

WG6 Group Summary at DIS2024 Alessandro Tricoli (BNL), Leticia Cunqueiro Mendez (Sapienza University), <u>Wenliang Li (</u>SBU)

General Working Group Overview

- # of Talks: 42
 - WG6 Session: 42
 - WG3 + WG6: 77
 - WG1 + WG6: 3. Not included in this update
- Talk length: 15 + 5 Minutes
- Topic:
 - Strategic planning
 - Future experiment and facilities
 - \circ New physics ideas

Future is bright

Long Range Plan (LRP) efforts:

- The European Committee for Future Accelerators (ECFA) LRP (Invited, couldn't come)
- 2023 P5 Report (Invited, couldn't come)
- The Nuclear Physics European Collaboration Committee (NuPECC) LRP (here)
- 2023 Nuclear Science Advisory Committee Long Range Plan for Nuclear Science (talk cancelled)

NuPECC Long Range Plan Process

The NuPECC Long Range Plan 2024, Carlos Muñoz Camacho

<u>Draft document</u> released to the community (370 pages) April 15-17, 2024: Town Meeting (Bucharest, Romania) <u>https://indico.ph.tum.de/event/7593/</u>

- May 30, 2022: Call for community input (5 pages) for the NuPECC Long Range Plan 2024 Deadline: Oct 1st, 2022
- > January 2023: Formation of Thematic Working Groups (TWG) to analyze contribution received (153)

1. Hadron Physics

- 2. Strongly Interacting Matter under Extreme Conditions
- 3. Nuclear Structure and Reaction Dynamics
- 4. Nuclear Astrophysics
- 5. Symmetries and Fundamental Interactions

- 6. Research Infrastructures
- 7. Applications and Societal Benefit
- 8. Nuclear Physics Tools
- 9. Open Science and Data
- 10. Nuclear Science People and Society
- April 3, 2024: <u>Draft document</u> released to the community (370 pages)
- April 15-17, 2024: Town Meeting (Bucharest, Romania) <u>https://indico.ph.tum.de/event/7593/</u>

Final document: Fall 2024

Positron Program (Physics) and Ce+BAF (accelerator) at Jefferson Lab

Machine Parameter	Electrons	Positrons
Hall Multiplicity	4	1 or more
Max. Energy (ABC/D)	11/12 GeV	11/12 GeV
Beam Repetition	249.5/499 MHz	249.5/499/1497 MHz
Duty Factor	100% cw	100% cw
Unpolarized Intensity	170 μA**	> 1 µA
Polarized Intensity	170 μA**	> 50 nA
Beam Polarization	> 85%	> 60%

00

0.8

Q.7

0.1

 $\overrightarrow{e} \rightarrow \overrightarrow{\gamma} \rightarrow \overrightarrow{e}^+ (+\overrightarrow{e})$

When a longitudinally polarized e⁻ beam strikes matter, e⁺ produced in the shower carrying >50% of the e⁻ beam energy are significantly longitudinally spin polarized...

Positron Program (Physics) and Ce+BAF (accelerator) at Jefferson Lab

This list is not exhaustive but only indicative of the current proposals.

U

Luminosity Frontier with 22 JLab GeV

Phys. Rev. Lett. 128, 062005 (2022).

SoLID Experiment at JLab 12 GeV

CLAS 12 Luminosity Upgrade at JLab 12 GeV

Super Tau-Charm Facility in China (2032)

Solid Angle Coverage : $94\% \cdot 4\pi (\theta \sim 20^{\circ})$

Charm baryons

• Physics with τ lepton

predictions

Hadron fragmentation

Cylindrical MPGD (uRWELL, uRGroove) 、封装kapton层 2、PMI泡沫层 3、V向读出条上胶

V向读出条粘接

5、X向读出条上胶

5、X向读出条粘接

Inner tracker (two options) MPGD: cylindrical MPGD Silicon: CMOS MAPS

* Central tracker

Drift chamber

* PID

- Barrel: RICH with CsI-MPGD
- Endcaps: DIRC-like TOF (DTOF)

♦ EMC

- pure Csl + APD
- * Muon detector
 - RPC + scintillator strips

* Magnet

Super-conducting solenoid, 1 T

Muon-Ion Collider

LHC Upgrades

750 kHz.

NEW

material

- The HL-LHC programs challenges the detector and detector electronics in many aspects, including high radiation doses and high pile-up
- Upgrades are underway to provide new detectors and read-out electronics to ensure the high efficiency and high-quality data taking in HL-LHC era
- Many projects entering pre-production or production phase

LHC Upgrades - CMS

tic coverage for InI<3.0

z [mm]

LHC Upgrades - ATLAS

ITk pixel: new sensor

technology, readout FE

· L0-L1 layers of flat staves and rings:

L1: n-in-p planar guad modules

Replaceable @2000 fb⁻¹

L0: 3D single modules, radius = 39mn .

chips, other ASICs.

Inner System

2600 modules
2.4 m²

System	Phase-II upgrades
Tracker	Completely new Inner Tracker (ITk), comprised of Pixel and Strip sub-detectors
Calorimetry	On- and off-detector electronic replacement for 40MHz continuous readout
Muons	New muon chambers and upgraded electronics for continuous readout
Forward	New luminosity and timing detector (HGTD), upgrades for other detectors
Trigger & DAQ	New architecture, electronics and software

ATLAS Inner Tracker (ITk) - new all-silicon

رسس <u>م</u>

Outer Barrel

• 6.94 m²

• 3.64 m²

Outer End-cap

L2-L3-L4 layers of rings

L2-L3-L4 layers of flat staves

(longerons) and inclined rings

4772 n-in-p planar guad modules

2344 n-in-p planar quad modules

ITk strips: complex system, production of multiple components, strict QA/QC, multiple institutes worldwide

Barrel system test at CERN

LHC Upgrades - ATLAS

Trigger and DAQ

- Single-level HW trigger at 1 MHz
- Detector read-out with 10us latency at 5 TB/s (FELIX)
- 2.5-25 Gb/s optical links

LHC Upgrades - ATLAS

- Upgrade of several types of Muon Chambers
 - Barrel Inner (BI) RPC+sMDT
 - End-Cap Inner Layer (EIL) TGC
- Upgrade of readout electronics Upgrade of power systems
- Extensive integration tests in multiple sites

New sMDT chamber tubes and test of chambers after production

High Granularity Timing Detector

LHC Upgrades - ALICE

ITS3: new ultra-light, bent layers made of wafer-scale 65 nm MAPS

- Air cooled, low material $(0.05\% X_0)$
- Interest in this novel technology by several other experiments, e.g. ePIC

Thinned Wafers are bent and held together by carbon foam

Test Beam

LHC Upgrades - LHCb

RICH1, RICH2 Muon Reduced pixel size µRWELL for inner regions Add timing information > MWPC for outer regions SiPM, MCP DLC layer (<0.1 µm) o~10+100 MO Pre-preg PCB electro light guid TORCH > To enhance PID capibilities for soft particles nont back ECAL Measure light angle, path lenth Space & time, longitudinal segmentation and TOF SPACAL with radiation hard crystals 2024/04/09 uhao Yuan IHEE

PID Detectors

5D Calorimeter with precision timing-

LHCb is focused on flavor physics and beyond

- Upgrade I: installation completed
- Upgrade II: starts in LS4, R&D now to fully exploit HL-LHC

Electron Ion Collider

Electron-Ion Collider: The Next QCD Frontier

- 1st detector: ePIC
- 2nd detector at IP8 still conceptual

Silicon Vertex Tracker (SVT):

- Monolithic Active Pixel Sensor (MAPS): ~20x20um
- 3 vertex barrels: ITS3 curved wafer-scale sensor, 0.05% X/X₀
- 2 outer barrels: ITS3 based Large Area Sensors (EIC-LAS), 0.55% $_{\rm X/X_0}$
- 5 disks (forward/backward), EIC-LAS, 0.24% X/X₀

• The extended detector's array required to enable primary physics objectives:

Detector II at EIC

IEGHOI

High resolution Calorimeter

ElcC: Electron Ion Collider in China

- \blacktriangleright Energy in c.m.: 15 ~ 20 GeV
- Electron beam: 3.5 GeV, polarization ~ 80%
- > Proton beam: 20 GeV, polarization $\sim 70\%$
- ➤ Luminosity: $\gtrsim 2 \times 10^{33}$ cm⁻²·s⁻¹
- \blacktriangleright Other available polarized ion beams $(d,)^{3}$ He⁺⁺
- Available unpolarized ion beams: ${}^{7}Li^{3+}$, ${}^{12}C^{6+}$, ${}^{40}Ca^{20+}$, ${}^{197}Au^{79+}$, ${}^{208}Pb^{82+}$

P/A

P/A

Nucleon spin structure:

EicC is optimized to systematically explore the gluon and sea quarks in moderate *x* regime At a crucial place between JLab and EIC-US

Partonic structure in nuclear environment:

Parton distribution in nuclei at moderate *x* Fast parton/hadron interaction with cold nuclear matter

Exotic hadron states:

Independent confirmation of hidden-charm pentaquarks and search for hidden-bottom analogues Exotic hadron production: final particles in mid-rapidity

Proton mass / quarkonium production:

Systematic investigation of Y near threshold production Complementary kinematic coverage to EIC-US Combine with J/ ψ production at JLab

LHeC

Standalone Higgs, Top, EW, BSM programme

→ General purpose particle physics detector → Good performance for all high p_T particles → Heavy Flavour tagging

Precision proton PDFs, including very low x parton dynamics in ep,eA \rightarrow Dedicated DIS exp't \rightarrow Hermeticity \rightarrow Hadronic final state resolution for kinematics \rightarrow Flavour tagging / PID \rightarrow Beamline instruments

Synchrotron mitigation with elliptical beampipe, collimators and absorption on the Q0

LHeC and FCC-eh

Backward DVCS on the pion in Sullivan processes

 $\textbf{Different regions} \rightarrow \textbf{different kinematics} \rightarrow \textbf{different structure functions!}$

- ► Forward region → small t-channel: GPDs;
- ▶ Backward region → large t-channel but small u-channel: Transition Distribution Amplitudes;

Figure: Exclusive $ep \rightarrow en\pi^+$ process description (S. Diehl and Joo, 2020).

Moller Experiment at 12 GeV Jefferson Lab

International Large Detector Experiment

Thank you and see you in the future!

Beautiful Room of WG6

Take away message from WG6: future is bright! (very busy)