqrt{s} \in [0.6:0.9]$ GeV

Difference pheno / exp for the g-2 : $a_{\mu}^{\text{SM}} - a_{\mu}^{\text{exp.}} = 28(8) \times 10^{-10}$

 $\rightarrow \pi^+\pi^-$: 73% of the total contribution

ightarrow CMD3 ('23) results remove the tension

 \rightarrow The 5σ tension should be taken with extreme caution

• Strong motivation for independent lattice calculations (systematically improvable)

► The time-momentum representation [Blum '02] [Bernecker, Meyer '11]

► Noise problem (light-quark contribution)

▶ Finite-volume effects O(3%)

15

► Continuum extrapolation [BMW '20]

► QED / strong isospin breaking corrections

$$\begin{split} m_u &\neq m_d: \mathsf{O}(\frac{m_u - m_d}{\Lambda_{\text{QCD}}}) \approx 1/100\\ Q_u &\neq Q_d: \mathsf{O}(\alpha_{\text{em}}) \approx 1/100 \end{split}$$

Status of Lattice QCD results

 $a_{\mu}^{\mathrm{hvp}} \times 10^{10}$

680 700 720 740 760

- many lattice calculations (precision $\sim 2\%$)
- ▶ first sub-percent calculation by the BMW collaboration
- the tension with R-ratio not (yet?) conclusive (1.8σ)

Status of Lattice QCD results

 $a_{\mu}^{\mathrm{hvp}} \times 10^{10}$

680 700 720 740 760

• many lattice calculations (precision $\sim 2\%$)

16

- ▶ first sub-percent calculation by the BMW collaboration
- the tension with R-ratio not (yet?) conclusive (1.8σ)

Idea : look at a similar but simpler observable

HVP : relation between lattice and R-ratio

Relation between the lattice correlator and the R-ratio is given by a Laplace transform :

$$G(t) = \frac{1}{12\pi^2} \int_{E_{\rm th}}^{\infty} d\omega \ \omega^2 \ R(\omega) e^{-t\omega}$$
$$G(t) = \frac{1}{3} \sum_{k=1}^{3} \int d^3x \left\langle J_k(\mathbf{x}, t) J_k(0) \right\rangle$$

► G(t) is known on a finite value of timeslices and at finite lattice spacing
 ► and is affected by statistical errors

The intermediate window observable

$$a_{\mu}^{\rm win} = \left(\frac{\alpha}{\pi}\right)^2 \sum_t G(t) \, \widetilde{K}(t) \, \, \mathbf{W}(\mathbf{t}; \mathbf{t_0}, \mathbf{t_1})$$

• Intermediate window : $\sim 30\%$ of the total contribution

- Easier to compute on the lattice (and accessible from R-ratio data !)
- ► Data-driven : 2π contribution in the region 600 MeV $\leq \sqrt{s} \leq 900$ MeV (around the ρ peak) : \rightarrow relative contribution of 55%-60% to both $a_{\mu}^{\text{LO-HVP}}$ and a_{μ}^{win} !
 - $\rightarrow \sqrt{s} \leq 600 \text{ MeV}$ slightly suppressed, $\sqrt{s} \geq 900 \text{ MeV}$ slightly enhanced.

Intermediate window observable

► significant tension between (all !) lattice calculations vs data-driven approach

- \rightarrow here shown for the light-quark connected contribution in the isospin limit
- $\rightarrow 3.7\sigma$ tension for the window observable
- \rightarrow CMD3 data not included

The tension between lattice QCD simulations and the data-driven approach needs to be understood to further reduce the error

LO-HVP contribution : current status

The tension between lattice QCD simulations and the data-driven approach needs to be understood to further reduce the error

• Updated analysis using τ data [Davier et al. 2312.02053], [Masjuan et al. 2305.20005]

 \rightarrow if only BaBar/CMD3/ τ : agreement with lattice (the tension with Exp. is reduced to 2.8 σ) \rightarrow but still some tension for the intermediate window observable.

- ► Smeared R-ratio from Lattice QCD [ETMc Phys.Rev.Lett. 130 (2023)]
- Combined analysis with different observable a_{μ}^{hvp} , a_{μ}^{win} , running α [Davier et al. 2308.04221 [hep-ph]] \rightarrow would require an increase of $\pi\pi$ cross sections around the ρ peak by almost 5%

- Standard Model estimate dominated by hadronic uncertainties
- **HLbL contribution** : already close to the target precision of 10%.
 - \rightarrow good agreement between calculations (at the level of 15%)

• HVP contribution

- \rightarrow target precision : a few-permille
- \rightarrow significant progress on the lattice : now competitive in terms of error
- \rightarrow ... but this increase of precision comes with a new puzzle : tension with the R-ratio
- \rightarrow need to be understood to agree on the Standard Model estimate
- \bullet Discrepancy KLOE / BaBar / CMD3 close to the ρ peak
- \bullet Comparison Lattice / R-ratio : closer look at the region around the ρ
- Need more lattice QCD calculations with sub-percent precision
- Final result from Fermilab expected in \sim one year!
 - \rightarrow New experiment at J-PARC E34 in 2025

Backup slides

Hadronic contributions are dominated by low energy physics $\leq 1~{\rm GeV}$

► Estimator for the HVP contribution

$$a_{\mu}^{\rm HVP} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dt \ K(t) \ G(t) \ , \quad G(t) = -\frac{1}{3} \sum_{\vec{x},k} \langle J_k(x) J_k(0) \rangle_{\rm QCD}$$

► Estimator for the HLbL contribution

$$a_{\mu}^{\text{HLbL}} = -\frac{me^{6}}{3} \int d^{4}y \int d^{4}x \int d^{4}z \, \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \, z_{\rho} \, \langle J_{\mu}(x)J_{\nu}(y)J_{\sigma}(z)J_{\lambda}(0) \rangle_{\text{QCD}}$$

- Hadronic contributions are evaluated non-perturbatively using numerical methods
 - \rightarrow lattice regularization : numerical evaluation of the path integral using MC techniques
 - ightarrow large-scale simulations (~ $10^3 10^4$ CPU cores)
 - \rightarrow statistical + systematic uncertainties

- The QED part of the diagram is computed perturbatively
 - \rightarrow in the continuum and infinite volume limits
 - \rightarrow weights the non-perturbative hadronic correlator

[Davier et. al arXiv :2312.02053]

Isospin corrections are needed when using τ data (Figures from Mattia Bruno) :

EM current Final states I = 0, 1 neutral

V-A current

Final states I = 1 charged