Measurements of γ from tree-level decays at LHCb

A. Bertolin on behalf of the LHCb collaboration

Outlook:

- **4** short introduction to LHCb and γ
- 4 LHCb γ results:
 - \bullet the LHCb γ combination
 - \bullet some recent measurements not yet included in the LHCb γ combination
- take home message and future prospects

LHCb: the detector and its performances

single-arm forward spectrometer at the LHC

detector paper: JINST 3 (2008) S08005
Run 1 performance: Int. J. Mod. Phys. A30 (2015) 1530022
Run 2 performance: JINST 14 (2019) P04013

optimized for beauty and charm physics at 2 < η < 5

key points:

• momentum resolution $(\sigma(p)/p \approx 0.5 \% \text{ (low momentum) to } 1 \% @ 200 \text{ GeV/c})$

- impact parameter resolution $(\sigma(IP) \approx 15 \ \mu m \ at \ high \ p_T)$
- primary and secondary vertices reco.
- decay time resolution ($\sigma(t)\approx$ 50 fs)
- 'global' PID: e / μ / π / K (K id \approx 95 % π mis-id \approx 5 %, p < 100 GeV/c)
- γ and π^0 reconstruction

recorded lumi.: 2011→ 2012 (Run 1): 3 /fb 2015 → 2018 (Run 2): 6 /fb

CP violation in the SM

a.k.a. ϕ_3

CP violation is one of the requirements to explain the baryon asymmetry we observe today

a process must have been in place that took us from the equal amounts of matter - anti-matter produced in the Big Bang to the Universe dominated by matter we are living in

the SM charged current weak interactions between quarks are described by the Cabibbo-Kobayashi-Maskawa matrix V, 3 x 3, with V V* = I \Leftrightarrow 3 angles and 1 phase or 3 reals and **1 imaginary** parameters

unitary condition relevant for beauty decays can be represented by a triangle in a complex plane, $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ with angles α , β and γ

• only CKM angle easily accessible in tree-level decays • assuming no new physics in tree-level decays, has negligible theoretical uncertainty i.e. achievable accuracy

dominated by experiments [JHEP01(2014)051]

any disagreement between tree-level determinations and the value inferred from global CKM fits would indicate physics beyond the SM ... due for example to new particles / mediators being exchanged in loops ...

4 how to measure γ

 γ can be determined by exploiting the interference between

• b \rightarrow cW (V_{cb}), favoured

• b \rightarrow uW (V_{ub}), suppressed transition amplitudes

$$A_{sup}/A_{fav} = r^{X}_{B}e^{i(\delta^{X}_{B}\pm\gamma)}$$

(- is for b-quark, + for anti-b)

where $r^{x}_{_{B}}$ and $\delta^{x}_{_{B}}$ are the ratio and the strong phase differences between the V_{cb} and V_{ub} transition amplitudes for the specific final state X these are also simultaneously determined

charm parameters can also get involved

\Box which/typical B meson final states (h=K, π) ?

 $B^+ \rightarrow D h^+$ GLW = M. $B^+ \rightarrow D h^+ \pi^- \pi^+$ ADS = D. $B^0 \rightarrow D K^{*0}$ $B^{PGGSZ} =$ $B^0 \rightarrow D K^+ \pi^ B^{PGGSZ} =$ $Where D is a neutral charm meson mixture of the D⁰ anti-D⁰ flavor eigenstates<math>\Box$ which/typical D meson final states ?- CP-eigenstates, D $\rightarrow K^+ K^-$ and D $\rightarrow \pi^+ \pi^-$: GLW method [Phys. Lett. B265 (1991) 172,Phys. Lett. B253 (1991) 483]

- non CP-eigenstates, $D^0 \rightarrow \pi^- K^+$: ADS method [Phys. Rev. D63 (2001) 036005]

- self-conjugate multibody D meson decay, like $K_s^0 \pi^+ \pi^-$, with the D-Dalitz plot distributions: BPGGSZ method [Phys. Rev. D 68, 054018 (2003), Eur. Phys. J. C 47, 347 (2006)]

JHEP12(2021)141 $D^{0}K^{-}$ $r_{D}e^{i(\delta_{D})}$ B^{-} $f_{D}K^{-}$ $r_{B}e^{i(\delta_{B}-\gamma)}$ $\bar{D^{0}}K^{-}$

golden mode for illustration purposes

GLW = M. Gronau, D. London and D. Wyler ADS = D. Atwood, I. Dunietz and A. Soni BPGGSZ = A. Bondar, A. Poluektov, A. Giri, Y. Grossman, A. Soffer, J. Zupan

> however due to the small branching ratios the most precise determination is obtained from a combination of measurements from many decay modes

LHCb-CONF-2022-003

4 LHCb γ combination

measurements used in the combination, the ones denoted by (*) include only a fraction of the Run 2 sample

	R decay	D decay	Bof	Dataset	Status since
ination	D decay	D uccay	Itel.	Dataset	Ref. 14
13	$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ h^-$	29	Run 1&2	As before
	$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	30	Run 1	As before
	$B^\pm \to D h^\pm$	$D \to K^\pm \pi^\mp \pi^+ \pi^-$	18	Run 1&2	New
	$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+ h^- \pi^0$	19	Run 1&2	Updated
ed in the ones denoted y a fraction of	$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_{\rm S}^0 h^+ h^-$	31	Run 1&2	As before
	$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_{\rm S}^0 K^{\pm} \pi^{\mp}$	32	Run 1&2	As before
	$B^{\pm} \rightarrow D^* h^{\pm}$	$D \rightarrow h^+ h^-$	29	Run 1&2	As before
	$B^{\pm} \rightarrow DK^{\star\pm}$	$D \rightarrow h^+ h^-$	33	Run $1\&2(*)$	As before
	$B^{\pm} \rightarrow DK^{\star\pm}$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	33	Run 1&2(*)	As before
	$B^\pm \to D h^\pm \pi^+ \pi^-$	$D ightarrow h^+ h^-$	34	Run 1	As before
	$B^0 \rightarrow DK^{*0}$	$D \rightarrow h^+ h^-$	35	Run 1&2(*)	As before
	$B^0 \rightarrow DK^{*0}$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	35	Run $1\&2(*)$	As before
	$B^0 \rightarrow DK^{*0}$	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	36	Run 1	As before
	$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \rightarrow K^- \pi^+ \pi^+$	37	Run 1	As before
	$B^0_s \rightarrow D^{\mp}_s K^{\pm}$	$D^+_* \rightarrow h^+ h^- \pi^+$	38	Run 1	As before
	$B_s^0 \rightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ \rightarrow h^+ h^- \pi^+$	39	Run 1&2	As before
	D decay	Observable(s)	Ref.	Dataset	Status since
					Ref. [14]
	$D^0 \rightarrow h^+ h^-$	ΔA_{CP}	24,40,41]	Run 1&2	As before
	$D^0 \rightarrow K^+ K^-$	$A_{CP}(K^+K^-)$	16 24 25	Run 2	New
	$D^0 ightarrow h^+ h^-$	$y_{CP} - y_{CP}^{K^- \pi^+}$	42	Run 1	As before
	$D^0 \rightarrow h^+ h^-$	$y_{CP} - y_{CP}^{K^- \pi^+}$	15	Run 2	New
inputs from the charm system	$D^0 ightarrow h^+ h^-$	ΔY	43-46	Run 1&2	As before
	$D^0 \to K^+ \pi^-$ (Single Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	47	Run 1	As before
	$D^0 \to K^+ \pi^-$ (Double Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	48	Run $1\&2(*)$	As before
	$D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$	$(x^2 + y^2)/4$	49	Run 1	As before
	$D^0 \rightarrow K^0_{ m S} \pi^+ \pi^-$	x, y	50	Run 1	As before
	$D^0 \to K^0_{\rm S} \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	51	Run 1	As before
	$D^0 ightarrow K^0_{ m S} \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	52	Run 2	As before
8	$D^0 \rightarrow K_{ m S}^0 \pi^+ \pi^- (\mu^- \text{tag})$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	17	Run 2	New

LHCb-CONF-2022-003

with so many inputs it is easy to probe the stability / strength of the final result on γ

- **4** LHCb γ combination: results
- 173 input observables
- 52 free parameters
- fit quality:
 - given the χ^2 value at the best fit point and the n.d.f. the fit probability is about 80 %
 - cross checked with pseudoexperiments
- fit results: γ , common free parameter, (r_B , δ_B) for every "B", charm mixing parameters x and y and a few other floated parameters

most precise determination from a single experiment

$$x = (0.398 + 0.050) \% \qquad y = (0.636 + 0.020) \%$$

most precise determinations to date, these were taken as auxiliary inputs from HFLAV before the 2021 measurement

 $-B^{0} \rightarrow D K^{*}(892)^{0}$ has a lower BF wrt $B^{\pm} \rightarrow D K^{\pm}$ that has the largest impact on γ - but the interference between the $b \rightarrow c$ favored and $b \rightarrow u$ suppressed amplitudes is expected to be a factor of 3 larger 160

4 LHCb γ combination: B⁰ \rightarrow D K^{*0} using self-conjugate D \rightarrow K⁰, h⁺ h⁻ decays

- D \rightarrow K⁰_s h⁺ h⁻ with h = { π , K}

- the flavor of the B meson at the point of decay is unambiguously provided by the charge of the kaon from the $K^*(892)^0 \rightarrow K^+\pi^-$ decay

- i: bin in the Dalitz plot for the D decay

- F_i: fractional D0 yield in bin i, from $B^{\pm} \rightarrow D \pi^{\pm}$, $D \rightarrow K^{0}_{s} h^{+} h^{-}$ data - c_i and s_i are the cosine and sine of the strong-phase difference between the D0 and anti-D0 decays, from BESIII and CLEO data - κ coherence factor diluting the interference term, fixed from data

Eur. Phys. J. C 84 (2024) 206

$$\gamma = (49^{+22}_{-19})^{\circ}$$
$$r_{B^0} = 0.271^{+0.065}_{-0.066}$$

- result consistent with the LHCb γ combo average [LHCb-CONF-2022-003]
- confirmation of the large value of the amplitudes ratio r
- external strong phase inputs from the BESIII and CLEO collaborations are not limiting the accuracy
- of the measurement
 - the measurement is dominated by statistical uncertainties as LHCb systematics are about 1/10 of the statistical uncertainty
 - \rightarrow expect improved accuracy from Run 3 data

4 LHCb γ combination: B⁰ \rightarrow D K^{*0} using two- and four-body D decays

LHCb-PAPER-2023-040 https://arxiv.org/pdf/2401.17934.pdf

- interference in the admixture of Cabibbo-favored (D0) $K^-\pi^+\pi^+\pi^-$ and doubly Cabibbo-suppressed (antiD0) $K^-\pi^+\pi^+\pi^-$ decays (ADS method)
- the charge of the kaon child from the K^{*0} candidate is used to determine the flavor of the parent B meson
- K π (π π) K^{*0} = kaon child of the D candidate has the same charge as the kaon child of the K^{*0} candidate
- π K (π π) K^{*0} = the two kaons have opposite charge
- definitions of some observables:

$$\mathcal{R}^{+}_{\pi K(\pi\pi)} \equiv \frac{\Gamma\left(B^{0} \to D\left[\pi K(\pi\pi)\right] K^{*0}\right)}{\Gamma\left(B^{0} \to D\left[K\pi(\pi\pi)\right] K^{*0}\right)} \qquad \qquad \mathcal{R}^{-}_{\pi K(\pi\pi)} \equiv \frac{\Gamma\left(B^{0} \to D\left[\pi K(\pi\pi)\right] K^{*0}\right)}{\Gamma\left(\overline{B}^{0} \to D\left[K\pi(\pi\pi)\right] \overline{K}^{*0}\right)}$$

$$\mathcal{A}_{K\pi} \equiv \frac{\Gamma(\overline{B}^0 \to D[K\pi(\pi\pi)]\overline{K^{*0}}) - \Gamma(\overline{B}^0 \to D[K\pi(\pi\pi)]\overline{K^{*0}})}{\Gamma(\overline{B}^0 \to D[K\pi(\pi\pi)]\overline{K^{*0}}) + \Gamma(\overline{B}^0 \to D[K\pi(\pi\pi)]\overline{K^{*0}})}$$

cancellation of a large number of systematic uncertainties related to the reconstruction and selection of the signal candidates

for illustration purposes, the dependence of one of the observables on r γ and δ is:

$$\mathcal{R}_{\pi K(\pi\pi)}^{\pm} = \frac{\left(r_{B^{0}}^{DK^{*}}\right)^{2} + \left(r_{D}^{K\pi(\pi\pi)}\right)^{2} + 2\kappa_{B^{0}}r_{B^{0}}^{DK^{*}}r_{D}^{K\pi(\pi\pi)}\kappa_{D}^{K\pi(\pi\pi)}\cos\left(\delta_{B^{0}}^{DK^{*}} + \delta_{D}^{K\pi(\pi\pi)}\pm\gamma\right)}{1 + \left(r_{B^{0}}^{DK^{*}}\right)^{2}\left(r_{D}^{K\pi(\pi\pi)}\right)^{2} + 2\kappa_{B^{0}}r_{B^{0}}^{DK^{*}}r_{D}^{K\pi(\pi\pi)}\kappa_{D}^{K\pi(\pi\pi)}\cos\left(\delta_{B^{0}}^{DK^{*}} - \delta_{D}^{K\pi(\pi\pi)}\pm\gamma\right)}$$

fundamental parameters of interest plus some additional inputs

additional final states are included:

- CP eigenstates $D \rightarrow K^+ K^-$ and $D \rightarrow \pi^+ \pi^-$ (GLW method)
- D $\rightarrow \pi^+ \pi^- \pi^+ \pi^-$ (mostly CP even, extension of the GLW method) - similar observables

LHCb-PAPER-2023-040 https://arxiv.org/pdf/2401.17934.pdf

• most stringent limits to date on γ from B⁰ decays

• result is consistent with the LHCb γ combo average [LHCb-CONF-2022-003]

• for most of the observables the statistical uncertainties are dominant

 \rightarrow expect improved accuracy from Run 3 data

4 LHCb γ combination: B[±] \rightarrow D^{*} h[±] with partial D* reconstruction

• $B^{\pm} \rightarrow [D \gamma / \pi^0] h^{\pm}$ with partial reconstruction of the D^{*}, D $\rightarrow K_{s}^{0}hh$ and h = { π, K }

• the B⁻ decay via D0 (anti-D0) proceed with the favored (suppressed) amplitude, interference occur because the final state particles are identical

$$\mathcal{A}(B^- \to [D\pi^0]_{D^*}K^-) = \mathcal{A}_B(\mathcal{A}_D + r_B^{D^*K} \exp[i(\delta_B^{D^*K} - \gamma)]\mathcal{A}_{\overline{D}})$$
$$x_{\pm}^{D^*K} \equiv r_B^{D^*K} \cos(\delta_B^{D^*K} \pm \gamma) \text{ and } y_{\pm}^{D^*K} \equiv r_B^{D^*K} \sin(\delta_B^{D^*K} \pm \gamma)$$

$$N_i^+ \propto [F_{-i} + (x_+^2 + y_+^2)F_{+i} + 2\kappa\sqrt{F_{-i}F_{+i}}(c_ix_+ - s_iy_+)]$$

- i: bin in the Dalitz plot for the D decay

$$F_i c_i s_i$$
 and κ as in pag. 7

- **unknowns:** F_i , x_{\pm} and y_{\pm}

4 LHCb γ combination: B[±] \rightarrow D^{*} h[±] with partial D* reconstruction

• given the accuracy of the BESIII and CLEO data the corresponding systematic uncertainties on x_{\pm} and y_{\pm} are small (< ½) compared to the LHCb systematic uncertainties

• the total systematic uncertainty is at least a factor of 2 smaller than the statistical uncertainty

ightarrow expect improved accuracy from Run 3 data

in [JHEP12(2023)013] an exclusive reconstruction of the D* \rightarrow D γ / π^0 decay is shown followed by the extraction of γ , the same data set is being used

the signal yield is reduced by approximatively 75 %

• the extracted value of γ is compatible with the value obtained from the partially reconstructed approach

• the overall uncertainty on γ is even smaller

JHEP02(2024)118

4 LHCb γ combination: B⁰_s \rightarrow D_s K

- sensitivity to $\boldsymbol{\gamma}$ from interference of decay amplitudes with and without mixing

• time dependent analysis: decay time acceptance obtained from $B_s \rightarrow D_s \pi$ DATA, corrected for the $B_s \rightarrow D_s K$ to $B_s \rightarrow D_s \pi$ MC decay time acceptance ratio (small) • require flavor tagging

$$\frac{\mathrm{d}\Gamma_{B_s^0 \to f}(t)}{\mathrm{d}t} = \frac{1}{2} |A_f|^2 (1 + |\lambda_f|^2) e^{-\Gamma_s t} \bigg[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \\ \text{time dependent decay rates} + C_f \cos\left(\Delta m_s t\right) - S_f \sin\left(\Delta m_s t\right) \bigg], \\ \frac{\mathrm{d}\Gamma_{\overline{B}_s^0 \to f}(t)}{\mathrm{d}t} = \frac{1}{2} |A_f|^2 \left| \frac{p}{q} \right|^2 (1 + |\lambda_f|^2) e^{-\Gamma_s t} \bigg[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \\ - C_f \cos\left(\Delta m_s t\right) + S_f \sin\left(\Delta m_s t\right) \bigg].$$

CP parameters related to $r_B \delta_B (\gamma - 2\beta_s)$

LHCb-CONF-2023-004

- 2011/2012 result driven by a statistical fluctuation
- 2015/2018 result closer to other channels
- will average them

4 LHCb γ combination: take home message and future prospects

• LHCb is doing well, with very significant improvements w.r.t. BaBar and Belle, and has excellent potentialities

• Belle II will also be able to push towards a reduction of the γ uncertainty, expect the same sensitivity

Backupmaterial

4 LHCb γ combination: B[±] \rightarrow D^{*} h[±] with exclusive D* reconstruction

JHEP12(2023)013

invariant mass variables providing the best separation between signal and (many) backgrounds are:

- m(Dh) h={ π , K} not peaking at the B mass because the neutral is excluded
- m(D π^0) or m(D γ) peaking at the nominal D* mass
- LHCb can successfully use neutrals in a very busy hadron collider environments

					╷╷ ┿╅╅╫	H.
000	2010	2020 m(D7	2030 7 ⁰) [MeV	2040 U/c^{2}]	2050	2060
	Con	iponei	nt	1-1	Yiel	ld
B^+ –	$\rightarrow D^* \tau$	τ^+, D^*	$\rightarrow D$	π^0	$199 \pm$: 13
$B^+ \to D^* \pi^+, D^* \to D\gamma$			782 ± 49			
$B^- \rightarrow D^* \pi^-, D^* \rightarrow D \pi^0$			197 ± 13			
$B^- \to D^* \pi^-, D^* \to D\gamma$			740 ± 48			
B+ -	$\rightarrow D^*I$	X^+, D^*	$^* \rightarrow D$	π^0	$13 \pm$	2
$B^{+} -$	$\rightarrow D^*$	K^+, D	$^* \rightarrow I$	γ	$69 \pm$: 11
B ⁻ -	$\rightarrow D^*I$	X^-, D^*	$^{*} \rightarrow D$	π^0	$13 \pm$	2
B^- –	$\rightarrow D^*$	K^-, D	$^* \rightarrow I$	Dy	$57 \pm$: 11

4 LHCb γ combination: $B^{\pm} \rightarrow D^{*} h^{\pm}$ with exclusive D* reconstruction

JHEP12(2023)013

• this result is consistent with the LHCb γ combo average [LHCb-CONF-2022-003]

• and dominated by statistical uncertainties

4 LHCb γ combination: remark on "auxiliary" inputs

LHCb-CONF-2022-003

Decay	Parameters	Source	Ref.	Status since
				Ref. [14]
$B^{\pm} \rightarrow DK^{*\pm}$	$\kappa_{B^{\pm}}^{DK^{*\pm}}$	LHCb	[33]	As before
$B^0 \rightarrow DK^{*0}$	$\kappa_{B^0}^{DK^{*0}}$	LHCb	[53]	As before
$B^0 \to D^{\mp} \pi^{\pm}$	β	HFLAV	[13]	As before
$B^0_s \to D^{\mp}_s K^{\pm}(\pi\pi)$	ϕ_s	HFLAV	[13]	As before
$D \rightarrow K^+ \pi^-$	$\cos \delta_D^{K\pi}, \sin \delta_D^{K\pi}, (r_D^{K\pi})^2, x^2, y$	CLEO-c	[27]	New
$D \rightarrow K^+ \pi^-$	$A_{K\pi}, A_{K\pi}^{\pi\pi\pi^{0}}, r_{D}^{K\pi} \cos \delta_{D}^{K\pi}, r_{D}^{K\pi} \sin \delta_{D}^{K\pi}$	BESIII	[28]	New
$D ightarrow h^+ h^- \pi^0$	$F^+_{\pi\pi\pi^0}, F^+_{KK\pi^0}$	CLEO-c	[54]	As before
$D \to \pi^+\pi^-\pi^+\pi^-$	$F_{4\pi}^+$	CLEO-c+BESIII	[26, 54]	U pdated
$D \rightarrow K^+ \pi^- \pi^0$	$r_D^{K\pi\pi^0}, \delta_D^{K\pi\pi^0}, \kappa_D^{K\pi\pi^0}$	CLEO-c+LHCb+BESIII	[55-57]	As before
$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$r_D^{K3\pi}, \delta_D^{K3\pi}, \kappa_D^{K3\pi}$	CLEO-c+LHCb+BESIII	[49, 55-57]	As before
$D \to K^0_{ m S} K^\pm \pi^\mp$	$r_D^{K_{\mathrm{S}}^{\mathrm{S}}K\pi},\delta_D^{K_{\mathrm{S}}^{\mathrm{S}}K\pi},\kappa_D^{K_{\mathrm{S}}^{\mathrm{S}}K\pi}$	CLEO	[58]	As before
$D \to K^0_{ m S} K^\pm \pi^\mp$	$r_D^{K_{ m S}^{ m S}K\pi}$	LHCb	[59]	As before

• there are some

• whenever possible these are taken from data

• whenever possible from LHCb data !

4 CP violation: historical approach

so this presentation will focus on LHCb results, keeping in mind that a new player is coming into the game:

Flavor tagging

Tagging performances

CERN-LHCC-2018-027 or LHCB-PUB-2018-009 or https://arxiv.org/abs/1808.08865

