Sezen Sekmen & <u>Eleni Vryonidou</u> DIS2024, Grenoble

12/4/2024

WG3 Summary EW & BSM

WG3 in a nutshell Electroweak Physics & Beyond the SM

- 40 talks
- + joint session with WG6: 7 talks on future experiments
- Higgs measurements, EW measurements, Top measurements and their interpretations
- Searches for resonances, SUSY, DM, unconventional signatures
- Results from BELLE, NA62
- Just a fraction of results shown here due to time! Apologies to the speakers!

Couplings **Differential distributions** Mass

Width

Heavy Higgs LFV decays

HIGGGS

Rare decays

HH production

Higgs mass **ATLAS** Leonardo Carminati

 m_{H} = 125.11 ± 0.09 (stat.) ± 0.06 (syst.) = 125.11 ± 0.11 GeV

Antonio Vagnerini CMS

Impressive sub permille precision in the Higgs mass for the first time!

Higgs width

 $\Gamma_{\rm H}$ = 4.5^{+3.3}_{-2.5} MeV and 0.5 (0.1) < $\Gamma_{\rm H}$ < 10.5 (10.9) MeV at 95% CL

 $\Gamma = 2.9^{+1.9}_{-1.4}$ MeV, $\in [0.6, 7.0]$ MeV@95% CL

Higgs couplings to fermions Search for rare/tough decay modes

Louis-Guillaume Gagnon

Lepton Flavour violation

Going beyond Branching ratios

Fiducial measurements in the diphoton decay channel

- Advanced morphing techniques
 - improving modelling of diphoton invariant mass resolution and photon identification

Higgs differential measurements

- Differential distributions available for various production and decay modes
- Covering both high energy tails, angular observables
- Double differential observables are also becoming available

ATLAS Vector boson fusion

Benedict Winter

CMS Double differential observables

Alessandra Cappati

Progress in Theory Higgs/Z+jet NLL/NLO+

Resummed predictions NLL matched to Fixed Order

Better description for the semi-inclusive H+jet process

Interpretations of differential measurements

Increasing differential measurements can be used to constrain Higgs couplings: **Higgs Yukawa couplings**

Higgs Transverse momentum distribution used to bound bottom and charm Yukawa

EFT interpretations of Higgs measurements

 $\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i}^{\prime}$

Individual channels: e.g. VBF

ATLAS

EFT

New Interactions of SM particles

$$O_i^{(6)} + \mathcal{O}(\Lambda^{-4})$$

CMS Oguz Güzel

Benedict Winter

Rare Production modes CMS Roberto Covarelli

Bound for tHj ~15 times the SM prediction Sensitive to both Htt and HWW couplings, cancellation between the two diagrams Probe of coupling modifications

Bound for tHj ~6 times the SM prediction Bounds on bottom Yukawa (and top)

CP odd couplings Higgs

- The SM predicts a CP-even Higgs

Fermionic couplings

CP-violation needed to explain matter anti-matter asymmetry, motivates searches

Bosonic couplings

Searching for additional Higgses

 Resonance rearches motivated by various BSM models Searches for scalar resonances with different masses & different decays

ATLAS Asma Hadel

No significant excesses observed but sensitivity continuously improves

 $\Delta 2HDMS$

Intermediate mass

UV model suggested to explain various small excesses in various measurements

The Higgs potential: Di-Higgs searches **CMS** Bruno Alves Nature Reviews Physics, volume 3, pages 608–624 (2021) **ATLAS** Ali Shahzad $\lambda_{HHH} = \lambda_{HHHH} = \frac{m_H^2}{2\nu}$ Higgs

WW yy Observed: 97

bb WW Expected: 18 Observed: 14

bb ZZ 🐥 Expected: 40 Observed: 32

Expected: 19 Observed: 21

bb үү 🐥 Expected: 5.5

bb ττ 🐥 Expected: 5.2 Observed: 3.3

bb bb 🐥

Huge progress in HH cross-section bounds: 2-3 x SM Significant reduction of systematic uncertainties for 4b channel

HH interpretations ATLAS Ali Shahzad

Phys. Lett. B 843 (2023) 137745

10 10 10 10	$ \begin{array}{c} \mathbf{ATLA} \\ \sqrt{s} = 13 \text{ T} \\ HH \rightarrow b\bar{b}^{\dagger} \\ \end{array} $	S $eV, 126-139 \text{ fb}^{-1}$ $\tau^+ \tau^- + b\bar{b}\gamma\gamma + b\bar{b}b\bar{b}$		Observed limit Expected limit ($(\mu_{HH} = 0 \text{ hypoth})$ Expected limit $=$ Expected limit $=$ Theory prediction SM prediction	(95% CL) 95% CL) esis) ±1σ ±2σ on t τ on t τ bined 1 <i>K</i> λ	5
Final	state	Obs. 95% CL	Exp.	95% CL	Obs. valu	ue_{-1}^{+1}
HH -	$\rightarrow b \bar{b} \gamma \gamma$	$-1.4 < \kappa_{\lambda} < 6.5$	-3.2 <	$\kappa_{\lambda} < 8.1$	$\kappa_{\lambda} = 2.8$	$8^{+2.0}_{-2.2}$
HH -	$\rightarrow b \bar{b} \tau^+ \tau^-$	$-2.7 < \kappa_\lambda < 9.5$	-3.1 <	$\kappa_\lambda < 10.2$	$\kappa_{\lambda} = 1.5$	$5^{+5.9}_{-2.5}$
HH -	$\rightarrow b\bar{b}b\bar{b}$	$-3.3 < \kappa_\lambda < 11.4$	-5.2 <	$\kappa_{\lambda} < 11.6$	$\kappa_{\lambda} = 6.2$	$2^{+3.0}_{-5.2}$
HH c	combination	$-0.6 < \kappa_\lambda < 6.6$	-2.1 <	$\kappa_{\lambda} < 7.8$	$\kappa_{\lambda} = 3.1$	$1^{+1.9}_{-2.0}$

Pinning down κ_{λ} is tough, better prospects at HL-LHC:

Note: $k_{2V} = 0$ excluded at more than 5σ by both experiments No golden channel: Combinations are needed, significant efforts in all decay channels

CMS Bruno Alves

Uncertainty scenario	<i>к</i> _λ 68% CI
No syst. unc.	[0.7, 1.4]
Baseline	[0.5, 1.6]
Theoretical unc. halved	[0.3, 2.2]
Run 2 syst. unc.	[0.1, 2.4]

sinew Diboson

Triboson EW physics TGCs

Polarisation

Differential distributions

Peripheral collisions

EW precision measurements The LHC as a precision machine! Example1: $sin^2\theta_{eff}$

Good agreement with SM and previous measurement Dominated by PDF uncertainties Most precise measurement at hadron collider!

Mario Pelliccioni

Example2: m_w & Γ_w (first ATLAS measurement)

Diboson production and polarisation ATLAS

- Diboson measurements probe the EW structure of the SM

Agreement with higher order SM computations

Luka Selem

Detailed studies of polarisation in ZZ and WZ final states also differentially

Angular distributions also discriminating SM from aNTGC (CP-odd)

Triboson production at the LHC

- The more bosons the better!
- TGCs, QGCs, high threshold processes, great for BSM searches also
- Several processes measured, several channels will benefit from better statistics in Run III

CMS Tarricone Cristiano

VBS@LHC

- VBS crucial for understanding EWSB
- Access to triple and quartic gauge couplings
- Tough processes to measure, but also lots of different channels

Opposite sign WW VBS: $\sigma_{obs} = 10.2 \pm 2.0$ fb $\sigma_{exp} = 9.1 \pm 0.6$ (scale) fb

CMS

Signal	$\mu=\sigma_{OBS}/\sigma_{SM}$	Cross S
${ m EWK}~{ m W}\gamma$	$0.88\substack{+0.19\\-0.18}$	$23.5\pm2.8({\rm stat})$
EWK+QCD W γ	$0.98\substack{+0.12\\-0.11}$	$113 \pm 2.0 (\mathrm{stat})$

Costanza Carrivale

Ultra Peripheral Collisions Unique (B)SM yy physics with UPCs at the LHC

gamma-UPC is a new versatile code to generate any yy process in UPCs with protons & ions. Interfaced to MG5_aMC@NLO & HelacOnia & custom codes.

New developments:

- Parametric uncertainties
- $\Delta \phi$ distribution modulation for lepton pairs

Nicolas Crepet

- \$\$ \\$\$ \$\$ \\$\$\$\$\$\$| \$\$ | \$\$| \$\$\$\$\$\$ \\$\$\$\$ _/ \$\$| \$\$ \$\$ / 1 \$\$ \$\$1 \$\$ **\\$\$**rocess **\$\$** \\$\$ \\$\$\$\$\$\$ \\$\$ \\$\$\$\$\$\$ A library for exclusive photon-photon processes in ultraperipheral proton and nuclear collisions By Hua-Sheng Shao (LPTHE) and David d'Enterria (CERN) Please cite arXiv:2207.03012

 $\rightarrow e^+ e^-$ in Au Au UPCs @ 200 GeV

22

FCNC **Differential distributions Spin correlations**

Top mass

EFT

Single top

Τορ

Entanglement

LFV

23

Top properties The heaviest quark, order~1 Yukawa coupling Learning more about the top Quantum entanglement

TOP MASS

Top-quark mass combination ATLAS/CMS run I

mt = 172.52 ± 0.14(stat) ± 0.30(syst) GeV (~ 0.2 % precision)

Luis Monsonis

Particle-level Invariant Mass Range [GeV]

Entanglement: Top Spins are entangled First observation of entanglement in events near the top-anti-top threshold

Top measurements

Plethora of inclusive and differential measurements in all channels: pair production, tj, tW **ATLAS**

Inclusive results, at different CoM energies Differential measurements for tt, parton level Good agreement with NNLO+NNLL

Luis Monsonis

Differential measurements for tW

Jeremy Andrea

BSM top @ ATLAS and CMS Example: FCNC tHq

Forbidden at tree level, highly suppressed at higher orders.

SM prediction BR(t \rightarrow Hu, Hc) < 10⁻¹⁵, 10⁻¹⁷.

Deviation would point to new physics

CMS: H \rightarrow WW, ZZ, $\tau\tau$ >= 1 same sign dilepton pair, b-jets, jets

95% CL limits set using the CL_s criterion.

• Observed: $Br(t \to uH) < 0.072\%$, $Br(t \to cH) < 0.043\%$.

• Expected: $Br(t \to uH) < 0.059\%$, $Br(t \to cH) < 0.062\%$.

Olga Bessidskaia Bylund

ATLAS: H→bb, γγ, ττ, VV*. Multilepton

Signal	Observed (expected) $\mathcal{B}(t \to Hq)$	ed) 95% CL upper limits $ C_{u\phi}^{qt,tq} $
tHu	$2.8(3.0) \times 10^{-4}$	0.71 (0.73)
tHc	$3.3(3.8) \times 10^{-4}$	0.76 (0.82)

Gabriel Gomes

%. %.

BSM top @ ATLAS and CMS Charged LFV decays

No excess seen. EFT interpretation. Limits improve by ~an order of magnitude.

 $\mathscr{B}(t \rightarrow \mu \tau q) < 8.7 \times 10^{-7}$

Olga Bessidskaia Bylund

	${\sf Br}(t o e \mu u)$	${\sf Br}(t o e\mu c)$
tensor	$0.032 \cdot 10^{-6}$	$0.498 \cdot 10^{-6}$
vector	$0.022 \cdot 10^{-6}$	$0.369 \cdot 10^{-6}$
scalar	$0.012 \cdot 10^{-6}$	$0.216 \cdot 10^{-6}$

LQ

LLPs

Unconventional signatures

Dark Matter

Resonances

VLQ

LFV

DM searches @ ATLAS Nikolai Fomin Monotop + E^{Tmiss}:

Vigorously exploring complementary models / signatures:

- s-channel production (via mono-X + E^{Tmiss})
- 2HDM + a
- Hidden/dark sectors (via LLPs).
- SUSY

Scalar (vector) limits improved by 800 (300) GeV.

DM @ CMS

Leptoquarks & vector-like quarks @ ATLAS Tomoya lizawa

can suggest a tree level mediator such as leptoquarks. Best limits to date.

- Lepton flavour universality violation in charged and neutral current processes in B physics
- Pair production combination: increases lower bounds by ~100 GeV wrt individual analyses.

Vector-like quarks also searched for in both single and pair production

LFU in $b \rightarrow c l \bar{\nu}$ decays at LHCb Chen Chen BSM: Replace W⁻ with e.g. H⁻ or LQ, or EFT operator. SM: W^{-} New R(D) & R(D^{*}) world average:

First LHCb measurement using D+ meson:

$$R(D^{(*)+}) = \frac{\mathcal{B}(\bar{B}^0 \to D^{(*)+}\tau^-\nu_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{(*)+}\mu^-\nu_{\mu})}$$

 $R(D^+) = 0.249 \pm 0.043(\text{stat}) \pm 0.047(\text{syst})$ $R(D^{*+}) = 0.402 \pm 0.081(\text{stat}) \pm 0.085(\text{syst})$

Tension with SM: $3.34\sigma \rightarrow 3.17\sigma$

SUSY @ CMS

Pablo Matorras

Moving toward unconventional and challenging signatures, combinations. No excess, but still some hope.

Disappearing track search for long-lived charginos.

Stringent constraints on Higgsinos.

Higgs-like heavy resonances @ ATLAS Jackson Barr

Dedicated search program: ML-based novel approaches in heavy object identification; anomaly detection studies, NN for boosted objects.

 $VBF HH \longrightarrow bbbb$

First ATLAS study in boosted channels with $H \rightarrow bb$ tagging.

Excludes $\kappa_{2V} = 0$ at 3.8 σ .

Upper limits set for a the resonant case.

Unconventional signatures search @ ATLAS Martina Ressegotti $\tilde{g}(R-hadron) \rightarrow qq \tilde{\chi}_{1}^{0}; m(\tilde{\chi}_{2}^{0} = 100 \text{ GeV})$

Mainly targeting LLPs. Complementary searches based on different detector components.

- Inner detector: disappearing tracks, displaced vertices
- Calorimeter (and Transition Radiation Tracker): Highly Ionizing Particles (HIPs), Out-of-time energy deposits, nonpointing photons
- Pixel detector: high ionization energy loss (dE/dx).

Complementarity in sensitivity to lifetime.

Run 3 muon Reconstruction @ ATLAS

Optimal object performance crucial for optimum performance in physics results.

Muon ID & isolation efficiencies performance almost at Run 2 level. Calibration ongoing to achieve similar momentum resolution performance.

NA62

Belle

FCC-ee

Beyond the LHC LHeC

Tauonium at colliders David d'Enterria

First comprehensive study of ditauoniom production in the lab.

- Heaviest & most compact leptonic "atomic" system.
- Tests of bound QED & CPT symmetries at high mass.
- Ultra-precise τ mass extraction via e⁺e⁻ \rightarrow $\tau_1\mu^+\mu^-$.

Para-ditauonim: Example $e^{-,h}$ observable via $\gamma\gamma$ fusion at high lumi e+e⁻ colliders. Para- (J^{PC} = 0⁻⁺)

 $m_{\gamma\gamma}$ fit stat. significance: - Belle II, FCC-ee : 3σ , 5σ . roduction in the lab. nic" system. at high mass. ►T1µ+µ-.

LHeC **Precision & BSM**

Rich Programme in precision physics, EW, top, Higgs and BSM physics

Belle II results Youngjoon Kwon

Belle II has collected over 0.4 ab⁻¹ data sample in its first 3 years of operation before LS1, and started Run 2 data taking in Feb. this year.

Inclusive test of LFU with $B \rightarrow X\tau v$:

$$R(X_{\tau/\ell}) = \frac{\mathcal{B}(B \to X\tau\nu)}{\mathcal{B}(B \to X\ell\nu)}$$

 $R(X_{\tau/\ell}) = 0.228 \pm 0.016 \pm 0.036$

Consistent with SM: 0.223 ± 0.005

NA62 precision measurements

Fixed target experiment at CERN

 $\pi^0 \rightarrow e^+e^-$: New preliminary measurement. $\mathcal{B}_{NA62}(\pi^0 \rightarrow e^+e^-(\gamma), x > 0.95) = (5.86 \pm 0.30_{stat} \pm 0.11_{syst} \pm 0.19_{ext}) \times 10^{-8} = (5.86 \pm 0.37) \times 10^{-8}$

Petre Boboc

Κ+ → π+γγ:

Also performed a peak searce ALPs: K+ $\rightarrow \pi^+a$, a $\rightarrow \gamma\gamma$

NA62: Exotic decays in beam dump mode Alina Kleimenova

Target is removed.

- Complementary to LHC and indirect searches.
- Smaller masses, lower couplings accessible.
- Models: ALPs, dark photons, dark Higgs.

Search in hadronic final states:

Marco Ceoletta

NA62: LF/LN violation, hidden sectors Marco Ceoletta

Powerful probe for BSM physics. Rich rare and exotic decays program.

Type	Process	Prev. UL	NA62 UL	Improvement
LNV/LFV LNV/LFV	$\begin{array}{c} K^+ \rightarrow \mu^- \nu e^+ e^+ \\ K^+ \rightarrow e^- \nu \mu^+ \mu^+ \end{array}$	$< 2.1 imes 10^{-8}$	$< 8.1 \times 10^{-11}$ $\sim 2 \times 10^{-11}$	${\cal O}(10^2)$
LNV	$K^+ \to \pi^- \mu^+ \mu^+$	$< 8.6 \times 10^{-11}$	$<4.2\times10^{-11}$	2 (w/30% Run1)
LNV	$K^+ ightarrow \pi^- e^+ e^+$	$< 6.4 \times 10^{-10}$	$<5.3\times10^{-11}$	$\mathcal{O}(10)$
LNV	$K^+ ightarrow \pi^- \pi^0 e^+ e^+$		$< 8.5 imes 10^{-10}$	FIRST SEARCH!
LNV	$K^+ \rightarrow \pi^- \pi^0 \mu^+ e^+$			
LNV	$K^+ \to \pi^- \mu^+ e^+$	$< 5.0 \times 10^{-10}$	$<4.2\times10^{-11}$	$\mathcal{O}(10)$
LFV	$K^+ \to \pi^+ \mu^- e^+$	$< 5.2 \times 10^{-10}$	$< 6.6 \times 10^{-11}$	$\mathcal{O}(10)$
m LFV	$\pi^0 \to \mu^- e^+$	$< 3.4 \times 10^{-9}$	$< 3.2 \times 10^{-10}$	$\mathcal{O}(10)$
m LFV	$K^+ \rightarrow \pi^+ \pi^0 \mu^- e^+$			
m LFV	$K^+ \rightarrow \pi^+ \mu^+ e^-$	$< 1.3 imes 10^{-11}$		
m LFV	$\pi^0 \rightarrow e^- \mu^+$	$< 3.8 \times 10^{-10}$		

 Thanks to all the speakers Thanks to everyone attending the session Thanks to the organisers

DIRT

