POLARIZATION AND STRANGENESS PRODUCTION AT LHCb

<u>Camilla De Angelis</u> University and INFN Cagliari on behalf of the LHCb collaboration

camilla.de.angelis@cern.ch

THE LHCb DETECTOR

Single arm forward spectrometer with **unique coverage 2** < η < 5

[JINST 3 (2008) S08005] [IJMPA 30 (2015) 1530022]

Vertex Detector(VELO)

decay time resolution: 45 fs

reconstruct vertices

IP resolution: 20 μm

- Designed for heavy-flavour physics, now a general purpose experiment
- Forward and backward coverage for asymmetric beams

SMOG

Fixed-target system!

Dipole Magnet bending power: 4 Tm

Camilla De Angelis - 09/04/2024 - DIS2024

RICH detectors

 $K/\pi/p$ separation ε(K→K) ~ 95 %, mis-ID $\epsilon(\pi \rightarrow K) \sim 5\%$ Muon system μ identification $\epsilon(\mu \rightarrow \mu) \sim 97 \%$, mis-ID $\varepsilon(\pi \rightarrow \mu) \approx 1-3 \%$

Tracking system momentum resolution $\Delta p/p = 0.4\% - 0.8\%$ (5 GeV/c - 100 GeV/c)

Calorimeters energy measurement e/y identification $\Delta E/E = 1 \% \oplus 10 \%/VE (GeV)$

10-300mrad

Track reconstruction down to $p_T = 0$

LHCb EXPERIMENTAL SET-UP

Large variety of colliding system other than *pp*:

Pb

(He,Ne, Ar...)

Gas (Ne, Ar)

(SMOG)

PbPb

RUN2 SAMPLES

Camilla De Angelis - 09/04/2024 - DIS2024

kinematical region accessible!

FIXED TARGET COLLISIONS AT LHCb: SMOG

• Unique kinematical region accessible

$$\sqrt{s_{NN}} \sim \sqrt{2E_N M_N} = 41$$

Investigates the **high-**x of the nucleon target at **intermediate** Q^2

Camilla De Angelis - 09/04/2024 - DIS2024

RUN2 CONFIGURATION

SMOG: System for Measuring Overlap with Gas

Noble gases (He, Ar, Ne) injected into the LHC beam pipe around the Interaction Point (IP), pressure $\sim 10^{-7}$ mbar

Highest-energy fixed-target experiment ever built \rightarrow bridge between the SPS and LHC energies

A⁰ TRANSVERSE POLARIZATION

Λ^{0} TRANSVERSE POLARIZATION

- Λ^0 hyperon composed by *uds* quarks
- **Transverse** Λ^0 **polarization:** discovered in 1976 in *p*Be collisions using 300 GeV unpolarized beam
- **Polarization effects not expected** in particle production from unpolarised beams at high energy
- Leading order perturbative QCD calculations predicted very small polarization for light quarks and go to zero for increasing momentum
- Indicates that spin effects play an important role even in high energy collisions

Camilla De Angelis - 09/04/2024 - DIS2024

Despite many theories and experiments performed, still not a clear explanation!

Λ^{0} TRANSVERSE POLARIZATION

- **Common features** observed up to now:
 - **Polarization value increases with increasing** *x_F* **and** p_T up to few GeV
 - **Roughly independent of the beam energy and the** atomic mass number of the colliding nuclei
- Polarization observed also for other hyperons ($\Xi^0, \Xi^{\pm}, \Sigma^{\pm}$)

Camilla De Angelis - 09/04/2024 - DIS2024

Most recent measurements in collider and fixed target experiments

LHCb reach in the grey zone 0

Phenomenological approach in explaining the polarization

Polarizing TMD fragmentation function (FF): describes the fragmentation of an unpolarized quark into a transversely polarized hadron Arxiv:0008186v1

STRATEGY FOR MEASURING THE POLARIZATION

We measure the polarization in the 2017 *p*Ne sample:

It is studied exploiting the Λ^0 decay 0

Both Λ and $\overline{\Lambda}$ states analyzed

The decay protons are preferentially emitted along 0 the spin direction of the Λ in its rest frame

Camilla De Angelis - 09/04/2024 - DIS2024

Measuring the **asymmetry in the proton's** 0 angular distribution if present, would provide access to the Λ^0 polarization

• Polarization to be extracted by the angular coefficient of the angular distribution!

LHCb-PAPER-2024-009, in preparation

RESULTS

Camilla De Angelis - 09/04/2024 - DIS2024

LHCb-PAPER-2024-009, in preparation

Polarization values obtained in the kinematical range: $300 < p_T < 3000 \text{ MeV/c}$ & $2 < \eta < 5$

 $P(\Lambda) = 0.029 \pm 0.019 \pm 0.012$ $P(\bar{\Lambda}) = 0.003 \pm 0.023 \pm 0.014$

Polarization values studied as a function of:

> (a) p_T (b) η

(d) x_F (c) y

Error bars convolution of statistical \bigcirc and systematical uncertainties

y and η in the lab frame

9

COMPARISON WITH OTHER EXPERIMENTS

LHCb-PAPER-2024-009, in preparation

Camilla De Angelis - 09/04/2024 - DIS2024

Λ^0 polarization vs x_F

Comparison with results from 0 other experiments performed in different kinematical regions and collision system

Very good agreement in the \bigcirc polarization values!!

FIXED TARGET COLLISIONS AT LHCb: SMOG2

- **SMOG2:** gas confined in a 20 cm long **storage cell**
- **Higher areal density** than SMOG (luminosity increased up to $\sim x 100$)
- Wider choice of gases to be injected: He, Ne, Ar, H₂, D₂, N₂, O₂, Kr, Xe
- **Data taken simultaneously in** *pp* **and** *pA* **modes**

Possibility to improve the transverse polarization analysis:

- Much higher luminosity \rightarrow better statistical resolution
- \bigcirc features listed before
- Possibility to look into other hyperon polarization! 0

Camilla De Angelis - 09/04/2024 - DIS2024

RUN3 CONFIGURATION

LHCb-FIGURE-2023-001

Measurements to be repeated with different mass target and beam energy to probe the polarization

STRANGENESS PRODUCTION

STRANGENESS ENHANCEMENT IN pPb collisions

- It is essential to characterize the cold nuclear matter effect (CNM) involved in these processes

- In *p*Pb collisions the energy density is not expected to be sufficient to produce a QGP medium:
 - **Optimal environment to study CNM** effects
 - **Possibility to test theories which predict QGP** droplets in such collisions

Camilla De Angelis - 09/04/2024 - DIS2024

Strangeness enhancement is considered a signature for the QGP formation in heavy-ion collisions

- **Forward** region: 1.5 < y* < 4.0
- pPb (2013) @ $\sqrt{s_{NN}}$ = 5.02 TeV \rightarrow L ~ 1.1 nb⁻¹
- pPb (2016) @ $\sqrt{s_{NN}}$ = 8.16 TeV \rightarrow L ~ 12.5 nb⁻¹

- **Backward** region: -5.0 < y* < -2.5
- Pbp (2013) @ $\sqrt{s_{NN}}$ = 5.02 TeV \rightarrow L ~ 0.4 nb⁻
- Pbp (2016) @ $\sqrt{s_{NN}}$ = 8.16 TeV \rightarrow L ~ 17.4 nb⁻¹

*p*Pb and Pb*p* collisions configuration at LHC*b*

PROMPT D^+ , D_s^+ PRODUCTION IN pPb COLLISIONS AT $\sqrt{s} = 5 \text{ TeV}$ ¹⁴

First measurement of prompt D^+ and D_s^+ at low p_T and forward rapidities in heavy ion collisions

Forward:

Camilla De Angelis - 09/04/2024 - DIS2024

Arxiv:2309.14206, accepted by JHEP

PROMPT D^+ , D_s^+ PRODUCTION IN pPb COLLISIONS AT $\sqrt{s} = 5 \text{ TeV}$ 15

- **First measurement of prompt** D^+ and D_s^+ at low p_T and forward rapidities in heavy ion collisions
- **Production ratios between** D^+ , D_s^+ and D^0 coming from an LHCb previous measurement
 - Consistent with LHCb *pp* and ALICE *pp* and *p*Pb results
 - No enhancement in either the forward or backward region

Arxiv:1707.02750

Similar analysis performed in *p*Pb collisions at $\sqrt{s} = 8.16$ TeV in pPb, see talk by Chenxhi Gu talk, April 9, 9.50 in WG4

Ξ_c^+ production in *p*Pb collisions at $\sqrt{s} = 8.16$ TeV

- First measurement of this baryon in heavy-ion collisions: $\Xi_c^+ \rightarrow p K^- \pi^+$
 - Prompt Ξ_c^+ cross-section measured as a function of p_T and y^*
- **Double** Ξ_c^+ differential cross-section
 - Data compared with HELAC-Onia simulations with 3 factorisation scales
 - Better agreement with factorisation scale $0.5\mu_0$

Camilla De Angelis - 09/04/2024 - DIS2024

Arxiv:2305.06711, accepted by PRC

	—
(b)	-
(0)	1
	_
	-
	-
	_
	_
	-
	-
	-
	-
	1
	1
	—
	-
	1
	-
	-
	-
-	-
I	. –
4	
4	
	v*
	<i>y</i> '

Ξ_c^+ production in *p*Pb collisions at $\sqrt{s} = 8.16$ TeV

- First measurement of this baryon in heavy-ion collisions: $\Xi_c^+ \rightarrow p K^- \pi^+$
 - Important input for strange hadronization, studies in progress in different collisions systems to better understand the mechanism

Measurement of the production ratio Ξ_c^+ / Λ_c^+

- Data compared with HELAC-Onia simulations with 3 factorisation scales
- Better agreement with factorisation scale $0.5\mu_0$
- No clear sign of strangeness enhancement

Camilla De Angelis - 09/04/2024 - DIS2024

Arxiv:2305.06711, accepted by PRC

CONCLUSIONS

- Results shown from LHCb Run2!
- New measurement using the fixed-target system which help in the understanding of the long-standing challenge of the transverse Λ polarization explanation
- strangeness enhancement QGP signature
- Many more results will come with Run3 data!

Camilla De Angelis - 09/04/2024 - DIS2024

Two measurements in pPb collisions which give input to characterize the

COS*H***DISTRIBUTION**

- Dividing the $\cos \theta$ distribution by the efficiencies \rightarrow linear distribution!
- First order polynomial fit to extract the polarization:

$$f = p_0 \cdot (1 + \alpha^{\Lambda} \cdot p_1 \cdot x)$$

• $\alpha^{\Lambda} = 0.758$, is the world average value of the parity-violating decay asymmetry for Λ

• $P_n^{\Lambda} = p_1$, polarization values

